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|𝐷 𝑗ω | |𝑁 𝑗ω |

|𝑇 𝑗𝜔 | |𝑆 𝑗𝜔 |

▪ Disturbance Rejection (Y s = S s D(s), S(s) small)

▪ S(s) only needs to be small up to 𝜔𝑑

▪ T(s) must then be 1 in that region

▪ Noise Rejection (Y s = S s N(s), T(s) small)

▪ T(s) only needs to be small after 𝜔𝑛

▪ 𝑆(𝑠) must then be 1 in that region

▪ Reference Tracking (Y s = T s R(s), T(s) large)

▪ For free from disturbance rejection
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Frequency-Domain Specifications

|𝑆 𝑗𝜔 | should

be small

|𝑇 𝑗𝜔 | should

be small



▪ For 𝑆 𝑗𝜔 ≪ 1

▪ ⇒
1

1+𝐿 𝑗𝜔
≪ 1 ⇒ 𝐿 𝑗𝜔 ≫ 1

▪ For 𝑇 𝑗𝜔 ≪ 1

▪ ⇒
𝐿 𝑗𝜔

1+𝐿 𝑗𝜔
≪ 1 ⇒ 𝐿 𝑗𝜔 ≪ 1
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Frequency-Domain Specifications

|𝐷 𝑗ω | |𝑁 𝑗ω |

|𝑇 𝑗𝜔 | |𝑆 𝑗𝜔 |

|𝐿 𝑗𝜔 |

𝜔𝑁𝜔𝐷
𝜔𝑐



▪ For 𝑆 𝑗𝜔 ≪ 1

▪ ⇒
1

1+𝐿 𝑗𝜔
≪ 1 ⇒ 𝐿 𝑗𝜔 ≫ 1

▪ 𝐿 𝑗𝜔 > 𝑊1 𝑗𝜔

▪ For 𝑇 𝑗𝜔 ≪ 1

▪ ⇒
𝐿 𝑗𝜔

1+𝐿 𝑗𝜔
≪ 1 ⇒ 𝐿 𝑗𝜔 ≪ 1

▪ 𝐿 𝑗𝜔 < 𝑊2
−1 𝑗𝜔
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Frequency-Domain Specifications



▪ What can we do better?

▪ Use our knowledge and choose a combination of the following elements

▪ Gain: 𝑘, Integrator: 1/𝑠, Lead: 
𝑠/𝑎+1

𝑠/𝑏+1
(0 < a < b), Lag:

𝑠/𝑎+1

𝑠/𝑏+1
(0 < b < a)

▪ Gain: 𝒌

▪ Shifts the Magnitude Diagram up or down

▪ Phase stays constant

▪ User Guide:

▪ Move system up or down as desired

▪ Integrator: 𝟏/𝒔

▪ Gets rid of steady state error

▪ 𝐿(0) → ∞

▪ User Guide:

▪ Add as many integrators as needed to get

rid of the steady state error (beware of phase)
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Loop Shaping



▪ Lead: 
𝒔/𝒂+𝟏

𝒔/𝒃+𝟏
=

𝐛

𝐚

𝒔+𝒂

𝒔+𝒃
𝟎 < 𝐚 < 𝐛 , PD-Controller for 𝑏 → ∞

▪ Increases magnitude by 𝑏/𝑎 at high frequencies

▪ Creates a slope of 20
𝑑𝐵

𝑑𝑒𝑐
between 𝑎 and 𝑏

▪ Increases the phase at 𝑎𝑏 (midpoint of [𝑎, 𝑏]) by:

▪ 𝜑𝑚𝑎𝑥 = 2arctan 𝑏/𝑎 − 90°

▪ User guide: 

▪ Used to increase the phase margin

▪ Pick desired crossover frequency 𝑎𝑏

▪ Pick 𝑏/𝑎 for desired phase shift (𝑏/𝑎 ↑ → 𝜑 ↑)

▪ Use a gain 𝑘 to shift crossover frequency

▪ Danger:

▪ Increases magnitude at high frequencies -> Sensitive to noise
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Loop Shaping

𝑎 = 0.1
𝑟𝑎𝑑

𝑠 𝑏 = 10
𝑟𝑎𝑑

𝑠

𝜑𝑚𝑎𝑥 = 78.58



▪ Lag: 
𝒔/𝒂+𝟏

𝒔/𝒃+𝟏
=

𝐛

𝐚

𝒔+𝒂

𝒔+𝒃
𝟎 < 𝐛 < 𝐚 , PI-Controller for 𝑏 → 0

▪ Decreases magnitude by 𝑏/𝑎 at high frequencies

▪ Creates a slope of −20
𝑑𝐵

𝑑𝑒𝑐
between 𝑎 and 𝑏

▪ Decreases the phase at 𝑎𝑏 (midpoint of [𝑎, 𝑏]) by:

▪ 𝜑𝑚𝑎𝑥 = 2arctan 𝑏/𝑎 − 90°

▪ User guide: 

▪ Used to improve disturbance rejection/ref tracking

▪ Pick 𝑎 small enough to not affect 𝜔𝑐 and 𝜑𝑚𝑎𝑟𝑔𝑖𝑛

▪ For this 𝑎 ≪ 𝜔𝑐

▪ Danger:

▪ Phase lag at small frequencies -> reduction of phase margin
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Loop Shaping

𝑎 = 0.1
𝑟𝑎𝑑

𝑠 𝑏 = 10
𝑟𝑎𝑑

𝑠

𝜑𝑚𝑎𝑥 = 78.58



▪ Split System: 𝑃(𝑠) = 𝑃𝑚𝑝(𝑠) 𝐷(𝑠)

▪ 𝑃 𝑠 =
𝑠−𝑧

𝑠−𝑝
=

𝑠+𝑧

𝑠+𝑝
⋅
𝑠+𝑝

𝑠−𝑝
⋅
𝑠−𝑧

𝑠+𝑧

▪ Non-minimumphase zero: 𝐷 𝑠 = −
𝑠−𝑧

𝑠+𝑧
→ ∠𝐷 𝑗𝜔 = −2arctan

𝜔

𝑧

▪ At 𝜔𝑐 the system lags −2arctan
𝜔𝑐

𝑧

▪ Nmp zeros force the system to be slow as max gain and crossover frequency are reduced

▪ Slow (small z) nmp zeros are worse than fast (large z) ones

▪ Unstable pole: 𝐷 𝑠 =
𝑠+𝑧𝑝

𝑠−𝑝
→ ∠𝐷 𝑗𝜔 = −2arctan

𝑝

𝜔

▪ At 𝜔𝑐 the system lags −2arctan
𝑝

𝜔𝑐

▪ Unstable poles force the system to be faster as min gain and crossover frequency are increase

▪ Slow (small p) poles are better than fast (large p) ones

▪ Fast system requires strong and fast controllers/ actuators
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Loop Shaping



▪ Sometimes it is just not possible to get all requirements due to nmp zeros or unstable poles

▪ Rule of thumb on the crossover frequency limits

▪ Nominal: max 10 ⋅ 𝜔𝑑, 2 ⋅ 𝜔𝑝+ < 𝜔𝑐 < min
1

10
⋅ 𝜔𝑛,

1

2
⋅ 𝜔𝜏,

1

2
⋅ 𝜔𝜁+

▪ Conservative: max 10 ⋅ 𝜔𝑑, 5 ⋅ 𝜔𝑝+ < 𝜔𝑐 < min
1

10
⋅ 𝜔𝑛,

1

5
⋅ 𝜔𝜏,

1

5
⋅ 𝜔𝜁+

▪ 𝜔𝑑 and 𝜔𝑛 are the crossover frequencies of the disturbance and noise

▪ 𝜔𝑝+ and 𝜔𝑧+ are the unstable poles and nmp zeros

▪ 𝜔𝜏 =
1

𝜏
effect of the time delay (next week)

▪ If 𝜔𝑐 the system can be controlled reasonably (no design specification)
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Performance Limits



Outline
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▪ Tine Delay

▪ What?

▪ Effects

▪ Example

▪ What to do?

▪ Approximations

▪ Controller Design

▪ How to implement a controller

▪ Non-Linearities

▪ Cascaded Control

▪ What?

▪ Example



Conceptual Recap
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Classical Control Approach

System 

Descripton

System 

Analysis

Controller 

Design

Deployment on 

System

System Modeling

ሶx t = f x, u, t
y t = g(x, u, t)

Transfer Function

G s = [ sI − A −1B]U s
Y s = G s U(s)

Linearizatrion

ሶx t = Ax t + Bu t
y t = Cx t + Du(t)

For convenience

For convenience

New Theory

Lyapunov Stability

𝜆𝑖 < 0 ∀𝜆𝑖

BIBO Stability

If Lyapunov 

asymptoticaly Stable

Controllability and 

Observability (CSII)

Root Locus 

Test Different

System Parameters

Bode Diagram

Nyquist Diagram

Effects of Poles and 

Zeros

Time Domain 

Response

Frequency Response

PID Control

Performance Limitations

Robustness (Uncertainty)

Time Delays

Other Control Methods 

(CSII and onwards)

Introduction of 

Feedback



▪ Whenever an event/transition takes time:

▪ Computing a control output using a computer

▪ Goods on a conveyor belt with a sensor on the end

▪ Long range control (e.g space crafts)

▪ Definition: 

▪ A time delay is a linear operator that transforms an input signal 𝑡 → 𝑢(𝑡) into a delayed output 
signal 𝑦 𝑡 = 𝑢 𝑡 − 𝑇 , where 𝑇 ≥ 0 is the delay.

▪ Transfer Function:

▪ 𝑌 𝑠 = 𝑒−𝑠𝑇𝑈 𝑠 → 𝐺 𝑠 = 𝑒−𝑠𝑇

▪ Not a polynomial!

Time Delays
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What?



▪ Transfer Function:

▪ 𝑌 𝑠 = 𝑒−𝑠𝑇𝑈 𝑠 → 𝐺 𝑠 = 𝑒−𝑠𝑇

▪ Bode Plot and Nyquist Plot:

Time Delays
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What?



▪ System with a Time Delay:

▪ 𝐿′ 𝑠 = 𝑒−𝑠𝑇𝐿(𝑠)

▪ 𝐿′ 𝑗𝜔 = 𝑒−𝑗𝜔𝑇𝐿 𝑗𝜔 = 𝐿 𝑗𝜔

▪ ∠𝐿′ 𝑗𝜔 = ∠ 𝑒−𝑗𝜔𝑇𝐿 𝑗𝜔 = ∠𝐿 𝑗𝜔 − 𝜔𝑇, 𝜔 > 0

▪ We lose phase margin!

▪ 𝜙𝑚,𝑇 = 𝜙𝑚,0 − 𝜔𝑐𝑇

▪ Phase margin decrease 

▪ Decrease is dependent on the cross-over frequency

Time Delays
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Effects



▪ Consider the inverted pendulum (upright position):

▪ ሶ𝑥 =
0 1
3𝑔

2𝐿
−

3𝑐𝑓

𝑚𝐿2
𝑥 +

0
1

𝑚𝐿2
𝑢, 𝑦 = 1 0 𝑥

▪ 𝐶 𝑠 = 𝑘𝑝 +
𝑘𝑑𝑠

𝑇𝑓𝑠+1
: 𝑘𝑝 = 35, 𝑘𝑑 = 5, 𝑇𝑓 = 0.001

▪ Plot 1: 𝑇 = 0.1

▪ Plot 2: 𝑇 = 0.2

▪ To large of a time delay can make the system unstable

▪ Sometimes nothing can help, and we need more 

sophisticated controllers

Time Delays
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Effects - Example



▪ Phase margin reduction: 

▪ 𝜙𝑚,𝑇 = 𝜙𝑚,0 − 𝜔𝑐𝑇

▪ 𝜔𝑐 = 10𝑟𝑎𝑑/𝑠

▪ 𝜙𝑚,0 = 90°

▪ 𝑇 =
𝜋

40
𝑠 =

180

40
𝑠

▪ 𝜙𝑚,𝑇 = 90 −
180

40
∗ 10 = 90 −

180

4
= 90 − 45

▪ -> 𝜙𝑚,𝑇 = 45°

Time Delays
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Example



▪ Ignore them and hope for the best

▪ Create a controller ignoring the time delay

▪ Check the closed loop system:

▪ If instable redesign with higher phase margin or lower crossover frequency

▪ Repeat until success

▪ Smith Predictor (not in lecture)

▪ Main Idea incorporate time delay knowledge into controller

▪ “Simulate” Time Delay in the controller and shit output accordingly

Time Delays
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What to do?



▪ Transfer Function is not a Rational Function:

▪ 𝐺 𝑠 = 𝑒−𝑠𝑇

▪ We can’t use root-locus, python or other tools that require rational functions

▪ Taylor Approximation:

▪ 𝑒−𝑠𝑇 = 1 − 𝑠𝑇 + 1/2 𝑠𝑇 2 − 1/3 𝑠𝑇 3 +⋯

▪ 𝑒−𝑠𝑇 ≈ 1 − 𝑠𝑇 + 1/2 𝑠𝑇 2

▪ Non-causal with two non-minimumphase zeros -> Only good for 𝑇 ≪ 1

▪ Magnitude diverges which is not the case

▪ Padé:

▪ First order: 𝑒−𝑠𝑇 ≈
2/𝑇−𝑠

2/𝑇+𝑠

▪ We see the non-minumumphase zeros -> Can’t increase gain to much

▪ Allows us to do Root-Locus

▪ For both: Always check with Nyquist for actual stability

Time Delays
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Approximations



▪ Consider the Following System:

▪ 𝑃 𝑠 = 2
𝑠+1

𝑠2+3𝑠+2
𝑒−2𝑠 +

1

𝑠+2
𝑒−𝑠, 𝑒−𝑠𝑇 ≈

2/𝑇−𝑠

2/𝑇+𝑠

▪ What would be the first-order Padé approximation?

▪ 𝑒−2𝑠 =
1−𝑠

1+𝑠
, 𝑒−𝑠 =

2−𝑠

2+𝑠

▪
𝑠+1

𝑠2+3𝑠+2
=

𝑠+1

(𝑠+1)(𝑠+2)
=

1

𝑠+2

▪ 𝑃 𝑠 =
2

(𝑠+2)

1−𝑠

1+𝑠
+

1

𝑠+2

2−𝑠

2+𝑠

▪ 𝑃 𝑠 =
1

s+2

2−2𝑠

𝑠+1
+

2−𝑠

2+𝑠

Time Delays
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Approximations - Example



▪ We saw how to design a controller TF:

▪ 𝐶 𝑠 = 𝑘 +
𝑐𝑚𝑠𝑚+⋯+𝑐0

𝑠𝑛+𝑎𝑛−1𝑠𝑛−1+⋯+𝑎0

▪ We can transfer that to a state space system:

▪ ෤𝑥 𝑡 = 𝐴෤𝑥 𝑡 + 𝐵𝑒 𝑡 , 𝑒 𝑡 = 𝑟 𝑡 − 𝑦 𝑡

▪ 𝑢 𝑡 = 𝐶 ෤𝑥 𝑡 + 𝐷𝑒(𝑡)

Controller Design
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How to Implement a Controller



▪ Physical System:

▪ Create an Analog Electronics circuit

▪ Use Resistors, Capacitors and Inductors

▪ Software: Euler Approximation (“simulate the controller”)

▪ Init ෤𝑥 𝑘 = 0, e k − 1 = 0

▪ For every 𝑘:

▪ 𝑒 𝑘 = 𝑟 𝑘 − 𝑦[𝑘]

▪ Update system: 𝑥 𝑘 = 𝑥 𝑘 + 𝐴𝑥 𝑘 + 𝐵𝑒 𝑘 𝑑𝑡

▪ Compute output: 𝑢 𝑘 = 𝐶𝑥 𝑘 + 𝐷𝑒 𝑘 + 𝐾𝐷(𝑒 𝑘 − 𝑒 𝑘 − 1 )/𝑑𝑡

▪ Send 𝑢[𝑘] to actuators

▪ Update: 𝑒 𝑘 − 1 = 𝑒 𝑘

▪ We keep the output between to step constant -> zero order hold

▪ Introduces a time delay of 𝑑𝑡/2

Controller Design
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How to Implement a Controller



▪ Most real systems are non-linear, but non-linear control theory is hard

▪ What are the ways to use linear systems theory?

▪ Linearization around equilibrium

▪ Design a Linear Controller and apply to Non-linear system

▪ PID, LQR, Linear MPC

▪ Often works well!

▪ Stability guarantees only around small deviation of equilibrium!!!

▪ Check stability for “expected” deviation or using non-linear systems theory

▪ Describing Functions

▪ Extend Frequency Domain Methods to non-linear systems

▪ Robust Control

▪ Create a controller to handle modelling errors and noise

Non-Linearities
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Linear Systems Theory for Non-Linear Systems



Cascaded Control
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What?

▪ Split Control Problem into two parts -> Often easier!

▪ Low-Level/Inner-Loop(fast) and High-Level/Outer-Loop(slow)

▪ Low-Level/Inner-Loop : often output of High-Level controller 

▪ Mostly SISO

▪ Often PID/PD

▪ Joint Controller, Velocity Controller

▪ High-Level/Outer-Loop : Used to achieve main goal 

▪ Often MIMO

▪ Usually more complex than a PID/PD 

▪ MPC, Neural Network, LQR

▪ Kinematic Control, Trajectory Following

▪ Low Level needs to be much faster than High Level!

▪ Rule of thumb 𝜔𝐿𝐿 ≈ 10 ∗ 𝜔𝐻𝐿 𝑜𝑟 𝜔𝐿𝐿 ≈ 5 ∗ 𝜔𝐻𝐿

▪ E.g inner loop runs at 300Hz and outer loop at 30Hz



Cascaded Control
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Examples

▪ Adaptive Cruise Control:

▪ Airplane:

Velocity 

Controller

Velocity Dynamics

𝛼 𝑡 → v(t)
Position 

Controller

Positin Dynamics

V(t) → p(t)

Distance to front car 𝑝𝑟𝑒𝑓

𝑣𝑟𝑒𝑓

𝛼 𝑣(𝑡)

𝑣𝑝𝑟𝑒𝑓
Max



▪ 1:

▪ 1.1 Do

▪ 1.2 Do

▪ 1.3 Skip

▪ 2:

▪ a) do

▪ b) do

▪ c) skip

▪ d) skip

Exercise 10
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What to do?
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