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Frequency Response

▪ We want to find the response to a Harmonic Input:

▪ u t = α ⋅ cos(ω ⋅ t + ϕ) , ϕ = 0 in most cases

▪ Resulting Response:

▪ y t = |G jω | ⋅ α ⋅ cos ω ⋅ t + ϕ + ∠G jω

▪ What do we see?

▪ The system oscillates with the same frequency

▪ The amplitude is frequency dependant

▪ The phase shift is frequency dependant

▪ How can we plot G jω and ∠G jω ?

▪ Bode Plot

▪ Polar / Nyquist Plot



Frequency Response
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▪ Two separate frequency explicit plots for both G jω and ∠G jω

▪ Magnitude Plot G jω :

▪ Logarithmic ω axis and dB(decibel) G jω

▪ Decibel:

▪ G jω dB = 20 ⋅ log10 G jω

▪ G jω = 10
Σ jω dB

20

▪ G jω = Re G jω
2
+ Im G jω

2

▪ Phase Plot ∠G jω :

▪ Logarithmic ω axis and linear ∠G jω (in degrees)

▪ ∠G jω = arctan2
Im G jω

Re G jω
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Bode Plot
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Bode Plot of a system



▪ Using Logarithms is very convenient, we can combine different systems

▪ Total System: G s = G1 s ⋅ G2 s ⋅ … ⋅ Gn(s)

▪ Amplitude in decibel: Σ s dB = Σ1 s dB + Σ2 s dB

▪ Phase: ∠Σ s = ∠Σ1 s + ∠Σ2 s

▪ When drawing combine the effects of poles and zeros of the sub-systems (addition)

▪ The effect is at the position of the pole/zero

▪ At the pole/zero the phase shift is approx 50% done

▪ For multiplicity k > 1, the change is multiplied by k
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Drawing a Bode Plot



Bode Plots
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Standard Elements – there are a bunch



Bode Plots
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Standard Elements – there are a bunch
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Bodes Law

▪ Phase and Amplitude are not independent

▪ G jω dB = 20
dB

dec
⋅ κ ⇒ ∠G jω ≈ κ ⋅

π

2

▪ System: Σ s =
bm⋅s

m+…+b1⋅s+b0

sq⋅(sn−q+an−k−1⋅s
n−k−1+…+a1⋅s+a0)

▪ Relative degree: r = n − m

▪ System Type: q = number of integrators

▪ We further have:

▪ For ω → ∞ :    
𝜕 G jω dB

𝜕 log10(ω)
= −r ⋅ 20 dB, with r = n − m being the relative degree

▪ For ω → 0: ∠G jω = 0 = ൞
−q ⋅

π

2
, for sign

b0

a0
> 0

−π − q ⋅
π

2
, for sign

b0

a0
< 0
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Nyquist/Polar Plot

▪ G s and ∠G(s) drawn in the complex plane.

▪ Polar: 0 ≤ 𝜔 < ∞

▪ Nyquist: −∞ < 𝜔 < ∞

▪ The values are now frequency implicit

▪ Drawing usually using Python or Matlab

▪ Sketching

▪ Look at the extremes ω → 0,ω → ∞

▪ Use Bodes Law

▪ Read values of Bode plot

▪ Needs to be qualitatively correct

▪ 𝜔 ∈ (−∞, 0] is the mirror of 𝜔 ∈ [0,∞)



Polar / Nyquist Plot
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Example – Drawing a Nyquist Plot

▪ Draw the Nyquist Plot for:

▪ G s =
5(s−0.5)

s(s+5)

▪ ω → 0+: 

▪ G(jω) → ∞

▪ ∠G jω = ൞
−q ⋅

π

2
, for sign

b0

a0
> 0

−π− q ⋅
π

2
, for sign

b0

a0
< 0

= −
3

2
π

▪ ω → ∞: 

▪ G(jω) → 0

▪ ∠G jω ≈ ∠
1

s
= −

π

2



Polar / Nyquist Plot
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Example – Drawing a Nyquist Plot

▪ Draw the Nyquist Plot for the System 
with the following Bode Plot



▪ Graphical representation of G s and ∠G(s)

▪ Bode Plot: 

▪ frequency explicit

▪ Logarithmic, decibel and linear axis scale

▪ Quantitive analysis 

▪ Nyquist Plot: 

▪ frequency implicit

▪ Linear axis scale

▪ Qualitative analysis 
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Bode vs Nyquist/Polar



Outline

14

▪ Nyquist Criterion

▪ Cauchy's argument principle

▪ Nyquist Condition

▪ Nyquist Stability Theorem

▪ Counting Encirclements

▪ Example

▪ Stability Margins

▪ What?

▪ Example
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Classical Control Approach

System 

Descripton

System 

Analysis

Controller 

Design

Deployment on 

System

System Modeling

ሶx t = f x, u, t
y t = g(x, u, t)

Transfer Function

G s = [ sI − A −1B]U s
Y s = G s U(s)

Linearizatrion

ሶx t = Ax t + Bu t
y t = Cx t + Du(t)

For convenience

For convenience

New Theory

Lyapunov Stability

𝜆𝑖 < 0 ∀𝜆𝑖

BIBO Stability

If Lyapunov 

asymptoticaly Stable

Controllability and 

Observability (CSII)

Root Locus 

Test Different

System Parameters

Bode Diagram

Nyquist Diagram

Effects of Poles and 

Zeros

Time Domain 

Response

Frequency Response

PID Control

Performance Limitations

Robustness (Uncertainty)

Time Delays

Other Control Methods 

(CSII and onwards)

Introduction of 

Feedback



▪ Whenever an event/transition takes time:

▪ Computing a control output using a computer

▪ Goods on a conveyor belt with a sensor on the end

▪ Long range control (e.g space crafts)

▪ Definition: 

▪ A time delay is a linear operator that transforms an input signal 𝑡 → 𝑢(𝑡) into a delayed output 
signal 𝑦 𝑡 = 𝑢 𝑡 − 𝑇 , where 𝑇 ≥ 0 is the delay.

▪ Transfer Function:

▪ 𝑌 𝑠 = 𝑒−𝑠𝑇𝑈 𝑠 → 𝐺 𝑠 = 𝑒−𝑠𝑇

▪ Not a polynomial thus root locus is not valid anymore with a system that has time delays!

Time Delays
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What?



https://www.youtube.com/watch?v=WmfrK4l1TiIab_channel=richardpates

▪ A Complex Analysis Theorem (don’t read too much into it) (https://www.youtube.com/watch?v=WmfrK4l1TiI&ab_channel=richardpates) 

▪ Given some closed region 𝐷 in the complex plain we have Γ surrounding that region. If we now 

apply 𝐺 𝑠 to every point on Γ we get 𝐺(Γ) being another closed curve in the complex plain:

▪ Here closed means that the start and end point are the same

Nyquist Condition
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Cauchy's argument principle

https://www.youtube.com/watch?v=WmfrK4l1TiI&ab_channel=richardpates


▪ The argument principle:

▪ The number 𝑁 of times that 𝐺 𝑠 encircles the origin of the complex plain as 𝑠 moves along Γ
satisfies (counting positive for encirclements in the same direction as following 𝛤)

𝑁 = 𝑍 − 𝑃
where 𝑍 and 𝑃 are the number of poles and zeros of 𝐺 𝑠 contained in 𝐷.

Nyquist Condition
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Cauchy's argument principle



▪ How does this help us?

▪ From two weeks ago remember: T 𝑠 =
𝑘L s

1+kL(s)
, 𝑆(𝑠) =

1

1+kL(s)

▪ Overall system is stable iff
1

1+kL(s)
has no positive poles = 1 + 𝑘𝐿(𝑠) has no positive zeros

▪ Construct a huge region surrounding the positive half plane and run 1 + 𝑘𝐿 𝑠 clockwise

▪ The curve of 1 + 𝑘𝐿(Γ) now encircles the origin (clockwise    )

𝑁 = 𝑍 − 𝑃

▪ 𝑍: number of unstable zeros of 1 + 𝑘𝐿(𝑠)

▪ Observe these are the unstable poles 

of the closed loop system

▪ 𝑃: number of unstable poles of 1 + 𝑘𝐿 𝑠

▪ Observe that these are the also 
the unstable poles of 𝐿(𝑠)

Nyquist Condition
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Towards the Nyquist Condition

𝜔 → ∞

𝐷

Γ

𝜎 → ∞



▪ We can rewrite this (1 + 𝑘𝐿 𝑠 = 0 ⟺ L s = −
1

k
)

▪ The curve of 𝐿(Γ) encircles the point −
1

𝑘
(clockwise    )

𝑁 = 𝑍 − 𝑃

▪ 𝑍: number of unstable zeros of 1 + 𝑘𝐿(𝑠)

▪ Observe these are the unstable poles of the closed loop system

▪ 𝑃: number of unstable poles of 1 + 𝑘𝐿 𝑠

▪ Observe that these are the also the unstable poles of 𝐿(𝑠)

▪ This huge region 𝐷 (Nyquist Contour) has Γ:𝜔 ∈ (−∞,∞) and we thus get the Nyquist plot.

Nyquist Condition
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Towards the Nyquist Condition

𝜔 → ∞

𝐷

Γ

𝜎 → ∞



▪ We now know that the Nyquist plot encircles the point −
1

𝑘
(clockwise    ) 

𝑁 = 𝑍 − 𝑃

▪ 𝑍: number of unstable zeros of 1 + 𝑘𝐿(𝑠)

▪ Observe these are the unstable poles of the closed loop system

▪ 𝑃: number of unstable poles of 1 + 𝑘𝐿 𝑠

▪ Observe that these are the also the unstable poles of 𝐿(𝑠)

▪ Nyquist Criterion:

▪ Given an open loop transfer function 𝑘𝐿(𝑠) with 𝑃 poles in the positive half plane (Nyquist contour)

and let 𝑁 be the number of clockwise    encirclements of −
1

𝑘
by the Nyquist Plot. Then the 

closed loop system has 𝑍 = 𝑁 + 𝑃 poles in the positive half plane.

Nyquist Condition
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Nyquist Condition



▪ Nyquist Criterion:

▪ Given an open loop transfer function 𝑘𝐿(𝑠) with 𝑃 poles in the positive half plane (Nyquist contour)

and let 𝑁 be the number of clockwise     encirclements of −
1

𝑘
by the Nyquist Plot. Then the 

closed loop system has 𝑍 = 𝑁 + 𝑃 poles in the positive half plane.

▪ For stability we now want 𝑍 = 0 → N = −P, 

▪ Nyquist Stability Theorem: 

▪ A closed-loop system is stable if for 𝑘𝐿(𝑠) the following holds:
n𝑐 = 𝑛𝑝

▪ 𝑛𝑐: number of counter-clockwise encirclements of −
1

𝑘
by the Nyquist Plot

▪ 𝑛𝑝: number of poles with positive real part of 𝐿(𝑠)

▪ Valid only if no nonminimum phase - unstable pole cancellation was done!

▪ Things to keep in mind:

▪ Avoid zeros on the imaginary axis by excluding them

▪ 𝑘 is usually 1 and backed into 𝐿 𝑠 → everything is with respect to −1

Nyquist Condition
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Nyquist Condition



▪ Draw a line outwards from the point −
1

𝑘

▪ Draw the crossings of the Nyquist plot 

with this line (keep the direction in mind)

▪ Add the number of crossings (counter-

clockwise positive, clockwise negative)

▪ Example:

▪ Encirclements around −1:

▪ 0 since 2 CCW and 2 CW

▪ Encirclements around 2:

▪ -2 since 0 CCW and 2 CW

Nyquist Condition

23

How to count encirclements



▪ Take lim
𝜀→0

∠𝐿 𝜀𝑒𝑗𝜃 = 𝑓(𝜃)

▪ Now look at what happens for 𝜃:−
𝜋

2
→

𝜋

2

▪ lim
𝜀→0

∠𝐿 𝜀𝑒𝑗𝜃 : 𝑓 −
𝜋

2
→ 𝑓

𝜋

2

▪ Close the loop accordingly 

▪ Example: G s =
5(s−0.5)

s(s+5)

▪ lim
𝜀→0

∠𝐿 𝜀𝑒𝑗𝜃 = lim
𝜀→0

∠
5(𝜀𝑒𝑗𝜃−0.5)

𝜀𝑒𝑗𝜃(𝜀𝑒𝑗𝜃+5)

▪ = lim
𝜀→0

∠
5(−0.5)

𝜀𝑒𝑗𝜃(5)
= lim

𝜀→0
∠ −

0.5

𝜀
𝑒−𝑗𝜃 = 𝜃

▪ For 𝜃:−
𝜋

2
→

𝜋

2
:

▪ lim
𝜀→0

∠𝐿 𝜀𝑒𝑗𝜃 : −
𝜋

2
→

𝜋

2

▪ Encirclements around 2:

▪ -1 since 1 CCW and 2 CW

Nyquist Condition
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How to count encirclements - Infinity



▪ Consider the inverted pendulum (upright position):

▪ ሶ𝑥 =
0 1
3𝑔

2𝐿
−

3𝑐𝑓

𝑚𝐿2
𝑥 +

0
1

𝑚𝐿2
𝑢, 𝑦 = 1 0 𝑥

▪ Using 𝑔 = 10,𝑚 = 1, 𝐿 =
3

2
, 𝑐𝑓 =

9

4
we get

▪ 𝐺 𝑠 =
1.33

𝑠2+3𝑠−10

▪ Consider a PD controller

▪ 𝐶 𝑠 = 𝑘𝑝 +
𝑘𝑑𝑠

𝑇𝑓𝑠+1

▪ We have two controllers with poles of the open loop 𝐿 𝑠 = 𝐺 𝑠 𝐶(𝑠) :

▪ 𝐶1: 𝑘𝑝 = 70, 𝑘𝑑 = 10, 𝑇𝑓 = 0.001

▪ 𝑝1 = −100, 𝑝2 = −5, 𝑝3 = 2

▪ 𝐶2: 𝑘𝑝 = 7, 𝑘𝑑 = 1, 𝑇𝑓 = 0.001

▪ 𝑝1 = −1000, 𝑝2 = −5, 𝑝3 = 2

Nyquist Condition
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Example



▪ We have two controllers with poles of the open loop 𝐿 𝑠 = 𝐺 𝑠 𝐶(𝑠):

▪ 𝐶1: 𝑘𝑝 = 70, 𝑘𝑑 = 10, 𝑇𝑓 = 0.001

▪ 𝑝1 = −100, 𝑝2 = −5, 𝑝3 = 2

▪ 𝐶2: 𝑘𝑝 = 7, 𝑘𝑑 = 1, 𝑇𝑓 = 0.001

▪ 𝑝1 = −1000, 𝑝2 = −5, 𝑝3 = 2

▪ Given the Nyquist Plots which controller stabilizes the system?

▪ 𝐶1:

▪ 𝑛𝑝 = 1, we have 1 unstable pole

▪ 𝑛𝑐 = 1, we have 1 CCW    encirclement of −1

▪ Closed loop system is stable

▪ 𝐶2:

▪ 𝑛𝑝 = 1, we have 1 unstable pole

▪ 𝑛𝑐 = 0, we have 0 CCW    encirclement of −1

▪ Closed loop system is unstable

Nyquist Condition
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Example



▪ Impulse Disturbance

Nyquist Condition
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Example

𝐶1: 𝐶2:



▪ Number of surroundings of the point −1 (𝑘 = 1) is very important for stability

▪ What happens if that changes? -> system becomes unstable (see example before)

▪ Is there a difference between a large encirclement and small encirclement?

▪ Yes, there is!!

▪ The further away from the point −1 the Nyquist plot is, the more robust is a system

▪ Need a metric to define how far away the system is from the point −1→ Stability Margins

Stability Margins
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What?



▪ The stability margins tell us how far away we are from a −1 crossing:

▪ Tells us how much modelling errors the closed loop system can handle 

before going unstable!

▪ We have:

▪ 𝑔𝑚: gain margin

▪ How much more can we “blow up” the system

▪ At ∠𝐿 𝑗𝜔𝑔 = −180 → 𝑔𝑚 =
1

𝐿(𝑗𝜔𝑔)

▪ 𝜑𝑚: phase margin

▪ How much phase shift/lag can the system handle

▪ At 𝐿(𝑗𝜔𝑐) = 1 → 𝜑𝑚 = ∠𝐿 𝑗𝜔𝑔 + 180°

▪ 𝜔𝑐 = cross-over frequency

▪ We often need to find a trade-off between performance and robustness:

▪ We can either have a robust system or a system that performs well

Stability Margins
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What?



▪ Consider again the inverted pendulum with two controllers:

▪ 𝐶1: 𝑘𝑝 = 70, 𝑘𝑑 = 10, 𝑇𝑓 = 0.001

▪ 𝑝1 = −100, 𝑝2 = −5, 𝑝3 = 2

▪ 𝐶3: 𝑘𝑝 = 8, 𝑘𝑑 = 1, 𝑇𝑓 = 0.001

▪ 𝑝1 = −1000, 𝑝2 = −5, 𝑝3 = 2

▪ We see 𝐶1 is way further away from −1 than 𝐶3

▪ 𝐶1 is much more robust than 𝐶3

▪ What happens when we made a mistake during modelling, and 

we designed our controller according to the model?

▪ Suppose 𝑚𝑟𝑒𝑎𝑙 = 𝑚𝑚𝑜𝑑𝑒𝑙 ∗ 1.1

▪ What happens with the system response?

Stability Margins
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Example



▪ We see 𝐶1 can handle this modelling error while 𝐶3 can’t.

▪ Both nominal systems are stable but only 𝐶1 can control the actual system!! 

Stability Margins
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Example

𝐶1: 𝐶3:



▪ We see 𝐶1 can handle this modelling error while 𝐶3 can’t.

▪ This can also be seen in the Nyquist Plots.

Stability Margins
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Example



▪ 1:

▪ Do

▪ 2:

▪ Do

▪ 3:

▪ Do

▪ 4:

▪ Do one

Exercise 09
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What to do?
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