

Control Systems I Recitation 11

https://n.ethz.ch/~jgeurts/ jgeurts@ethz.ch

Last Week

Nyquist Condition

- Nyquist Criterion:
 - Given an open loop transfer function kL(s) with *P* poles in the positive half plane (Nyquist contour) and let *N* be the number of clockwise \bigcirc encirclements of $-\frac{1}{k}$ by the Nyquist Plot. Then the closed loop system has Z = N + P poles in the positive half plane.
- Nyquist Stability Theorem: (Z=0)
 - A closed-loop system is stable if for *kL*(*s*) the following holds:

$$n_c = n_p$$

- n_c : number of *counter-clockwise* of *c*
- n_p : number of poles with positive real part of L(s)
- Valid only if no nonminimum phase unstable pole cancellation was done!
- Things to keep in mind:
 - Avoid zeros on the imaginary axis by excluding them
 - *k* is usually 1 and backed into $L(s) \rightarrow$ everything is with respect to -1

Last Week

How to count encirclements

- Draw a line outwards from the point $-\frac{1}{k}$
- Draw the crossings of the Nyquist plot with this line (keep the direction in mind)
- Add the number of crossings (counterclockwise positive, clockwise negative)
- Example:
 - Encirclements around −1:
 - 0 since 2 CCW and 2 CW
 - Encirclements around 2:
 - -2 since 0 CCW and 2 CW

Last Week

How to count encirclements - Infinity

- Take $\lim_{\varepsilon \to 0} \angle L(\varepsilon e^{j\theta}) = f(\theta)$
- Now look at what happens for $\theta: -\frac{\pi}{2} \rightarrow \frac{\pi}{2}$
 - $\lim_{\varepsilon \to 0} \angle L(\varepsilon e^{j\theta}): f\left(-\frac{\pi}{2}\right) \to f\left(\frac{\pi}{2}\right)$
- Close the loop accordingly
- Example: $G(s) = \frac{5(s-0.5)}{s(s+5)}$ • $\lim_{\epsilon \to 0} \angle L(\epsilon e^{j\theta}) = \lim_{\epsilon \to 0} \angle \frac{5(\epsilon e^{j\theta}-0.5)}{\epsilon e^{j\theta}(\epsilon e^{j\theta}+5)}$ • $= \lim_{\epsilon \to 0} \angle \frac{5(-0.5)}{\epsilon e^{j\theta}(5)} = \lim_{\epsilon \to 0} \angle -\frac{0.5}{\epsilon} e^{-j\theta} = \pi - \theta$
 - For $\theta: -\frac{\pi}{2} \to \frac{\pi}{2}$: • $\lim_{\varepsilon \to 0} \angle L(\varepsilon e^{j\theta}): \frac{3\pi}{2} \to \frac{\pi}{2}$
- Encirclements around 2:
 - 0 since 1 CCW and 1 CW

Stability Margins

What?

- The stability margins tell us how far away we are from a -1 crossing:
 - Tells us how much modelling errors the closed loop system can handl before going unstable!
- We have:
 - *g_m*: gain margin
 - How much more can we "blow up" the system

• At
$$\angle L(j\omega_g) = -180 \rightarrow g_m = \frac{1}{|L(j\omega_g)|}$$

- φ_m : phase margin
 - How much phase shift/lag can the system handle
 - At $|L(j\omega_c)| = 1 \rightarrow \varphi_m = \angle L(j\omega_g) + 180^\circ$
 - $\omega_c = \text{cross-over frequency}$
- We often need to find a trade-off between performance and robustness:
 - We can either have a robust system or a system that performs well

Stability Margins

Example

- We see C_1 can handle this modelling error while C_3 can't.
 - This can also be seen in the Nyquist Plots.

Outline

- Frequency-Domain Specifications
 - Intro to Noise, Disturbances and Commands
 - Context
 - Problem and its Solution
 - Bode Obstacle Plot
- Loop Shaping
 - Why?
 - What?
 - Elements
 - Example?
 - Caveats

Conceptual Recap

Classical Control Approach

Intro to Noise, Disturbances and Commands

- Commands *r*
 - Reference value we want the system to obtain
 - Position, Velocity, Temperature
 - Usually low frequency (< 10Hz)
- Disturbances: d
 - Unpredictable signals that effect the system
 - Wind, Friction, Bump in the road
 - Usually low frequency (< 10*Hz*)
- Noise: n
 - Corrupting signal in the measurement
 - Measurement noise
 - Usually high frequency (> 100Hz)

Context

- Remember what a Controller is used for
 - Stabilize a system (Root Locus, PID, Nyquist)
 - Reach a certain performance criterion (1order and 2 order system specifications, today)
 - Robustness (perform well even with **disturbances**, **noise** or modelling errors)
- We want:

•
$$T(s) = \frac{L(s)}{1+L(s)} = \frac{C(s)G(s)}{1+C(s)G(s)}, S(s) = \frac{1}{1+L(s)} = \frac{1}{1+C(s)G(s)}$$

- Good Reference Tracking (R(s) = T(s)Y(s))
- Good Disturbance Rejection (D(s) = S(s)Y(s))
- Good Noise Rejection (N(s) = T(s)Y(s))

Problem and its Solution

- For good performance/robustness:
 - Reference Tracking (R(s) = T(s)Y(s), T(s) large)
 - **Disturbance Rejection** (D(s) = S(s)Y(s), S(s) small)
 - Noise Rejection (N(s) = S(s)Y(s), T(s) small)
- **Problem:** S(s) + T(s) = 1
 - T(s) and S(s) can't be small at the same time!!!
- Bodes Integral: (see Notebook)
 - $\int_0^\infty \ln|S(j\omega)|d\omega = \pi \cdot \sum_{i=1}^{n_+} \pi_i^+ = const$
 - If we decrease *S*(*s*) it gets bigger somewhere else
- BUT noise and disturbances are only present in different frequency regimes so we can split them!

Problem and its Solution

- Disturbance Rejection (D(s) = S(s)Y(s), S(s) small)
 - S(s) only needs to be small up to ω_d
 - T(s) must then be 1 in that region
- Noise Rejection (N(s) = S(s)Y(s), T(s) small)
 - T(s) only needs to be small after ω_n
 - S(s) must then be 1 in that region
- Reference Tracking (R(s) = T(s)Y(s), T(s) large)
 - For free from disturbance rejection

Problem and its Solution

- For $|S(j\omega)| \ll 1$ • $\Rightarrow \left|\frac{1}{1+L(j\omega)}\right| \ll 1 \Rightarrow |L(j\omega)| \gg 1$
- For $|T(j\omega)| \ll 1$

•
$$\Rightarrow \left| \frac{L(j\omega)}{1 + L(j\omega)} \right| \ll 1 \Rightarrow |L(j\omega)| \ll 1$$

Bode Obstacle Plot

- For $|S(j\omega)| \ll 1$
 - $\Rightarrow \left|\frac{1}{1+L(j\omega)}\right| \ll 1 \Rightarrow |L(j\omega)| \gg 1$
 - $|L(j\omega)| > |W_1(j\omega)|$
- For $|T(j\omega)| \ll 1$
 - $\Rightarrow \left| \frac{L(j\omega)}{1 + L(j\omega)} \right| \ll 1 \Rightarrow |L(j\omega)| \ll 1$
 - $|L(j\omega)| < |W_2^{-1}(j\omega)|$

Closed Loop Bandwidth - Completeness

- Closed Loop Bandwidth:
 - Frequency at which the reference is tracked up to a certain value k.
 - We use $k \approx 0.7$ (often also k = 0.5)
 - $Y(j\omega_c) = 0.7R(s) \rightarrow T(j\omega_c) = 0.7 \approx 1/\sqrt{2}$
 - $|T(j\omega_c)| = \frac{1}{\sqrt{2}} \rightarrow |L(j\omega_c)| = 1$
 - For this to be true $L(j\omega_c) = -j \rightarrow \angle L(j\omega_c) = -90^\circ$
- Crossover Frequency ω_c = closed loop bandwidth
- We want to maximise the bandwidth/ ω_c while still having
 - $\alpha \omega_d < \omega_c < \beta \omega_n$

Why?

- We saw some methods to derive controllers:
 - Root Locus, PID
 - Work but are sometimes a bit freestyle
 - Difficult to precisely incorporate requirements
- We want a C(s) such that our closed loop system with P(s) satisfies a list of requirements
- What can we do?
 - Create a L(s) that satisfies all requirements
 - Get $C(s) = \frac{L(s)}{P(s)}$
- This is a bad idea:
 - C(s) can be infeasible
 - C(s) can be overly complex
 - Only works for stable systems

What?

- What can we do better?
 - Use our knowledge and choose a combination of the following elements
 - Gain: k, Integrator: 1/s, Lead: $\frac{s/a+1}{s/b+1}$ (0 < a < b), Lag: $\frac{s/a+1}{s/b+1}$ (0 < b < a)
- Gain: *k*
 - Shifts the Magnitude Diagram up or down
 - Phase stays constant
- User Guide:
 - Move system up or down as desired
- Integrator: 1/s
 - Gets rid of steady state error
 - $|L(0)| \to \infty$
- User Guide:
 - Add as many integrators as needed to get rid of the steady state error (beware of phase)

Elements

- Lead: $\frac{s/a+1}{s/b+1} = \frac{b}{a} \frac{s+a}{s+b}$ (0 < a < b), PD-Controller for $b \to \infty$
 - Increases magnitude by b/a at high frequencies
 - Creates a slope of $20 \frac{dB}{dec}$ between a and b
 - Increases the phase at \sqrt{ab} (midpoint of [a, b]) by:
 - $\varphi_{max} = 2\arctan(\sqrt{b/a}) 90^{\circ}$
- User guide:
 - Used to increase the phase margin
 - Pick desired crossover frequency \sqrt{ab}
 - Pick b/a for desired phase shift $(b/a \uparrow \rightarrow \phi \uparrow)$
 - Use a gain k to shift crossover frequency
- Danger:
 - Increases magnitude at high frequencies -> Sensitive to noise

Elements

- Lag: $\frac{s/a+1}{s/b+1} = \frac{b}{a} \frac{s+a}{s+b}$ (0 < b < a), PI-Controller for $b \to 0$
 - Decreases magnitude by b/a at high frequencies
 - Creates a slope of $-20 \frac{dB}{dec}$ between a and b
 - Decreases the phase at \sqrt{ab} (midpoint of [a, b]) by:

•
$$\varphi_{max} = 2\arctan(\sqrt{b/a}) - 90^\circ$$

- User guide:
 - Used to improve disturbance rejection/ref tracking
 - Pick *a* small enough to not affect ω_c and φ_{margin}
 - For this $a \ll \omega_c$
- Danger:
 - Phase lag at small frequencies -> reduction of phase margin

General Approach

- We want our $L(j\omega)$ to something like in the plot
- Start from the left:
 - Figure out how many integrators are needed in C(s)
 - Input and order of the system
 - Set the gain that at low frequencies $|L(j\omega)| > |W_1(j\omega)|$
 - Good ref tracking/disturbance rejection
 - Add lead/lag terms such that at ω_c the slope is $-20 \frac{dB}{dec}$
 - Good crossover frequency
 - Normalize them to not affect the magnitude
 - Past ω_c , add poles as needed for $|L(j\omega)| < |W_2^{-1}(j\omega)|$
- PID is just a special case of Loop Shaping

•
$$C_{PID} = k \cdot \frac{s/z_1 + 1}{s + 0} \cdot \frac{s/z_2 + 1}{s/p + 1}$$

Example

See Notebook Exercise

Caveats

- If the system, we have unstable poles or non-minimumphase zeros we can still do Loop Shaping but always check with Nyquist that the system is stable.
- To see the effects of unstable poles/ non-minimumphase zeros we do use a trick:
 - $P(s) = P_{mp}(s) D(s)$
 - $P(s) = \frac{s-z}{s-p} = \frac{s+z}{s+p} \cdot \frac{s+p}{s-p} \cdot \frac{s-z}{s+z}$
 - $P_{mp}(s)$: All mirrors of the unstable poles and zeros
 - D(s): original plant with the inverse of $P_{mp}(s)$
 - $|D(j\omega)| = 1$ (all pass filter) -> only alters the phase of the system
 - Chose the sign of D(s) so the phase is negative
 - Once we controlled the nice system $P_{mp}(s)$, D(s) will fuck up our lag/phase margins

Caveats

- Non-minimumphase zero:
 - $D(s) = -\frac{s-z}{s+z} \to \angle D(j\omega) = -2 \arctan\left(\frac{\omega}{z}\right)$
 - At ω_c the system lags $-2 \arctan\left(\frac{\omega_c}{z}\right)$
 - Nmp zeros force the system to be slow as max gain and crossover frequency are reduced
 - Slow (small z) nmp zeros are worse than fast (large z) ones
- Unstable pole:
 - $D(s) = \frac{s+zp}{s-p} \to \angle D(j\omega) = -2 \arctan\left(\frac{p}{\omega}\right)$
 - At ω_c the system lags $-2 \arctan\left(\frac{p}{\omega_c}\right)$
 - Unstable poles force the system to be faster as min gain and crossover frequency are increase
 - Slow (small p) poles are better than fast (large p) ones
 - Fast system requires strong and fast controllers/ actuators

Performance Limitation

Extra

- Sometimes it is just not possible to get all requirements due to nmp zeros or unstable poles
- Rule of thumb on the crossover frequency limits
 - Nominal: $\max\{10 \cdot \omega_d, 2 \cdot \omega_{p^+}\} < \omega_c < \min\{\frac{1}{10} \cdot \omega_n, \frac{1}{2} \cdot \omega_{\tau}, \frac{1}{2} \cdot \omega_{\zeta^+}\}$
 - Conservative: $\max\{10 \cdot \omega_d, 5 \cdot \omega_{p^+}\} < \omega_c < \min\{\frac{1}{10} \cdot \omega_n, \frac{1}{5} \cdot \omega_{\tau}, \frac{1}{5} \cdot \omega_{\zeta^+}\}$
 - ω_d and ω_n are the crossover frequencies of the disturbance and noise
 - ω_{p^+} and ω_{z^+} are the unstable poles and nmp zeros
 - $\omega_{\tau} = \frac{1}{\tau}$ effect of the time delay (next week)
- If ω_c the system can be controlled reasonably (no design specification)

Exercise 10

What to do?

- 1:
 - Do
- 2:
 - Do
- 3:
 - Do
- 4:
 - Skip
- **5**:
 - Skip