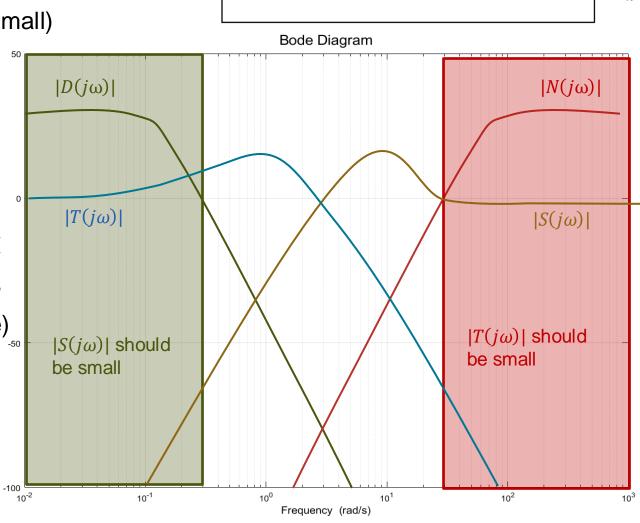


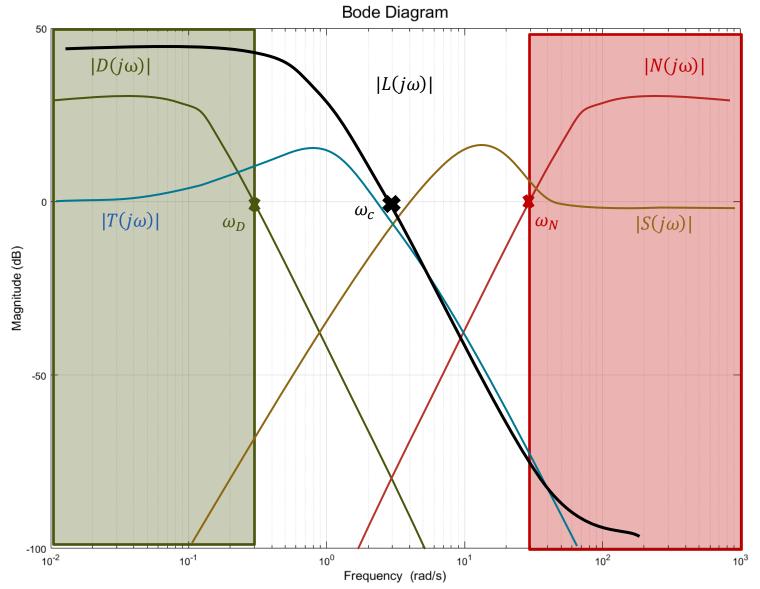
Frequency-Domain Specifications

- Disturbance Rejection (Y(s) = S(s)D(s), S(s) small)
 - S(s) only needs to be small up to ω_d
 - T(s) must then be 1 in that region
- Noise Rejection (Y(s) = S(s)N(s), T(s) small)
 - T(s) only needs to be small after ω_n
 - S(s) must then be 1 in that region
- Reference Tracking (Y(s) = T(s)R(s), T(s) | T(s
 - For free from disturbance rejection



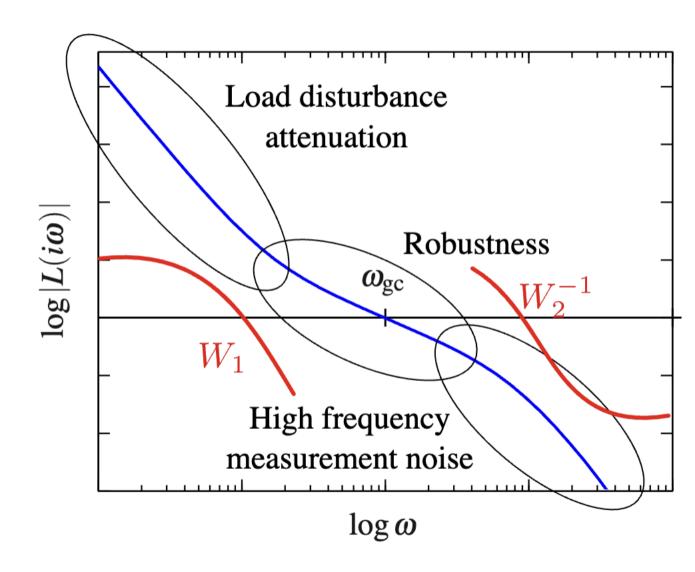
Frequency-Domain Specifications

- For $|S(j\omega)| \ll 1$
 - $\Rightarrow \left| \frac{1}{1 + L(j\omega)} \right| \ll 1 \Rightarrow |L(j\omega)| \gg 1$
- For $|T(j\omega)| \ll 1$
 - $\Rightarrow \left| \frac{L(j\omega)}{1 + L(j\omega)} \right| \ll 1 \Rightarrow |L(j\omega)| \ll 1$



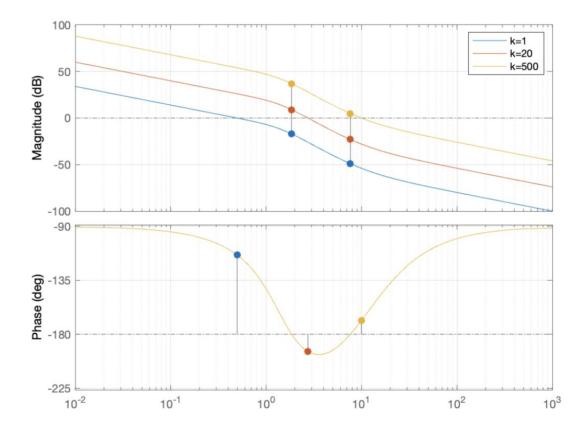
Frequency-Domain Specifications

- For $|S(j\omega)| \ll 1$
 - $\Rightarrow \left| \frac{1}{1 + L(j\omega)} \right| \ll 1 \Rightarrow |L(j\omega)| \gg 1$
 - $|L(j\omega)| > |W_1(j\omega)|$
- For $|T(j\omega)| \ll 1$
 - $\Rightarrow \left| \frac{L(j\omega)}{1 + L(j\omega)} \right| \ll 1 \Rightarrow |L(j\omega)| \ll 1$
 - $|L(j\omega)| < |W_2^{-1}(j\omega)|$



Loop Shaping

- What can we do better?
 - Use our knowledge and choose a combination of the following elements
 - Gain: k, Integrator: 1/s, Lead: $\frac{s/a+1}{s/b+1}(0 < a < b)$, Lag: $\frac{s/a+1}{s/b+1}(0 < b < a)$
- Gain: *k*
 - Shifts the Magnitude Diagram up or down
 - Phase stays constant
- User Guide:
 - Move system up or down as desired
- Integrator: 1/s
 - Gets rid of steady state error
 - $|L(0)| \rightarrow \infty$
- User Guide:
 - Add as many integrators as needed to get rid of the steady state error (beware of phase)



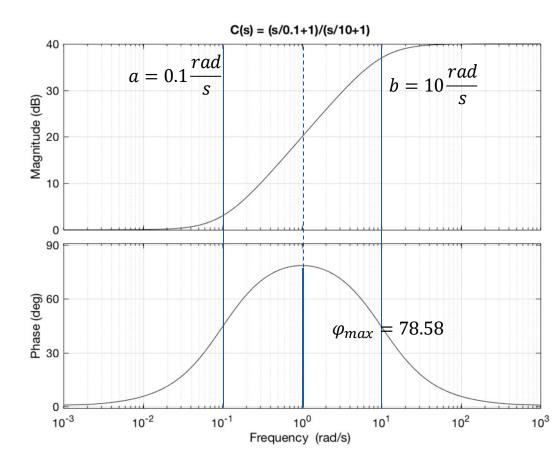
Loop Shaping

- Lead: $\frac{s/a+1}{s/b+1} = \frac{b}{a} \frac{s+a}{s+b} (0 < a < b)$, PD-Controller for $b \to \infty$
 - Increases magnitude by b/a at high frequencies
 - Creates a slope of $20 \frac{dB}{dec}$ between a and b
 - Increases the phase at \sqrt{ab} (midpoint of [a, b]) by:

•
$$\varphi_{max} = 2\arctan(\sqrt{b/a}) - 90^{\circ}$$

- User guide:
 - Used to increase the phase margin
 - Pick desired crossover frequency \sqrt{ab}
 - Pick b/a for desired phase shift $(b/a \uparrow \rightarrow \varphi \uparrow)$
 - Use a gain k to shift crossover frequency

Increases magnitude at high frequencies -> Sensitive to noise

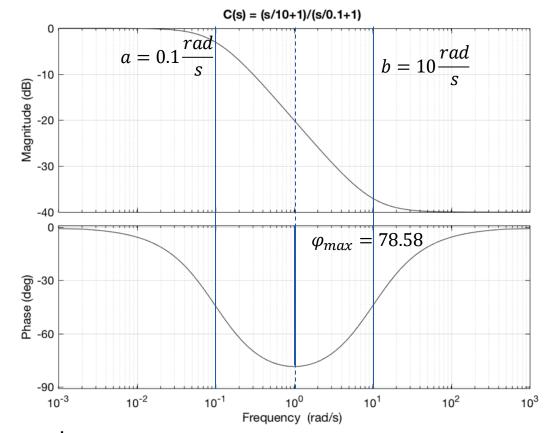


Loop Shaping

- Lag: $\frac{s/a+1}{s/b+1} = \frac{b}{a} \frac{s+a}{s+b} (0 < b < a)$, PI-Controller for $b \to 0$
 - Decreases magnitude by b/a at high frequencies
 - Creates a slope of $-20 \frac{dB}{dec}$ between a and b
 - Decreases the phase at \sqrt{ab} (midpoint of [a, b]) by:

•
$$\varphi_{max} = 2\arctan(\sqrt{b/a}) - 90^{\circ}$$

- User guide:
 - Used to improve disturbance rejection/ref tracking
 - Pick a small enough to not affect ω_c and φ_{margin}
 - For this $a \ll \omega_c$
- Danger:
 - Phase lag at small frequencies -> reduction of phase margin



Loop Shaping

- Split System: $P(s) = P_{mp}(s) D(s)$
 - $P(s) = \frac{s-z}{s-p} = \frac{s+z}{s+p} \cdot \frac{s+p}{s-p} \cdot \frac{s-z}{s+z}$
- Non-minimumphase zero: $D(s) = -\frac{s-z}{s+z} \rightarrow \angle D(j\omega) = -2\arctan\left(\frac{\omega}{z}\right)$
 - At ω_c the system lags $-2 \arctan\left(\frac{\omega_c}{z}\right)$
 - Nmp zeros force the system to be slow as max gain and crossover frequency are reduced
 - Slow (small z) nmp zeros are worse than fast (large z) ones
- Unstable pole: $D(s) = \frac{s+zp}{s-p} \rightarrow \angle D(j\omega) = -2 \arctan\left(\frac{p}{\omega}\right)$
 - At ω_c the system lags $-2 \arctan\left(\frac{p}{\omega_c}\right)$
 - Unstable poles force the system to be faster as min gain and crossover frequency are increase
 - Slow (small p) poles are better than fast (large p) ones
 - Fast system requires strong and fast controllers/ actuators

Performance Limits

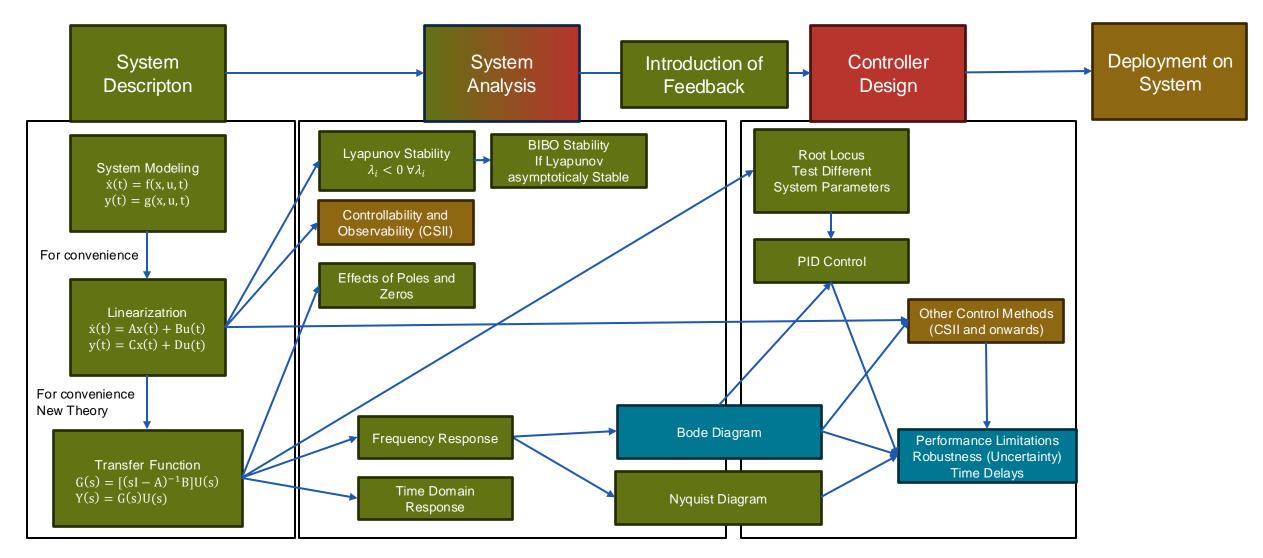
- Sometimes it is just not possible to get all requirements due to nmp zeros or unstable poles
- Rule of thumb on the crossover frequency limits
 - Nominal: $\max\{10 \cdot \omega_d, 2 \cdot \omega_{p^+}\} < \omega_c < \min\{\frac{1}{10} \cdot \omega_n, \frac{1}{2} \cdot \omega_\tau, \frac{1}{2} \cdot \omega_{\zeta^+}\}$
 - Conservative: $\max\{10 \cdot \omega_d, 5 \cdot \omega_{p^+}\} < \omega_c < \min\{\frac{1}{10} \cdot \omega_n, \frac{1}{5} \cdot \omega_\tau, \frac{1}{5} \cdot \omega_{\zeta^+}\}$
 - ω_d and ω_n are the crossover frequencies of the disturbance and noise
 - ω_{p^+} and ω_{z^+} are the unstable poles and nmp zeros
 - $\omega_{\tau} = \frac{1}{\tau}$ effect of the time delay (next week)
- If ω_c the system can be controlled reasonably (no design specification)

Outline

- Tine Delay
 - What?
 - Effects
 - Example
 - What to do?
 - Approximations
- Controller Design
 - How to implement a controller
- Non-Linearities
- Cascaded Control
 - What?
 - Example

Conceptual Recap

Classical Control Approach

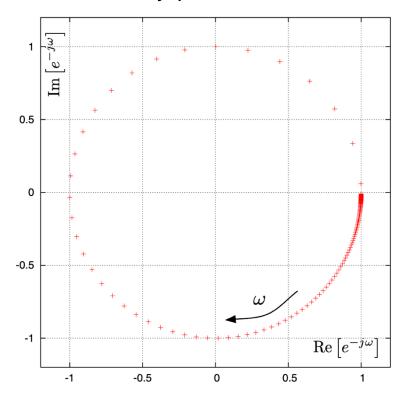


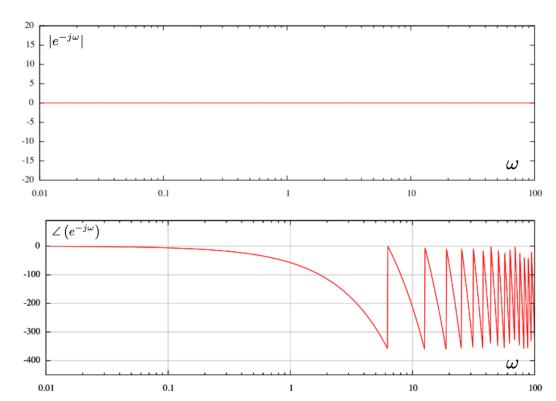
What?

- Whenever an event/transition takes time:
 - Computing a control output using a computer
 - Goods on a conveyor belt with a sensor on the end
 - Long range control (e.g space crafts)
- Definition:
 - A time delay is a **linear** operator that transforms an input signal $t \to u(t)$ into a delayed output signal y(t) = u(t T), where $T \ge 0$ is the delay.
- Transfer Function:
 - $Y(s) = e^{-sT}U(s) \to G(s) = e^{-sT}$
- Not a polynomial!

What?

- Transfer Function:
 - $Y(s) = e^{-sT}U(s) \rightarrow G(s) = e^{-sT}$
- Bode Plot and Nyquist Plot:

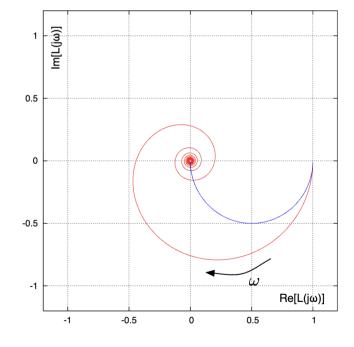


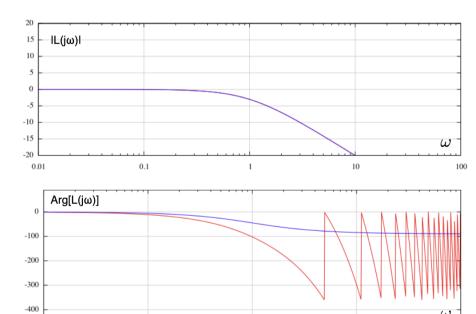


Effects

- System with a Time Delay:
 - $L'(s) = e^{-sT}L(s)$
 - $|L'(j\omega)| = |e^{-j\omega T}L(j\omega)| = |L(j\omega)|$
 - $\angle L'(j\omega) = \angle \left[e^{-j\omega T}L(j\omega)\right] = \angle L(j\omega) \omega T, \ \omega > 0$
- We lose phase margin!

 - Phase margin decrease
 - Decrease is dependent on the cross-over frequency





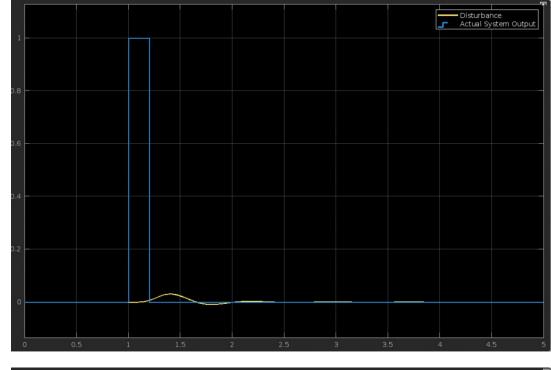
Effects - Example

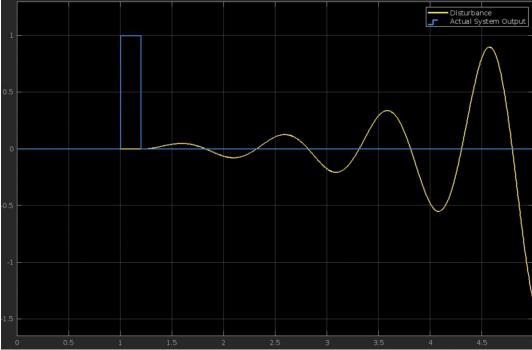
Consider the inverted pendulum (upright position):

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ \frac{3g}{2L} & -\frac{3c_f}{mL^2} \end{bmatrix} x + \begin{bmatrix} 0 \\ \frac{1}{mL^2} \end{bmatrix} u, \ y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

•
$$C(s) = k_p + \frac{k_d s}{T_f s + 1}$$
: $k_p = 35, k_d = 5, T_f = 0.001$

- Plot 1: T = 0.1
- Plot 2: T = 0.2
- To large of a time delay can make the system unstable
 - Sometimes nothing can help, and we need more sophisticated controllers







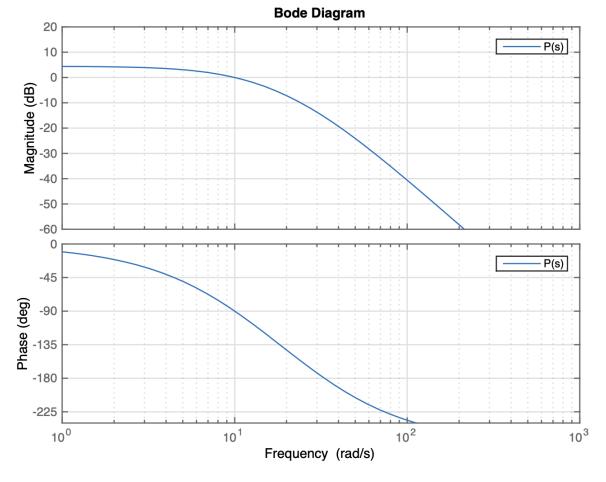
Example

Phase margin reduction:

- $\omega_c = 10 rad/s$
- $\phi_{m,0} = 90^{\circ}$
- $T = \frac{\pi}{40} s = \frac{180}{40} s$
- $\phi_{m,T} = 90 \frac{180}{40} * 10 = 90 \frac{180}{4} = 90 45$
 - -> $\phi_{m,T} = 45^{\circ}$

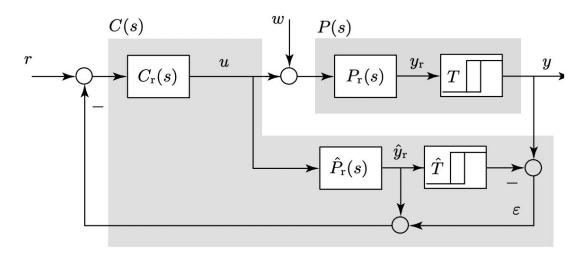
Question 45 Choose the correct answer. (1 Point)

You are given the Bode plot of a plant however the time delay has not been included in the model. You have a time delay of $T_d = \frac{\pi}{40} s$. What is the new phase margin/ phase reserve of your system?



What to do?

- Ignore them and hope for the best
 - Create a controller ignoring the time delay
 - Check the closed loop system:
 - If instable redesign with higher phase margin or lower crossover frequency
 - Repeat until success
- Smith Predictor (not in lecture)
 - Main Idea incorporate time delay knowledge into controller
 - "Simulate" Time Delay in the controller and shit output accordingly



Approximations

- Transfer Function is not a Rational Function:
 - $G(s) = e^{-sT}$
 - We can't use root-locus, python or other tools that require rational functions
- Taylor Approximation:
 - $e^{-sT} = 1 sT + 1/2(sT)^2 1/3(sT)^3 + \cdots$
 - $e^{-sT} \approx 1 sT + 1/2(sT)^2$
 - Non-causal with two non-minimumphase zeros -> Only good for $T \ll 1$
 - Magnitude diverges which is not the case
- Padé:
 - First order: $e^{-sT} \approx \frac{2/T s}{2/T + s}$
 - We see the non-minumumphase zeros -> Can't increase gain to much
 - Allows us to do Root-Locus
- For both: Always check with Nyquist for actual stability

Approximations - Example

- Consider the Following System:
 - $P(s) = 2\frac{s+1}{s^2+3s+2}e^{-2s} + \frac{1}{s+2}e^{-s}, e^{-sT} \approx \frac{2/T-s}{2/T+s}$
- What would be the first-order Padé approximation?
 - $e^{-2s} = \frac{1-s}{1+s}, e^{-s} = \frac{2-s}{2+s}$

 - $P(s) = \frac{2}{(s+2)} \frac{1-s}{1+s} + \frac{1}{s+2} \frac{2-s}{2+s}$
 - $P(s) = \frac{1}{s+2} \left(\frac{2-2s}{s+1} + \frac{2-s}{2+s} \right)$

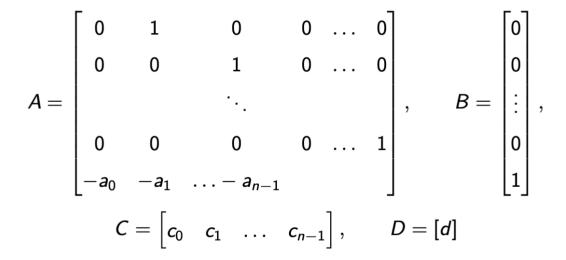
Controller Design

How to Implement a Controller

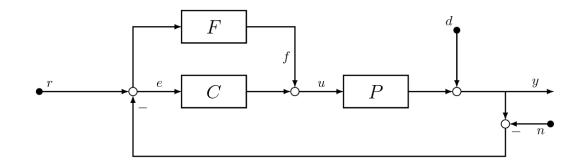
We saw how to design a controller TF:

•
$$C(s) = k + \frac{c_m s^m + \dots + c_0}{s^n + a_{n-1} s^{n-1} + \dots + a_0}$$

We can transfer that to a state space system:



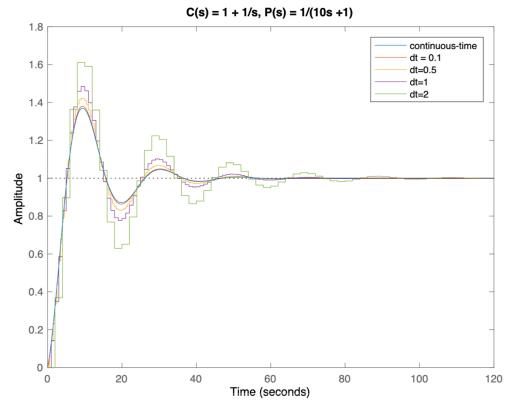
- $\tilde{x}(t) = A\tilde{x}(t) + Be(t), e(t) = r(t) y(t)$
- $u(t) = C\tilde{x}(t) + De(t)$



Controller Design

How to Implement a Controller

- Physical System:
 - Create an Analog Electronics circuit
 - Use Resistors, Capacitors and Inductors
- Software: Euler Approximation ("simulate the controller")
 - Init $\tilde{x}[k] = 0$, e[k-1] = 0
 - For every *k*:
 - $\bullet \ e[k] = r[k] y[k]$
 - Update system: x[k] = x[k] + (Ax[k] + Be[k])dt
 - Compute output: $u[k] = Cx[k] + De[k] + K_D(e[k] e[k-1])/dt$
 - Send u[k] to actuators
 - Update: e[k-1] = e[k]
 - We keep the output between to step constant -> zero order hold
 - Introduces a time delay of dt/2



Non-Linearities

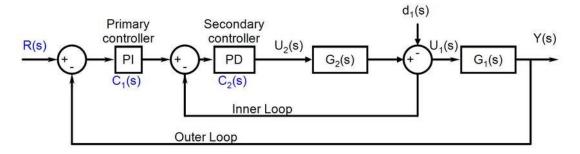
Linear Systems Theory for Non-Linear Systems

- Most real systems are non-linear, but non-linear control theory is hard
- What are the ways to use linear systems theory?
 - Linearization around equilibrium
 - Design a Linear Controller and apply to Non-linear system
 - PID, LQR, Linear MPC
 - Often works well!
 - Stability guarantees only around small deviation of equilibrium!!!
 - Check stability for "expected" deviation or using non-linear systems theory
 - Describing Functions
 - Extend Frequency Domain Methods to non-linear systems
 - Robust Control
 - Create a controller to handle modelling errors and noise

Cascaded Control

What?

- Split Control Problem into two parts -> Often easier!
 - Low-Level/Inner-Loop(fast) and High-Level/Outer-Loop(slow)
- Low-Level/Inner-Loop : often output of High-Level controller
 - Mostly SISO
 - Often PID/PD
 - Joint Controller, Velocity Controller
- High-Level/Outer-Loop: Used to achieve main goal
 - Often MIMO
 - Usually more complex than a PID/PD
 - MPC, Neural Network, LQR
 - Kinematic Control, Trajectory Following
- Low Level needs to be much faster than High Level!
 - Rule of thumb $\omega_{LL} \approx 10 * \omega_{HL}$ or $\omega_{LL} \approx 5 * \omega_{HL}$
 - E.g inner loop runs at 300Hz and outer loop at 30Hz



Cascaded Control

Goal: V_ego = V_set Ego Car Safe distance Relative distance Speed Control

Spacing Control

Positin Dynamics

 $V(t) \rightarrow p(t)$

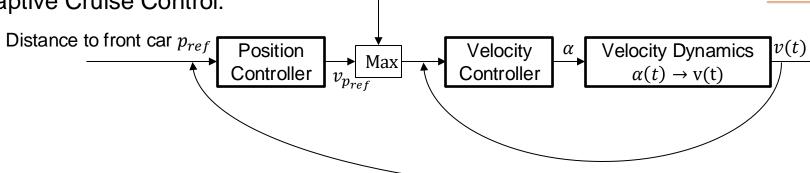
Safe distance

Relative distance

Goal: D rel = D safe

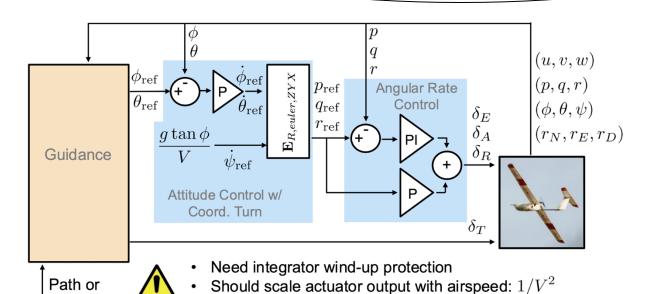
Examples

Adaptive Cruise Control:



 v_{ref}

Airplane:



Bandwidth of inner (low-level) loop should be

sufficiently higher than the outer (guidance)

l trajectory

reference

Exercise 10

What to do?

- **1**:
 - 1.1 Do
 - 1.2 Do
 - 1.3 Skip
- **2**:
 - a) do
 - b) do
 - c) skip
 - d) skip