

Last Week

Frequency Response

- We want to find the response to a Harmonic Input:
 - $u(t) = \alpha \cdot \cos(\omega \cdot t + \phi)$, $\phi = 0$ in most cases
- Resulting Response:
 - $y(t) = |G(j\omega)| \cdot \alpha \cdot \cos(\omega \cdot t + \phi + \angle G(j\omega))$
- What do we see?
 - The system oscillates with the same frequency
 - The amplitude is frequency dependant
 - The phase shift is frequency dependant
- How can we plot $|G(j\omega)|$ and $\angle G(j\omega)$?
 - Bode Plot
 - Polar / Nyquist Plot

Frequency Response



Last Week

Bode Plot

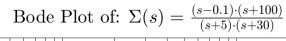
- Two separate frequency **ex**plicit plots for both $|G(j\omega)|$ and $\angle G(j\omega)$
- Magnitude Plot |G(jω)|:
 - Logarithmic ω axis and dB(decibel) |G(jω)|
 - Decibel:
 - $|G(j\omega)|_{dB} = 20 \cdot \log_{10}|G(j\omega)|$
 - $|G(j\omega)| = 10^{\frac{|\Sigma(j\omega)|_{dB}}{20}}$
 - $|G(j\omega)| = \sqrt{Re(G(j\omega))^2 + Im(G(j\omega))^2}$
- Phase Plot ∠G(jω):
 - Logarithmic ω axis and linear $\angle G(j\omega)$ (in degrees)

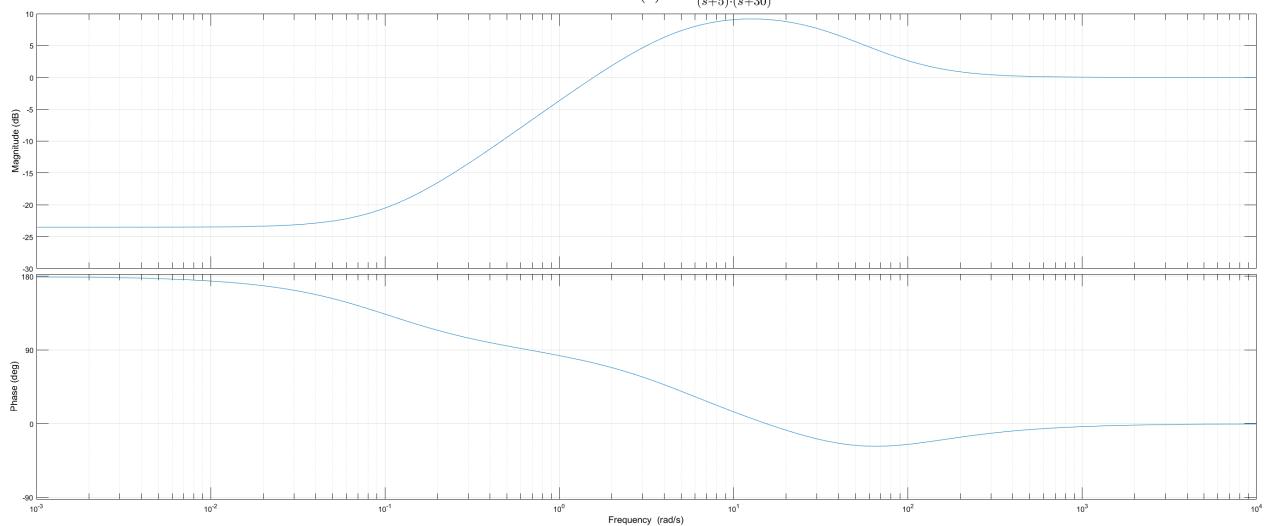
•
$$\angle G(j\omega) = \operatorname{arctan2}\left(\frac{\operatorname{Im}(G(j\omega))}{\operatorname{Re}(G(j\omega))}\right)$$

Dezimalskala	Dezibelskala
100	40
10	20
5	13.97
2	6.02
1	0
$1/\sqrt{2}$	-3.0103
0.1	-20
0.01	-40
0	-Inf

$$ext{atan2}(y,x) = egin{cases} rctanig(rac{y}{x}ig) & ext{if } x>0, \ rac{\pi}{2} - rctanig(rac{x}{y}ig) & ext{if } y>0, \ -rac{\pi}{2} - rctanig(rac{x}{y}ig) & ext{if } y<0, \ rctanig(rac{y}{x}ig) \pm \pi & ext{if } x<0, \ ext{undefined} & ext{if } x=0 ext{ and } y=0. \end{cases}$$

Bode Plot of a system





Last Week

Drawing a Bode Plot

- Using Logarithms is very convenient, we can combine different systems
 - Total System: $G(s) = G_1(s) \cdot G_2(s) \cdot ... \cdot G_n(s)$
 - Amplitude in decibel: $|\Sigma(s)|_{dB} = |\Sigma_1(s)|_{dB} + |\Sigma_2(s)|_{dB}$
 - Phase: $\angle \Sigma(s) = \angle \Sigma_1(s) + \angle \Sigma_2(s)$
- When drawing combine the effects of poles and zeros of the sub-systems (addition)
 - The effect is at the position of the pole/zero
 - At the pole/zero the phase shift is approx 50% done
 - For multiplicity k > 1, the change is multiplied by k

Type	Magnitude Change	Phase Change
Stable Pole	$-20 \; \mathrm{dB/dec}$	-90°
Unstable Pole	$-20~\mathrm{dB/dec}$	+90°
Minimumphase zero	+20 dB/dec	+90°
Non-minimumphase zero	+20 dB/dec	-90°
Time Delay	0 dB/dec	$-\omega \cdot T$

Bode Plots

Standard Elements – there are a bunch

A.1 Integrator Element

Element Acronym:

Transfer Function: $\Sigma(s) = \frac{1}{T \cdot s}$

Poles/Zeros: $\pi_1 = 0, \zeta_1 = \infty$

Internal Description: $\frac{d}{dt}x(t) = \frac{1}{T} \cdot u(t)$

y(t) = x(t)

A.2 Differentiator Element

Element Acronym: D

Transfer Function: $\Sigma(s) = T \cdot s$

Poles/Zeros: $\pi_1 = \infty, \zeta_1 = 0$

Internal Description: $y(t) = T \cdot \frac{d}{dt}u(t)$

A.3 First-Order Element

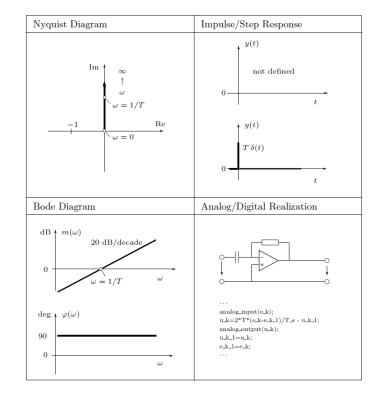
LP-1 Element Acronym:

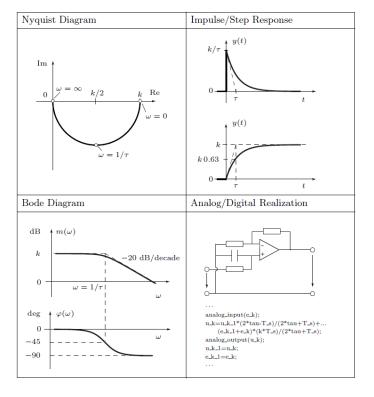
Transfer Function: $\Sigma(s) = \frac{k}{\tau \cdot s + 1}$

Poles/Zeros: $\pi_1 = -\frac{1}{\tau}, \zeta_1 = \infty$

Internal Description: $\frac{\mathrm{d}}{\mathrm{d}t}x(t) = -\frac{1}{\tau}\cdot x(t) + \frac{1}{\tau}\cdot u(t)$ $y(t) = k\cdot x(t)$

Nyquist Diagram	Impulse/Step Response
Im $\begin{array}{c} & & & \\ & \downarrow \\ & & \downarrow \\ & & \downarrow \\ & & \downarrow \\ & & 0 \end{array}$ Re $\begin{array}{c} & & \\ & \omega = \infty \\ & & \downarrow \\ & & \downarrow \\ & & \downarrow \\ & & 0 \end{array}$	1/T 0 t $1/T$ 0 t
Bode Diagram	Analog/Digital Realization
$dB \qquad m(\omega)$ $0 \qquad \qquad -20 \ dB/decade$ $0 \qquad \qquad \omega = 1/T \qquad \omega$ $deg \qquad \varphi(\omega)$ $0 \qquad \qquad \omega$	analog_input(e_k); u_k=u_k_1+T_x/(2*T)*(e_k+e_k_1); analog_output(u_k); u_k_1=u_k; e_k_1=e_k;





Bode Plots

Standard Elements – there are a bunch

A.4 Realizable Derivative Element

Element Acronym: HP-1

Transfer Function:
$$\Sigma(s) = k \cdot \frac{\tau \cdot s}{\tau \cdot s + 1} = k \cdot \left(1 - \frac{1}{\tau \cdot s + 1}\right)$$

Poles/Zeros: $\pi_1 = -\frac{1}{\tau}, \zeta_1 = 0$

Internal Description:
$$\frac{\mathrm{d}}{\mathrm{d}t}x(t) = -\frac{1}{\tau}\cdot x(t) + \frac{1}{\tau}\cdot u(t)$$

$$y(t) = -k \cdot x(t) + k \cdot u(t)$$

A.5 Second-Order Element

Element Acronym: LP-2

Transfer Function:
$$\Sigma(s) = k \cdot \frac{\omega_0^2}{s^2 + 2 \cdot \delta \cdot \omega_0 \cdot s + \omega_0^2}$$

Poles/Zeros:
$$\pi_{1,2} = -w_0 \cdot \delta \pm w_0 \sqrt{\delta^2 - 1}, \zeta_{1,2} = \infty$$

Internal Description:
$$\frac{d}{dt}x_1(t) = x_2(t)$$
,

$$\frac{\mathrm{d}}{\mathrm{d}t}x_2(t) = -\omega_0^2 \cdot x_1(t) - 2 \cdot \delta \cdot \omega_0 \cdot x_2(t) + \omega_0^2 \cdot u(t)$$

$$y(t) = k \cdot x_1(t)$$

Nyquist Diagram	Impulse/Step Response
$ \begin{array}{c} \operatorname{Im} \\ -1 \\ \omega = \infty \omega = 0 \\ \operatorname{Re} \\ k \end{array} $	$0 \xrightarrow{y(t)} t$ $0 \xrightarrow{t}$
Bode Diagram	Analog/Digital Realization
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	analog.input(e.k); use Matlab's c2dm analog.output(u.k); u.k.2=u.k.1; e.k.2=e.k.1; u.k.1=u.k; e.k.1=e.k;

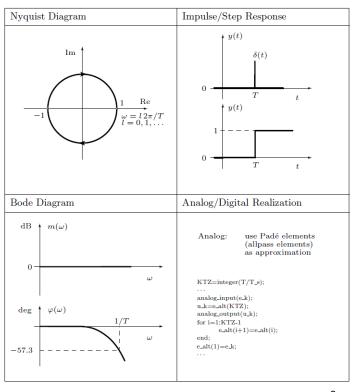
A.10 Delay Element

Element Acronym: -

Transfer Function: $\Sigma(s) = e^{-s \cdot T}$

Poles/Zeros: not a real-rational element

Internal Description: y(t) = u(t - T)



Last Week

Bodes Law

Phase and Amplitude are not independent

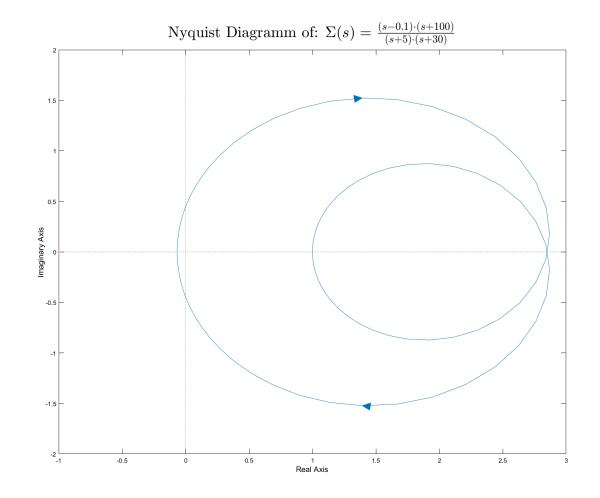
•
$$|G(j\omega)|_{dB} = 20 \frac{dB}{dec} \cdot \kappa \implies \angle G(j\omega) \approx \kappa \cdot \frac{\pi}{2}$$

- System: $\Sigma(s) = \frac{b_m \cdot s^m + ... + b_1 \cdot s + b_0}{s^q \cdot (s^{n-q} + a_{n-k-1} \cdot s^{n-k-1} + ... + a_1 \cdot s + a_0)}$
 - Relative degree: r = n m
 - System Type: q = number of integrators
- We further have:
 - For $\omega \to \infty$: $\frac{\partial |G(j\omega)|_{dB}}{\partial \log_{10}(\omega)} = -r \cdot 20 \text{ dB}$, with r = n m being the relative degree
 - For $\omega \to 0$: $\angle G(j\omega = 0) = \begin{cases} -q \cdot \frac{\pi}{2}, \text{ for sign}\left(\frac{b_0}{a_0}\right) > 0\\ -\pi q \cdot \frac{\pi}{2}, \text{ for sign}\left(\frac{b_0}{a_0}\right) < 0 \end{cases}$

Last Week

Nyquist/Polar Plot

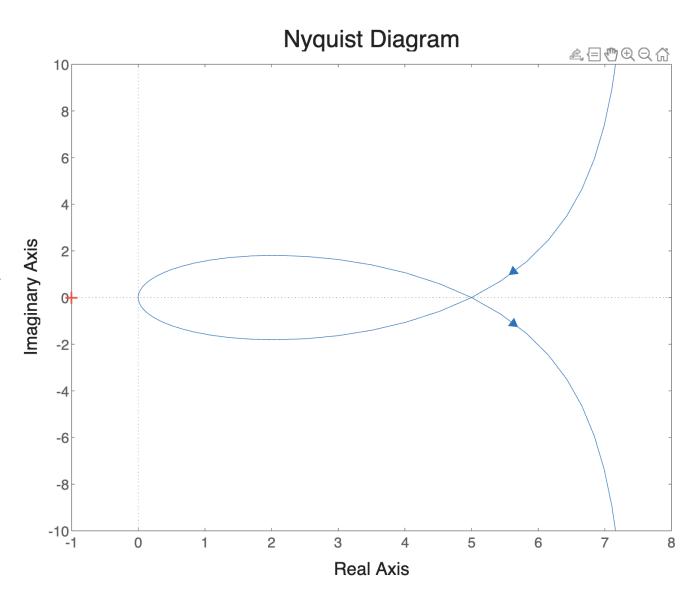
- |G(s)| and $\angle G(s)$ drawn in the complex plane.
 - Polar: $0 \le \omega < \infty$
 - Nyquist: $-\infty < \omega < \infty$
- The values are now frequency implicit
- Drawing usually using Python or Matlab
- Sketching
 - Look at the extremes ω → 0, ω → ∞
 - Use Bodes Law
 - Read values of Bode plot
 - Needs to be qualitatively correct
 - $\omega \in (-\infty, 0]$ is the mirror of $\omega \in [0, \infty)$



Polar / Nyquist Plot

Example – Drawing a Nyquist Plot

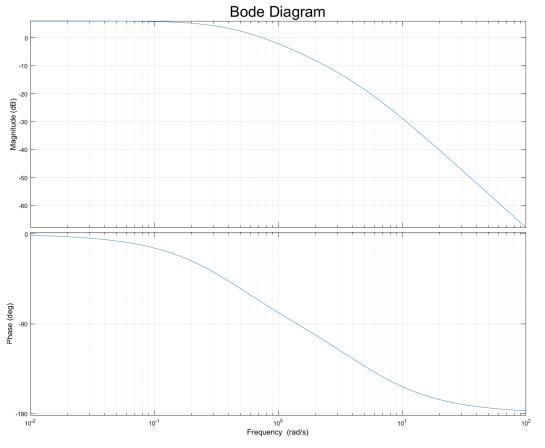
- Draw the Nyquist Plot for:
 - $G(s) = \frac{5(s-0.5)}{s(s+5)}$
- $\omega \rightarrow 0^+$:
 - $|G(j\omega)| \to \infty$
 - $\angle G(j\omega) = \begin{cases} -q \cdot \frac{\pi}{2}, & \text{for sign}\left(\frac{b_0}{a_0}\right) > 0\\ -\pi q \cdot \frac{\pi}{2}, & \text{for sign}\left(\frac{b_0}{a_0}\right) < 0 \end{cases} = -\frac{3}{2}\pi$
- $\omega \to \infty$:
 - $|G(j\omega)| \to 0$
 - $\angle G(j\omega) \approx \angle \frac{1}{s} = -\frac{\pi}{2}$

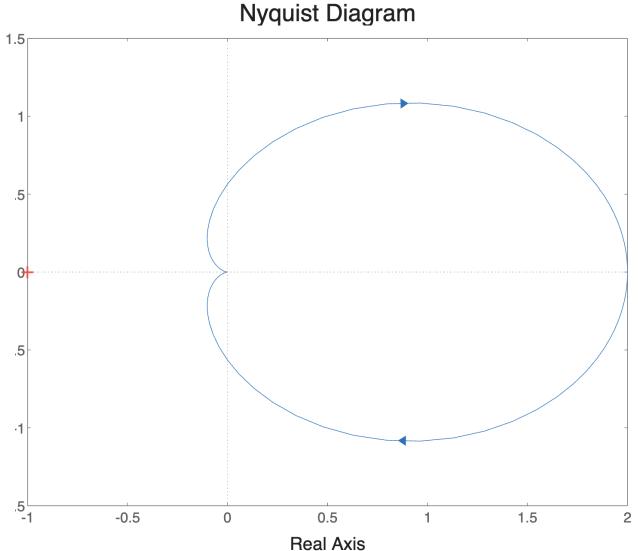


Polar / Nyquist Plot

Example – Drawing a Nyquist Plot

Draw the Nyquist Plot for the System with the following Bode Plot





Last Week

Bode vs Nyquist/Polar

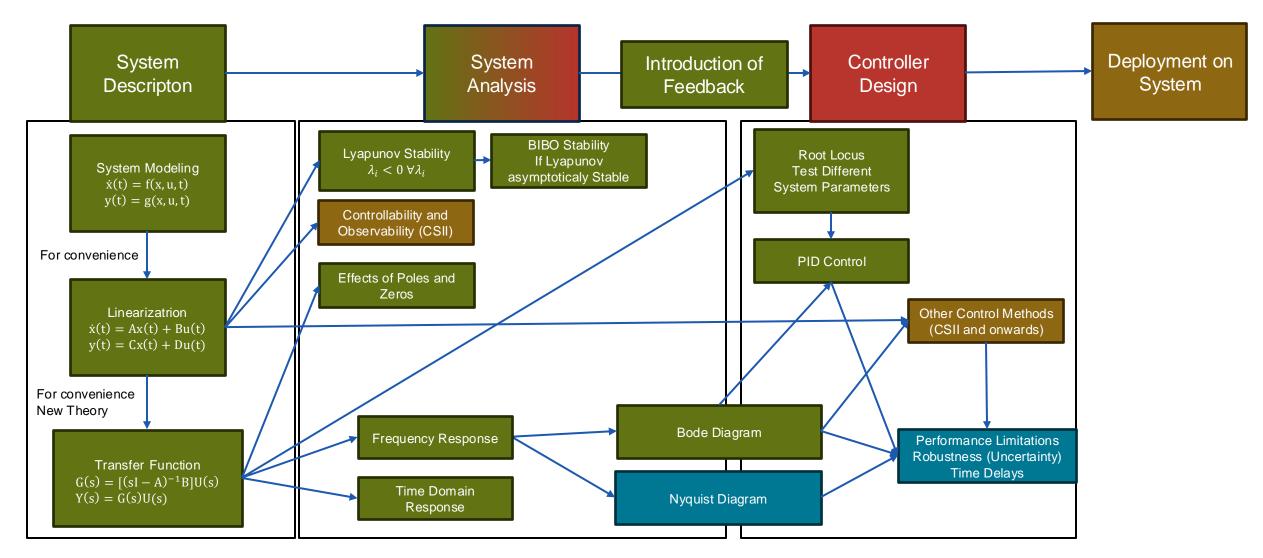
- Graphical representation of |G(s)| and $\angle G(s)$
- Bode Plot:
 - frequency explicit
 - Logarithmic, decibel and linear axis scale
 - Quantitive analysis
- Nyquist Plot:
 - frequency implicit
 - Linear axis scale
 - Qualitative analysis

Outline

- Nyquist Criterion
 - Cauchy's argument principle
 - Nyquist Condition
 - Nyquist Stability Theorem
 - Counting Encirclements
 - Example
- Stability Margins
 - What?
 - Example

Conceptual Recap

Classical Control Approach



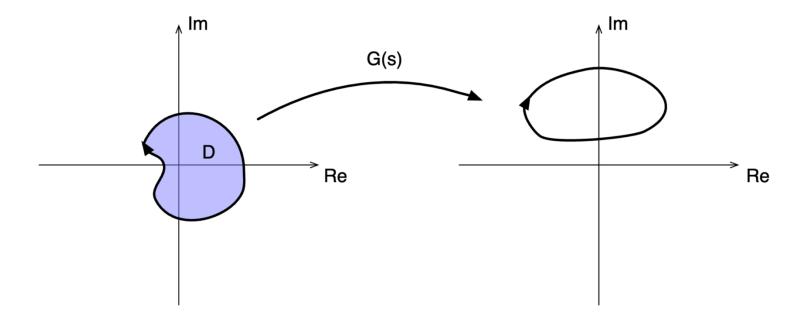
Time Delays

What?

- Whenever an event/transition takes time:
 - Computing a control output using a computer
 - Goods on a conveyor belt with a sensor on the end
 - Long range control (e.g space crafts)
- Definition:
 - A time delay is a **linear** operator that transforms an input signal $t \to u(t)$ into a delayed output signal y(t) = u(t T), where $T \ge 0$ is the delay.
- Transfer Function:
 - $Y(s) = e^{-sT}U(s) \to G(s) = e^{-sT}$
- Not a polynomial thus root locus is not valid anymore with a system that has time delays!

Cauchy's argument principle

- A Complex Analysis Theorem (don't read too much into it) (https://www.youtube.com/watch?v=WmfrK4I1Til&ab_channel=richardpates)
- Given some closed region D in the complex plain we have Γ surrounding that region. If we now apply G(s) to every point on Γ we get $G(\Gamma)$ being another closed curve in the complex plain:
 - Here closed means that the start and end point are the same

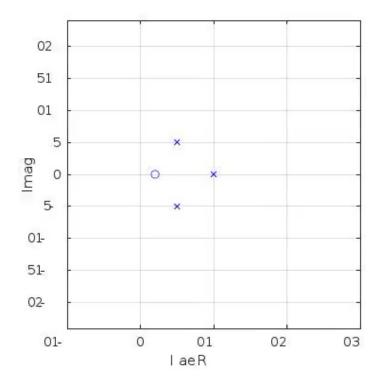


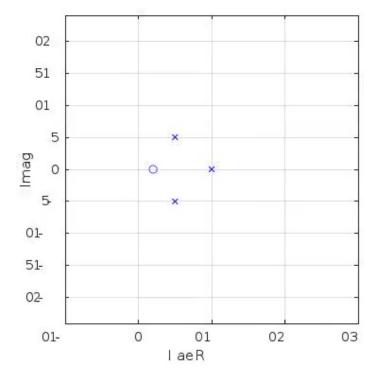
Cauchy's argument principle

- The argument principle:
 - The number N of times that G(s) encircles the origin of the complex plain as s moves along Γ satisfies (counting positive for encirclements in the same direction as following Γ)

$$N = Z - P$$

where Z and P are the number of poles and zeros of G(s) contained in D.



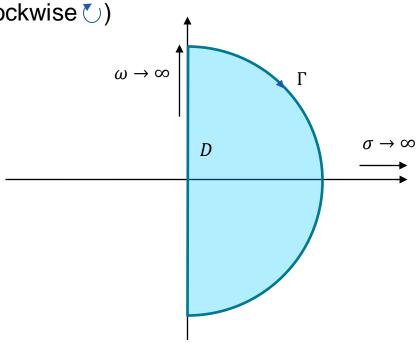


Towards the Nyquist Condition

- How does this help us?
 - From two weeks ago remember: $T(s) = \frac{kL(s)}{1+kL(s)}$, $S(s) = \frac{1}{1+kL(s)}$
 - Overall system is stable iff $\frac{1}{1+kL(s)}$ has no positive poles = 1+kL(s) has no positive zeros
 - Construct a huge region surrounding the positive half plane and run 1 + kL(s) clockwise \bigcirc
 - The curve of $1 + kL(\Gamma)$ now encircles the origin (clockwise \bigcirc)

$$N = Z - P$$

- Z: number of unstable zeros of 1 + kL(s)
 - Observe these are the unstable poles of the closed loop system
- P: number of unstable poles of 1 + kL(s)
 - Observe that these are the also the unstable poles of L(s)

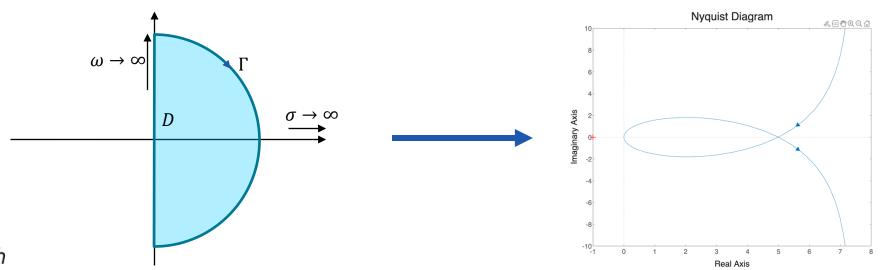


Towards the Nyquist Condition

- We can rewrite this $(1 + kL(s) = 0 \Leftrightarrow L(s) = -\frac{1}{k})$
 - The curve of $L(\Gamma)$ encircles the point $-\frac{1}{k}$ (clockwise \bigcirc)

$$N = Z - P$$

- Z: number of unstable zeros of 1 + kL(s)
 - Observe these are the unstable poles of the closed loop system
- P: number of unstable poles of 1 + kL(s)
 - Observe that these are the also the unstable poles of L(s)
- This huge region D (Nyquist Contour) has $\Gamma: \omega \in (-\infty, \infty)$ and we thus get the **Nyquist plot**.



Nyquist Condition

• We now know that the **Nyquist plot** encircles the point $-\frac{1}{k}$ (clockwise \bigcirc)

$$N = Z - P$$

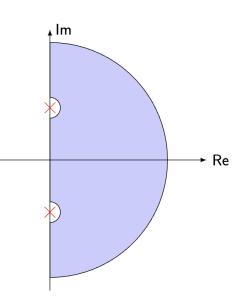
- Z: number of unstable zeros of 1 + kL(s)
 - Observe these are the unstable poles of the closed loop system
- P: number of unstable poles of 1 + kL(s)
 - Observe that these are the also the unstable poles of L(s)
- Nyquist Criterion:
 - Given an open loop transfer function kL(s) with P poles in the positive half plane (Nyquist contour) and let N be the number of clockwise $\mathbb C$ encirclements of $-\frac{1}{k}$ by the Nyquist Plot. Then the closed loop system has Z=N+P poles in the positive half plane.

Nyquist Condition

- Nyquist Criterion:
 - Given an open loop transfer function kL(s) with P poles in the positive half plane (Nyquist contour) and let N be the number of clockwise encirclements of $-\frac{1}{k}$ by the Nyquist Plot. Then the closed loop system has Z=N+P poles in the positive half plane.
- For stability we now want $Z = 0 \rightarrow N = -P$,
 - Nyquist Stability Theorem:
 - A closed-loop system is stable if for kL(s) the following holds:

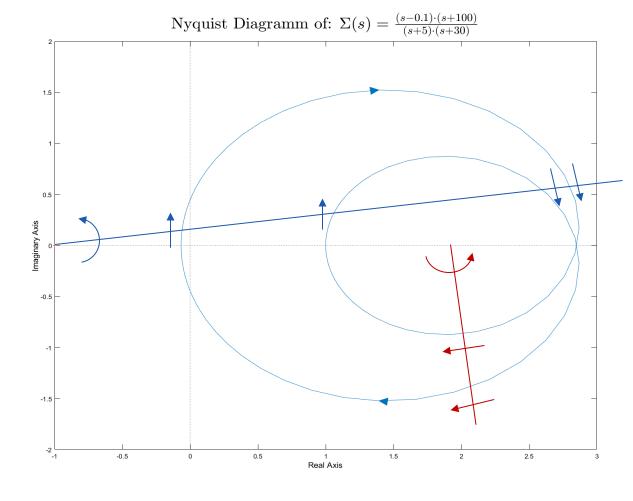
$$n_c = n_p$$

- n_c : number of *counter-clockwise* \circlearrowleft encirclements of $-\frac{1}{k}$ by the Nyquist Plc
- n_p : number of poles with positive real part of L(s)
- Valid only if no nonminimum phase unstable pole cancellation was done!
- Things to keep in mind:
 - Avoid zeros on the imaginary axis by excluding them
 - k is usually 1 and backed into $L(s) \rightarrow$ everything is with respect to -1



How to count encirclements

- Draw a line outwards from the point $-\frac{1}{k}$
- Draw the crossings of the Nyquist plot with this line (keep the direction in mind)
- Add the number of crossings (counterclockwise positive, clockwise negative)
- Example:
 - Encirclements around −1:
 - 0 since 2 CCW and 2 CW
 - Encirclements around 2:
 - -2 since 0 CCW and 2 CW



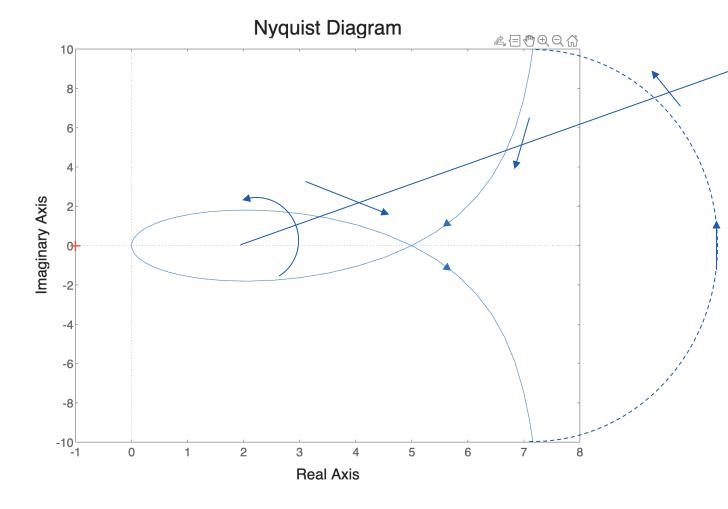
How to count encirclements - Infinity

- Take $\lim_{\varepsilon \to 0} \angle L(\varepsilon e^{j\theta}) = f(\theta)$
- Now look at what happens for $\theta: -\frac{\pi}{2} \to \frac{\pi}{2}$
 - $\lim_{\varepsilon \to 0} \angle L(\varepsilon e^{j\theta}) : f\left(-\frac{\pi}{2}\right) \to f\left(\frac{\pi}{2}\right)$
- Close the loop accordingly
- Example: $G(s) = \frac{5(s-0.5)}{s(s+5)}$

$$\lim_{\varepsilon \to 0} \angle L(\varepsilon e^{j\theta}) = \lim_{\varepsilon \to 0} \angle \frac{5(\varepsilon e^{j\theta} - 0.5)}{\varepsilon e^{j\theta}(\varepsilon e^{j\theta} + 5)}$$

$$= \lim_{\varepsilon \to 0} \angle \frac{5(-0.5)}{\varepsilon e^{j\theta}(5)} = \lim_{\varepsilon \to 0} \angle -\frac{0.5}{\varepsilon} e^{-j\theta} = \theta$$

- For θ : $-\frac{\pi}{2} \rightarrow \frac{\pi}{2}$:
 - $\lim_{\varepsilon \to 0} \angle L(\varepsilon e^{j\theta}): -\frac{\pi}{2} \to \frac{\pi}{2}$
- Encirclements around 2:
 - -1 since 1 CCW and 2 CW



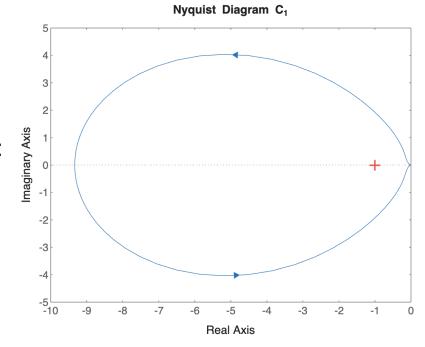
Example

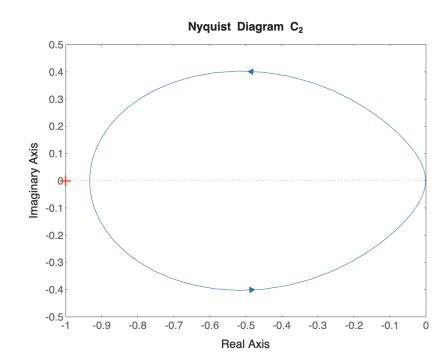
Consider the inverted pendulum (upright position):

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ \frac{3g}{2L} & -\frac{3c_f}{mL^2} \end{bmatrix} x + \begin{bmatrix} 0 \\ \frac{1}{mL^2} \end{bmatrix} u, \ y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

- Using g = 10, m = 1, $L = \frac{3}{2}$, $c_f = \frac{9}{4}$ we get
 - $G(s) = \frac{1.33}{s^2 + 3s 10}$
- Consider a PD controller
 - $C(s) = k_p + \frac{k_d s}{T_f s + 1}$
- We have two controllers with poles of the open loop L(s) = G(s)C(s):
 - C_1 : $k_p = 70, k_d = 10, T_f = 0.001$
 - $p_1 = -100, p_2 = -5, p_3 = 2$
 - C_2 : $k_p = 7$, $k_d = 1$, $T_f = 0.001$
 - $p_1 = -1000, p_2 = -5, p_3 = 2$

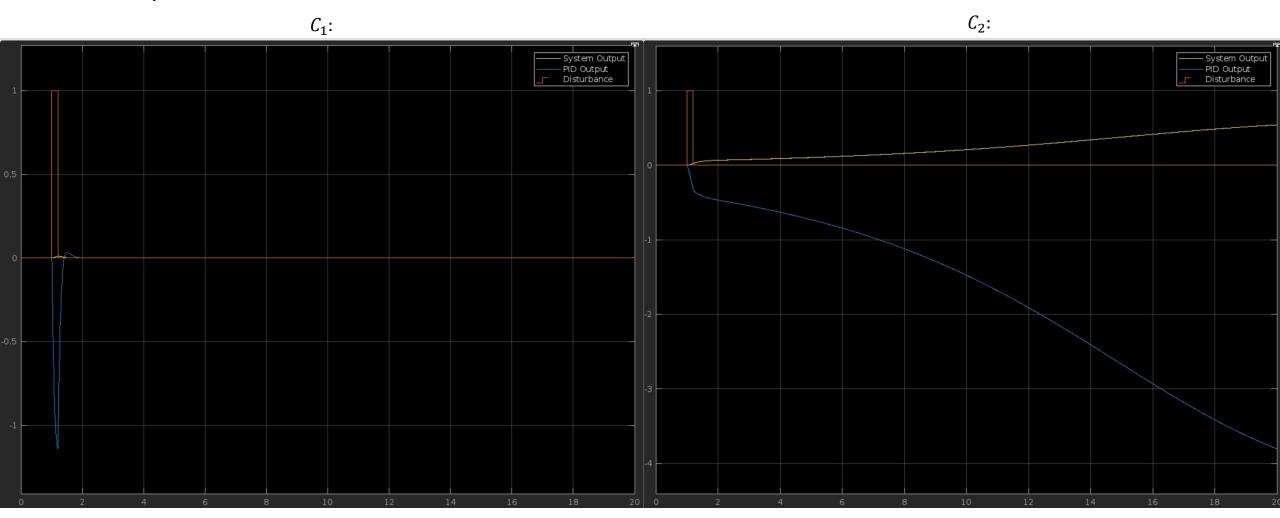
- We have two controllers with poles of the open loop L(s) = G(s)C(s):
 - C_1 : $k_p = 70$, $k_d = 10$, $T_f = 0.001$
 - $p_1 = -100, p_2 = -5, p_3 = 2$
 - C_2 : $k_p = 7$, $k_d = 1$, $T_f = 0.001$
 - $p_1 = -1000, p_2 = -5, p_3 = 2$
- Given the Nyquist Plots which controller stabilizes the system?
 - *C*₁:
 - $n_p = 1$, we have 1 unstable pole
 - $n_c = 1$, we have 1 CCW Jencirclement of -1
 - Closed loop system is stable
 - *C*₂:
 - $n_p = 1$, we have 1 unstable pole
 - $n_c = 0$, we have 0 CCW Jencirclement of -1
 - Closed loop system is unstable





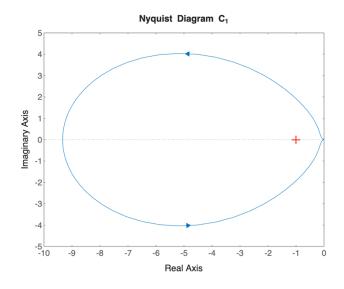
Example

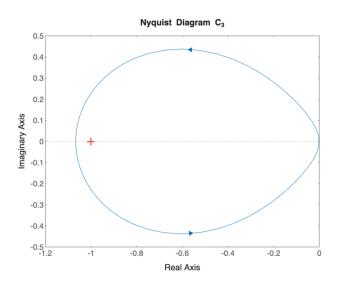
Impulse Disturbance



What?

- Number of surroundings of the point -1 (k = 1) is very important for stability
 - What happens if that changes? -> system becomes unstable (see example before)
- Is there a difference between a large encirclement and small encirclement?





- Yes, there is!!
- The further away from the point -1 the Nyquist plot is, the more robust is a system
- Need a metric to define how far away the system is from the point $-1 \rightarrow$ Stability Margins

What?

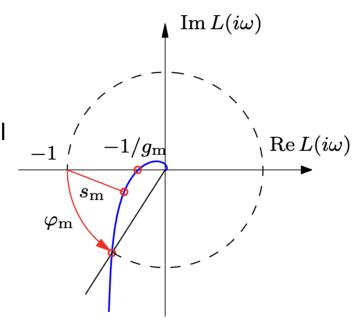
- The stability margins tell us how far away we are from a -1 crossing:
 - Tells us how much modelling errors the closed loop system can handl before going unstable!
- We have:
 - g_m : gain margin
 - How much more can we "blow up" the system

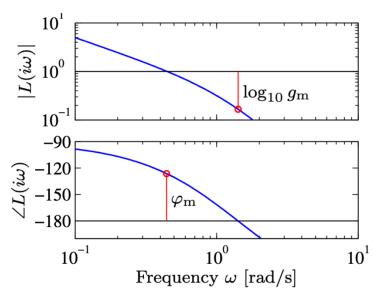
• At
$$\angle L(j\omega_g) = -180 \rightarrow g_m = \frac{1}{|L(j\omega_g)|}$$

- φ_m : phase margin
 - How much phase shift/lag can the system handle

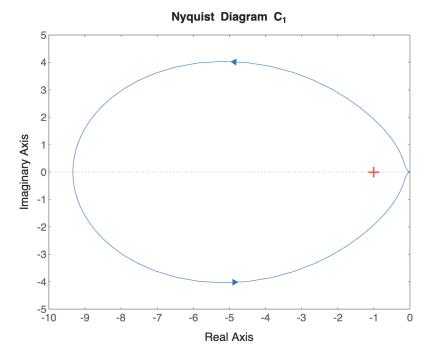
• At
$$|L(j\omega_c)| = 1 \rightarrow \varphi_m = \angle L(j\omega_g) + 180^\circ$$

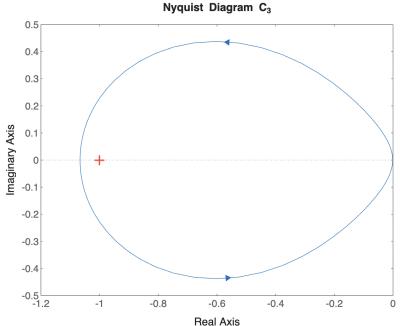
- $\omega_c = \text{cross-over frequency}$
- We often need to find a trade-off between performance and robustness:
 - We can either have a robust system or a system that performs well





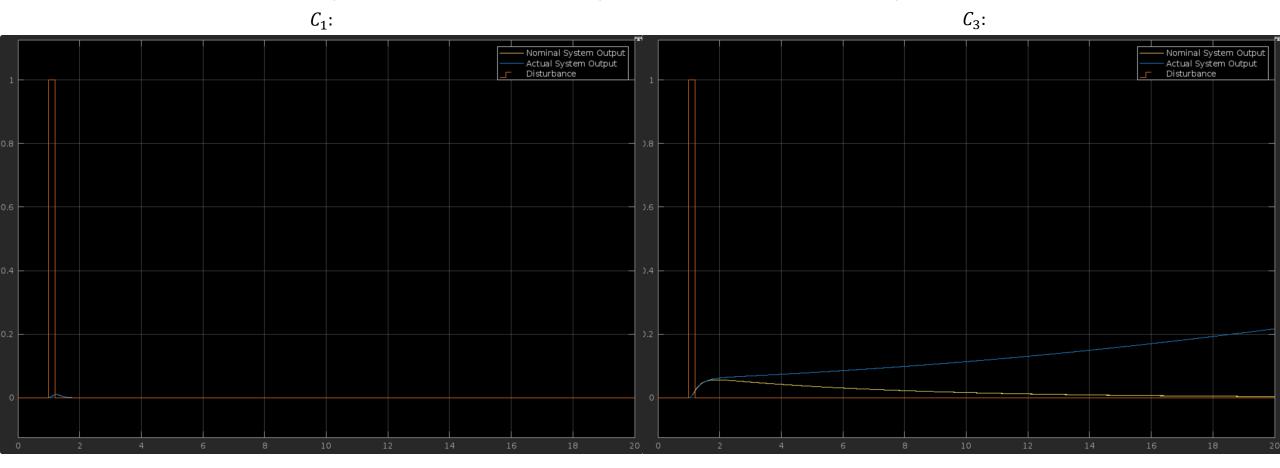
- Consider again the inverted pendulum with two controllers:
 - C_1 : $k_p = 70$, $k_d = 10$, $T_f = 0.001$
 - $p_1 = -100, p_2 = -5, p_3 = 2$
 - C_3 : $k_p = 8$, $k_d = 1$, $T_f = 0.001$
 - $p_1 = -1000, p_2 = -5, p_3 = 2$
- We see C_1 is way further away from -1 than C_3
 - C_1 is much more robust than C_3
- What happens when we made a mistake during modelling, and we designed our controller according to the model?
 - Suppose $m_{real} = m_{model} * 1.1$
 - What happens with the system response?



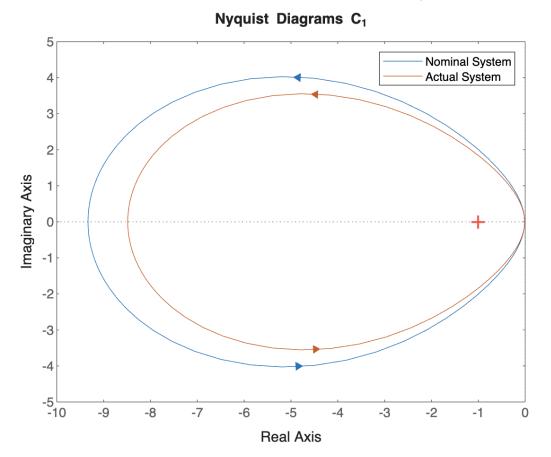


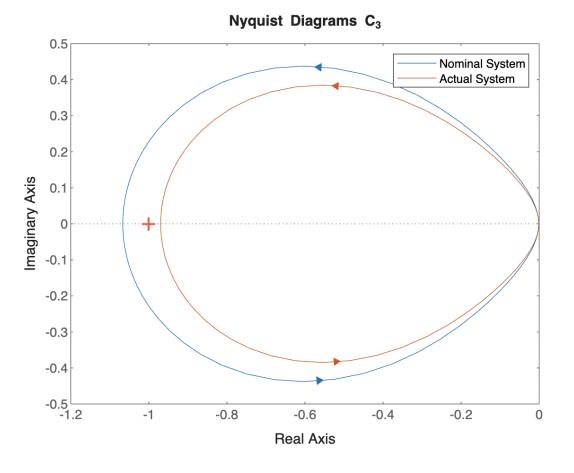


- We see C_1 can handle this modelling error while C_3 can't.
 - Both nominal systems are stable but only C_1 can control the actual system!!



- We see C_1 can handle this modelling error while C_3 can't.
 - This can also be seen in the Nyquist Plots.





Exercise 09

What to do?

- 1:
 - Do
- **2**:
 - Do
- **3**:
 - Do
- **4**
 - Do one