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Last Week

Frequency Response

=  We want to find the response to a Harmonic Input:
= u(t) =a-cos(w-t+ ¢),d = 0in most cases
= Resulting Response:
= y(t) = |G(w)]| - o - cos(u) ‘t+ ¢+ AG(joo))
=  What do we see?
= The system oscillates with the same frequency

= The amplitude is frequency dependant
= The phase shift is frequency dependant

= How can we plot |G(jw)| and 2G(jw)?
= Bode Plot
= Polar / Nyquist Plot
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Freqguency Response
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Last Week

Dezimalskala | Dezibelskal:
Bode Plot 621111305 ala cZ1 )4605 ala
=  Two separate frequency explicit plots for both |G(jw)| and 2G(jw) 1:) 132907
9 Iy I
= Magnitude Plot |G(jw)|: 2 6.02...
= Logarithmic w axis and dB(decibel) |G(jw)] 1 0
. NG —3.0103
=  Decibel: 0.1 —90
|G(jw)lag = 20 - log0|G(jw)| 0.01 —40
IZGw)lgp 0 -Inf
|G(jw)| = 10 =20
. ) 2 . 2
* |G(jw)| = \/ Re(G(jw))” + Im(G(jw)) r
arctan (=) ifz >0,
= Phase Plot £G(jw): n arctan(%) ify > 0,
= Logarithmic w axis and linear £G(jw) (in degrees) atan2(y, z) = 1 . arctan(%) ity <0,
N Im(G(jw)) y _
= £G(jw) = arctan2 | —=——% arctan(2) +7  ifz <0,
Re(G(jw)) z .
_ undefined ifr=0andy=0.
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Bode Plot of a system

Bode Plot of: X(s) = %
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Last Week

Drawing a Bode Plot

= Using Logarithms is very convenient, we can combine different systems
=  Total System: G(s) = G1(s) - G(S) * ...- Gy(s)
= Amplitude in decibel: |Z(s)|gg = |Z1(s)|ag + 1Z2(8)|gB
= Phase: £X(s) = £Z,(s) + 22,(s)
= When drawing combine the effects of poles and zeros of the sub-systems (addition)
= The effect is at the position of the pole/zero
= At the pole/zero the phase shift is approx 50% done
= For multiplicity k > 1, the change is multiplied by k

Type Magnitude Change |Phase Change
Stable Pole -20 dB/dec -90°
Unstable Pole -20 dB/dec +90°
Minimumphase zero +20 dB/dec +90°
Non-minimumphase zero| +20 dB/dec -90°
Time Delay 0 dB/dec -w T
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Bode Plots

Standard Elements — there are a bunch

A.1 Integrator Element

Element Acronym:
Transfer Function:  X(s) = -
Poles/Zeros:  m =0, (; =

Internal Description:

Nyquist Diagram Impulse/Step Response

y(t)

-1 Re

w=1/T

T |- — ——

Bode Diagram Analog/Digital Realization

dB 4 m(w)
—20 dB/decade l l
0 C
w= IWN w
deg 4 @(w) analog_input(ek);
0 uk=u_k 1+T_s/(2*T)*(e_k+ek_1);
analog_output(ul);
w
u_k_1=u_k;
e l=el;
-90

ETH:z(rich

A.2 Differentiator Element

Element Acronym: @

Transfer Function:  X(s) =T - s

Poles/Zeros: w1 =020, ¢ =0

Internal Description:  y(f) =T - 4

Nyquist Diagram

Impulse/Step Response

-1 Re

y(t)
not defined
0
t
y(t)
Ta(t)
0

Bode Diagram

Analog/Digital Realization

dB 4 m(w)

20 dB/decade
0
N w
/; 1/T it

deg 4 (w)

a0

71

analog_input(e_k);
nk=2*T*(ek-ek 1)/Ts - ukl:
analog_output(un_k)

uk-l=ulk;

ek l=ek:

O =—0

A.3 First-Order Element

Element Acronym:

o sf, - _ &
Transfer Function:  X(s) = o
Poles/Zeros:  m =—L, (=0
Internal Description: %a:(t) =——-z(t)+ % -u(t)
y(t) =k - x(t)

Nyquist Diagram

Tmpulse/Step Response

y(t)
k/T
0
t
yl(t)
- —= -
I
£0.63 1
1
0

Bode Diagram

Analog/Digital Realization

B f m(w)
k N’dccmﬂc
|
0 ‘ w = 1;’7:
: w
deg [ plw) :
0 |

l

analog_input(e_k);

uk=uk_1*(2*tau-T_s) /(2*tan+T_s)+..
(ek_14ek)*(k*T_s)/(2*tau+Ts);

analog_output(u_k);




Bode Plots

Standard Elements — there are a bunch

A .4 Realizable Derivative Element A.10 Delay Element

A.5 Second-Order Element

Element Acronym:

Element Acronym: LP-2

Element Acronym:

L]

] ) B . Transfer Function:  X(s) = e =7
Transfer Function: X(s) =k =k (1 = 5+1) Transfer Function:  2(s) = k - m
' Poles/Zeros:  not a real-rational element
. _ 1 s
Poles/Zeros:  m =-+,G = Poles/Zeros: m o= —wo- -8 £weVd: -1, 2= o
Internal Description:  y(t) =u(t—T)
Internal Description: %.’E(f) = 7% z(t) + ‘% -u(t) Internal Description: %:{:1(1‘.) — 25(t),
y(t) = —k - x(t) + k- ult) Laa(t) = —wi - a1(t) — 28 -wp - wa(t) +wf - u(t)

Nyquist Diagram

Impulse/Step Response

y(t)

Bode Diagram

Analog/Digital Realization

ETH:z(rich

Nyquist Diagram

Impulse/Step Response

Nyquist Diagram

Impulse/Step Response

Bode Diagram

Analog/Digital Realization

T y(t)
m k8(t) y(t)
Im a(t)
o T
r t Im
0 0
—k/7 ] w=00 w=0 i T
v L Re 1 Re ‘
k y(t) " T ult)
- w=12m
v(®) =01
.rc-k k|- £ - 14— ——1
! 0
1]
,~ : 0 T

Bode Diagram

4B m(w) 4B f mw) dB m(w) )
Analog: use Padé elements
k O—:If‘ o | o = (allpass elements)
- J i k | = as approximation
w
o - | —40 dB/decade l l 0
! o o
0 : \ O 0 w KTZ=integer(T/T_s);
; analog_input(e_k) ! w analog_input(ek): analog_input(e_k):
deg | elw) | nk=1/(T_s+2*tan)* (u_k_1*(2*tau-T_s)+ ! - wk=e alt(KTZ);
a0 : | (e dee e 1) 2%k tam): deg | @(w) ! use Matlab's c2dm deg { #lw) analog_output(u_k);
| analog_output (uk); ] for i=LiKTZ-1
15 u}l(\,]l:u: 0 ‘ - :’:"IEE:\_:-T_"\”-“ ealt(i+1)=ealt(i);
ek l=e] hd - - ; end;
g0 ek 2=ek1; © alt(1)=ek;
0 » uk_L=u_k 573 F——-————— - e-alt(l)=els
- —180 el l=ek

Analog/Digital Realization




Last Week

Bodes Law

= Phase and Amplitude are not independent

: dB _
* 1G(w)lgg =20 -k = 2£G(jw) ~ k-7

Z(S) _ by :s™+ ... +b;-s+by
sd-(sP~A+4a,_p_,-sP"K-14  t+a;-s+ag)

= Relative degree:r=n—m
= System Type: g = number of integrators

= System:

=  We further have:

0lGiwlas _ _ .. 5 dB, with r = n — m being the relative degree

= Forw — o =
0 log;o(w)

—q - g, for sign (?) >0
= Forw — 0: 2G(jw = 0) = - .
—T—q-7, for sign (—0) <0

dp

ETH:z(rich



Last Week

Nyquist/Polar Plot

= |G(s)| and 2G(s) drawn in the complex plane.

= Polar:0<w<
=  Nyquist: —o0o < w <

= The values are now frequency implicit
= Drawing usually using Python or Matlab

= Sketching
= Look at the extremes w - 0,w = ©
Use Bodes Law
= Read values of Bode plot
= Needs to be qualitatively correct
" @ € (—oo,0] is the mirror of w € [0, o)

ETH:z(rich

Imaginary Axis

Nyquist Diagramm of: X(s) =

(5—0.1)-(s-+100)
(s+5)-(s+30)
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Polar / Nyquist Plot
Example — Drawing a Nyquist Plot

= Draw the Nyquist Plot for:

. __5(s—0.5)
G(S) - s(s+5)
= -0
" [G(w)| »

—q - E, for sign (ﬁ) >0
= LG( )_ 2 dg _
](1) - TC . bo -
—m—q-, for51gn(a—0) <0

= @ > 0
* |G(w)| >0
Tt

. 1_ m
= £G(jw) NLo=

ETH:z(rich

Imaginary Axis

-10
-1

Nyquist Diagram

CASAWICEENA)

10

2 3 4 5

Real Axis
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Polar / Nyquist Plot

Example — Drawing a Nyquist Plot

Nyquist Diagram
= Draw the Nyquist Plot for the System 1.5 ‘ . .
with the following Bode Plot

Bode Diagram 1t _— 1
T ] A A A -
~_
-

Magnitude (dB)
& A & o N
3 3 8 3 > o
T T T I I I
| | | | | |

&
3
T

1

o
T
|
|
|
I

Phase (deg)

SRR SRR R R 1 -0.5 0 0.5 1 1.5

102 1071 10° 10 102

Frequency (rad/s) Real AXiS
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Last Week

Bode vs Nyquist/Polar

= Graphical representation of |G(s)| and £G(s)

= Bode Plot:
= frequency explicit
= Logarithmic, decibel and linear axis scale
= Quantitive analysis

= Nyquist Plot:
= frequency implicit
= Linear axis scale
= Qualitative analysis

ETH:irich
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Outline

= Nyquist Criterion
= Cauchy's argument principle
= Nyquist Condition
= Nyquist Stability Theorem
= Counting Encirclements
=  Example
= Stability Margins
= What?
=  Example

ETH:irich
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Conceptual Recap

Classical Control Approach

System Introduction of Controller Deployment on

System

Analysis Feedback Design System

Descripton

BIBO Stability
If Lyapunov Root Locus

q Test Different
. asymptoticaly Stable
x(t) = f(x,u,t) ymp i System Parameters

y(®) = gxu,t) H
Controllability and
Observability (CSII)

q

For convenience

Lyapunov Stability
System Modeling A <0V

PID Control
Effects of Poles and
Zeros

Linearizatrion Other Control Methods
x(t) = Ax(t) + Bu(t) (CSll and onwards)
y(t) = Cx(t) + Du(t)

For convenience
New Theory

Frequency Response Performance Limitations
Robustness (Uncertainty)

Transfer Function Time Delays

G(s) = [(s1 = A)BJU(S) | Time Domain
Y(s) = G(s)U(s) Response Nyquist Diagram

ETH:zrich 15



Time Delays

What?

Whenever an event/transition takes time:
= Computing a control output using a computer
= Goods on a conveyor belt with a sensor on the end
= Long range control (e.g space crafts)

Definition:

= Atime delay is a linear operator that transforms an input signal t — u(t) into a delayed output
signal y(t) = u(t — T), where T > 0 is the delay.

Transfer Function:
= Y(s)=eSTU(s) » G(s) = e~ 5T

Not a polynomial thus root locus is not valid anymore with a system that has time delays!

ETH:irich
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Nyquist Condition

Cauchy's argument principle

= A Complex Analysis Theorem (don’t read too much into it) euwsmumsoune comiacn rewmskanrigas chametzrcharapaes)

= Given some closed region D in the complex plain we have I' surrounding that region. If we now
apply G(s) to every point on I' we get G(I") being another closed curve in the complex plain:

= Here closed means that the start and end point are the same

A lm

C o)
/"

ETH:irich

G(s)

— ~ C

Im

D

Re
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https://www.youtube.com/watch?v=WmfrK4l1TiI&ab_channel=richardpates

Nyquist Condition
Cauchy's argument principle

= The argument principle:

= The number N of times that G(s) encircles the origin of the complex plain as s moves along T’
satisfies (counting positive for encirclements in the same direction as following I')
N=7Z-P
where Z and P are the number of poles and zeros of G(s) contained in D.

oz - 0z r
8l - Bl
gl | . gl r
2 X - 2 X
n n
£ x 5 x
B » b 3 »
01- 01
51 51
Q2 Q2
0l- 0 01 02 03 01- 0 01 02 a3
| aeR | aeR

ETH:irich



Nyquist Condition
Towards the Nyquist Condition

= How does this help us?
kL(s)
14+KL(s)’

1
1+KkL(s)

=  From two weeks ago remember: T(s) = S(s) =

1
1+KL(s)

Overall system is stable iff

has no positive poles = 1 + kL(s) has no positive zeros

= Construct a huge region surrounding the positive half plane and run 1 + kL(s) clockwise U

The curve of 1 + kL(I") now encircles the origin (clockwise 0))
N=7Z-P
Z: number of unstable zeros of 1 + kL(s)

= Observe these are the unstable poles
of the closed loop system

P: number of unstable poles of 1 + kL(s)

w — 00

A

A

g —
—

= QObserve that these are the also
the unstable poles of L(s)

ETH:irich
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Nyquist Condition

Towards the Nyquist Condition

=  We can rewrite this (1 + kL(s) = 0 © L(s) = —%{)

The curve of L(I") encircles the point —% (clockwise D)
N=Z7Z-P
Z: number of unstable zeros of 1 + kL(s)

Observe these are the unstable poles of the closed loop system
P: number of unstable poles of 1 + kL(s)

Observe that these are the also the unstable poles of L(s)

This huge region D (Nyquist Contour) has I': w € (—o0, ) and we thus get the Nyquist plot

A

Nyquist Diagram
10
8
W — 00

g —
D —

—

Imaginary Axis

ETH:irich
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Nyquist Condition

Nyquist Condition

= We now know that the Nyquist plot encircles the point —% (clockwise 1))
N=7Z-P
= Z:number of unstable zeros of 1 + kL(s)
» Observe these are the unstable poles of the closed loop system
= P: number of unstable poles of 1 + kL(s)
= Observe that these are the also the unstable poles of L(s)

= Nyquist Criterion:
= Given an open loop transfer function kL(s) with P poles in the positive half plane (nyquist contour)
and let N be the number of clockwise 1 encirclements of _71c by the Nyquist Plot. Then the
closed loop system has Z = N + P poles in the positive half plane.

ETH:irich
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Nyquist Condition
Nyquist Condition

= Nyquist Criterion:

= Given an open loop transfer function kL(s) with P poles in the positive half plane (nyquist contour)
and let N be the number of clockwise 7 )encirclements of —% by the Nyquist Plot. Then the

closed loop system has Z = N + P poles in the positive half plane.

= For stability we nowwant Z =0 - N = —P,
= Nyquist Stability Theorem:

A closed-loop system is stable if for kL(s) the following holds:
N, =Ny,

n.. number of counter-clockwise (Jencirclements of —i by the Nyquist PIc
n,. number of poles with positive real part of L(s)

= Valid only if no nonminimum phase - unstable pole cancellation was done!

= Things to keep in mind:
= Avoid zeros on the imaginary axis by excluding them
= ks usually 1 and backed into L(s) — everything is with respect to —1

ETH:irich
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Nyquist Diagramm of: X(s) = %

Nyquist Condition : | | | .

How to count encirclements

= Draw a line outwards from the point —%

= Draw the crossings of the Nyquist plot
with this line (keep the direction in mind)

Imaginary A

= Add the number of crossings (counter-
clockwise positive, clockwise negative)
=  Example:
= Encirclements around —1:
0 since 2 CCW and 2 CW
= Encirclements around 2: : — =
-2 since 0 CCW and 2 CW

ETH:zrich 23



Nyquist Condition

How to count encirclements - Infinity

. Nyquist Diagram
= Take 1ir%4L(ee19) = £(6) 10 | | | |
E—

£EMAAR

= Now look at what happens for 6: —% -z

: 1im4L(eej9)=f(—§) —>f(§)

-0

= Close the loop accordingly

0
: (.
i 5(s—0.5) = o
] - \ s
. : . 5(ce/?-0.5) = 2
= limzL(ge/?) = limz— :
£-0 (Ee ) e>0 €elf(celf+5) 4l
. 5(—0.5 . 05 _; \
= =limz (.6 )=11m4——e % =g 6/ \
e—0 ¢€elY(5) -0 € \
T T | |
= Forf:—— - —: N \
2 2 -
]imLL(geje): _r,r e 0 1 2 3 4 5 6 7 s
€0 2 2 Real Axis

= Encirclements around 2;
-1 since 1 CCW and 2 CW

ETH:zrich "



Nyquist Condition
Example

= Consider the inverted pendulum (upright position):

0 1 0
= x=|3¢ 3c|x+| 1 |u y=[1 O0]x
2L mlL? mlL?

= Usingg=100m=1,L =§,cf =zwe get

1.33
G(S) T §2435-10
= Consider a PD controller
. _ de
Cls) = hep + Trs+1

= We have two controllers with poles of the open loop L(s) = G(s)C(s) :
= Cy: k,=70,ky =10,Tf = 0.001
p1 = —100, p; = =5, p3 =2
= Cy: ky=7kqg=1T; =0.001
P1 = —1000, P = —5, P3 = 2

ETH:irich
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Nyquist Condition
Example
= We have two controllers with poles of the open loop L(s) = G(s)C(s):
= Cy: ky =70,kq =10,Tf = 0.001
TP = _100' P2 = _51 pP3 = 2
= Cyiky=7kg=17T; =0.001
. P1 = _1000, P = —5, P3 = 2

= Given the Nyquist Plots which controller stabilizes the system?

= (i
. )
= Gy
n )
ETH:irich

Imaginary Axis

Imaginary Axis

0.5

0.4

0.3

0.2

0.1

-0.1

-0.2

-0.3

-0.4

-0.5
-1

R - I - - T - T )

o
(=]

Nyquist Diagram C,

Nyquist Diagram C,

Real Axis

N

-

-0.9

-0.8

-0.7

-0.6

-0.5
Real Axis

-0.4

-0.3

-0.2

-0.1




Nyquist Condition

Example

= Impulse Disturbance

C :

— System Output
PID Output
Disturbance

—— System Output
PID Output
Disturbance




Stability Margins
What?

= Number of surroundings of the point —1 (k = 1) is very important for stability
= What happens if that changes? -> system becomes unstable (see example before)

= |sthere a difference between a large encirclement and small encirclement?

Nyquist Diagram C, Nyquist Diagram C,

. . 0.5 .
— 1 0.4 )
0.3
02 AN
% 0.1 ' k
B0 |+

-0.1

Imaginary Axis

S 1 -0.2
-0.3

— -0.4 ~
e

o e w n — o - N W R wn
A + / |
. S/
Imaginary Axis

-0.5
-9 -8 -7 -6 -5 -4 -3 -2 -1 0 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

Real Axis Real Axis

=}

= Yes, there is!!
= The further away from the point —1 the Nyquist plot is, the more robust is a system
= Need a metric to define how far away the system is from the point —1 - Stability Margins

ETH:irich



Stability Margins

) Im L(iw)
What?
= The stability margins tell us how far away we are from a —1 crossing: 7 - N
\
= Tells us how much modelling errors the closed loop system can handl I/ 1y \ Re L(iw)
before going unstable! -1 9 N
= We have: m K
: : ¥m
" g, gain margin 7 '
How much more can we “blow up” the system i
1

At LL(ng) =—-180 - g, =

|L(J“)g)| 1

" @p: phase margin —
How much phase shift/lag can the system handle 210" | N&g ’
= : 10 9m
AtILGw)l =1 > @p = 2L(jw,) + 180° | . A

w, = cross-over frequency

3 -120F -
:3/ —150r ¥m ]
_ N 180 N
= We often need to find a trade-off between performance and robustness: — ———
. 10 10 10
= We can either have a robust system or a system that performs well Frequency w [rad/s]

ETH:zrich 29



Stability Margins
Example

= Consider again the inverted pendulum with two controllers:
= Ci: k,=70,kz =10,T; = 0.001
p1 = —100, p; = =5, p3 =2
= C3:ky,=8ks;=1T;=0.001
p1 = —1000, p; = =5, p3 = 2
= We see (; is way further away from —1 than C;
= (; is much more robust than C;

=  What happens when we made a mistake during modelling, and
we designed our controller according to the model?
" SUPPOSE Myeq = Mypoger * 1.1

= What happens with the system response?

ETH:irich

Imaginary Axis

Imaginary Axis

-0.2
-0.3
-0.4

-0.5

-0.1

Nyquist Diagram C,

R I - T T T S,

o
o

Real Axis

Nyquist Diagram C;

0.5

0.4

0.3

0.2

0.1

L

-1 -0.8 -0.6 -0.4
Real Axis




Stability Margins

Example

= We see (; can handle this modelling error while C5 can't.

= Both nominal systems are stable but only C; can control the actual system!!
Cl: C3:

Nominal System Output

Nominal System Output
Actual System Output Actual System Output
Disturbance Disturbance




Stability Margins
Example

= We see (; can handle this modelling error while C5 can't.
= This can also be seen in the Nyquist Plots.

Nyquist Diagrams C, Nyquist Diagrams C;
5 : : - - 0.5 : .
Nominal System Nominal System
4 Actual System | 0.4} //”ﬂ\ Actual System
3 0.3}
2 0.2f
%’ 1 § 0.1}
by by
g g 0 +
o o)
© ©
£ -1 £ -0.1f
= \ £
| A
-2 -0.2¢
-3 -0.3}
-4 1 -0.4r
-5 : : : : : : : : : -0.5 : : : : :
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
Real Axis Real Axis
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Exercise 09
What to do?
= 1

= Do

= Do

= Do

= Doone

ETH:irich
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