

Control Systems I Recitation 02

https://n.ethz.ch/~jgeurts/ jgeurts@ethz.ch

Last week

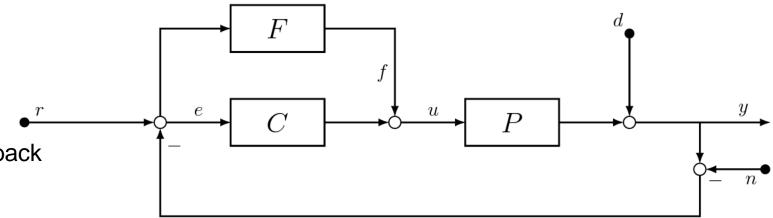
- What is a system:
 - A system in Control Systems is an operator which defines a relationship between an input, an internal state and an output.

$$\xrightarrow{u}$$
 $\sum \xrightarrow{x} y$

- u, x and y are in general time variant -> u(t), x(t), y(t)
- **Differential Equations:** $\frac{d}{dt}x(t) = f(x(t), u(t)) \rightarrow y(t) = h(x(t), u(t))$
- The general description of a system looks as follows: $y(t) = \Sigma(u(t), x(t))$
 - u(t) being the input, x(t) being the internal states of the system, y(t) being the output, Σ(t) being the system itself

Last week

- Control Structures:
 - Feedforward and Feedback



- r = reference value
- e = error signal
- C = controller
- F = feedforward

- u = control signal
- P = plant/system
- d = external disturbances
- n = measurement noise

Outline

- Modelling
 - What? Why? How?
 - Example
- Output Calculation
 - What? Why? How?
 - Example
- Control Intro Benefits and Dangers
 - Example
- Block Diagrams
 - What? Why? How?
 - Example

What? and Why?

- What?
 - Mathematical description of the underlying physics (starting from a black-box)
 - ODE/PDE(CS1)
 - Could also just be a mathematical model from data or a Neural Network
- Why?
 - Understand the system properties
 - Stability, Controllability, Observability
 - Simulate the system
 - Use a physics simulator to simulate the system behaviour
 - Use simulations to test controller
 - Derive/Synthesize a Controller
- All models are wrong, some are useful
 - Know the limits of your model!!!

How?

- 1. Identify system boundaries
- 2. Write down differential equations:
 - Difficult for now but will become clear later
- 3. Formulate in standard form
- 4. Normalize (next week)
- 5. Linearize (next week)

How?

- I. Identify system boundaries:
 - Inputs: Outside world things that affect the system and vary over time.
 - Endogenous Inputs: Controlled by us -> usually control input u(t)
 - Exogeneous Inputs: Things we can't control -> usually disturbances d(t)
 - Output: The measurements/observations we make of our system
 - Measured outputs: Directly measurable (e.g. speed, position)
 - Performance outputs: Not directly measurable (e.g. fuel efficiency)
 - States: *Quantities defining the system ("memory") time variant*
 - Often become apparent when setting up the ODE/PDE
 - For a car -> position and velocity
 - Parameters: Quantities that define the system but are constant over time
 - Mass of a car, length of a pendulum
- All these aspects can be chosen freely and need to be considered carefully
 - Car model, with or without air drag, with or without motor model?

How?

- 2. Write down differential equations:
 - In general, we can use the **storage method**:
 - Define storage variables (energy, momentum, temperature, ...)
 - Define inflows and outflows (heat flow, physical work, ...)
 - Write down differential equation as:
 - $\frac{d}{dt}$ storage = \sum infows \sum outflows
 - In practice we can also directly use **physical laws**:
 - Newton: $\Sigma F = ma = m\ddot{x}, \rightarrow \Sigma T = I\ddot{\theta}$
 - Heat: $\dot{Q}_{ij} = c_{ij} (T_i T_j), \rightarrow C\dot{T} = \sum \dot{Q}$ (explicit representation of the storage method)
 - Which to choose depends on the problem:
 - Physical laws: simple mechanical problems, electrical problems
 - Storage methods: complicated mechanical problems, thermodynamic problems

How?

- 3. Formulate in standard form:
 - The ODE/PDE are of higher derivatives and not comparable to one-another
 - We want to have a standardized form:

•
$$\frac{\mathrm{d}}{\mathrm{dt}}\mathbf{x}(t) = f(\mathbf{x}(t), \mathbf{u}(t)) \rightarrow \mathbf{y}(t) = h(\mathbf{x}(t), \mathbf{u}(t))$$

- Comparable form, unified mathematics, only first order ODE
- When a higher derivative is present, define intermediate derivatives:

•
$$\ddot{z} = f(z(t), v(t))$$

• Define:
$$\mathbf{x} = \begin{bmatrix} x_1 = z \\ x_2 = \dot{z} \\ x_3 = \ddot{z} \\ x_4 = \ddot{z} \end{bmatrix} \Rightarrow \frac{d}{dt} \mathbf{x} = \begin{bmatrix} \dot{x}_1 = \dot{z} = x_2 \\ \dot{x}_2 = \ddot{z} = x_3 \\ \dot{x}_3 = \ddot{z} = x_4 \\ \dot{x}_4 = \ddot{z} = f(x(t), u(t)) \end{bmatrix}$$
 we substitute v=u and z=x

•
$$y(t) = h(x(t), u(t))$$
 usually straight forward

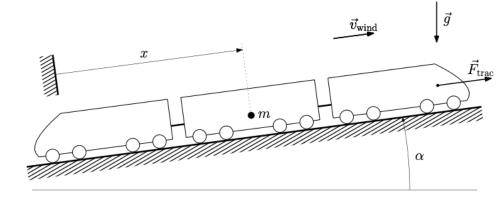
Example - Train Driving up a Hill ($v_{wind} = v_{wind}(t), \alpha = const$)

- 1. Identify System Boundaries:
 - Inputs
 - Endogenous:
 - Exogeneous:
 - Output

State

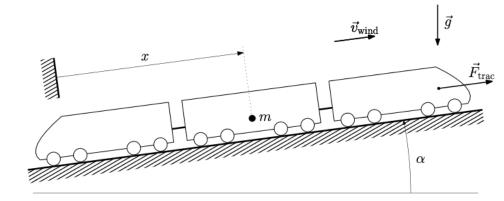
• $x(t) = \begin{bmatrix} \\ \end{bmatrix}$

Parameters



Example - Train Driving up a Hill ($v_{wind} = v_{wind}(t), \alpha = const$)

- 2. Write down differential equation:
 - 1. Directly using Newton: (faster for simple systems)
 - $\Sigma F = ma =$
 - $\Sigma F =$
 - Drag: $F_{drag}(t) =$
 - Gravity: $F_{grav}(t) =$
 - >



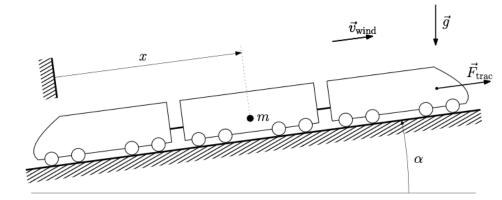
=

Example - Train Driving up a Hill ($v_{wind} = v_{wind}(t), \alpha = const$)

- 2. Write down differential equation:
 - 2. Storage Method: (easier for complex systems)
 - Storage variable: Energy (potential and kinetic)

• storage =
$$\frac{1}{2}$$
 m $\dot{x}^2(t)$ + mg sin(α) x(t)

- Inflows: Traction power
 - $IN(t) = F_{trac}(t) \dot{x}(t)$
- Outflows: Wind resistance loss
 - $OUT(t) = F_{drag}(t) \dot{x}(t)$
- Equation: $\frac{d}{dt}$ storage = $\sum infows \sum outflows$
 - $\frac{\mathrm{d}}{\mathrm{dt}} \left[\frac{1}{2} \mathrm{m} \dot{\mathrm{x}}^2(t) + \mathrm{mg} \sin(\alpha) \, \mathrm{x}(t) \right] = \mathrm{F}_{\mathrm{trac}}(t) \dot{\mathrm{x}}(t) \mathrm{F}_{\mathrm{drag}}(t) \, \dot{\mathrm{x}}(t)$
 - $m\ddot{x}(t)\dot{x}(t) + mg\sin(\alpha)\dot{x}(t) = F_{trac}(t)\dot{x}(t) F_{drag}(t)\dot{x}(t)$
 - $\rightarrow m \ddot{x}(t) = F_{trac}(t) F_{drag}(t) sin(\alpha) mg$



Example - Train Driving up a Hill ($v_{wind} = v_{wind}(t), \alpha = const$)

• 3. Formulate in standard form :

=

• We have a second derivative:

=

$$\vec{v}_{wind}$$
 \vec{g}

 $= f(\mathbf{x}(t), \mathbf{u}(t))$

 $\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}(t) = f\big(\mathbf{x}(t), \mathbf{u}(t)\big)$

y(t) = h(x(t), u(t))

Output Calculation

What?, Why? and How?

- What?
 - Given an input u(t) and x₀ we want to know the output y(t) of the system
- Why?
 - Simulations
 - See how the system behaves for different inputs -> controller synthesis
- How?
 - Almost impossible to find a closed form solution $y(t) = g(u(t), x_0) \forall u(t), x_0$
 - Rely on discretization and approximations:

$$\dot{\mathbf{x}} = f(\mathbf{x}(t), \mathbf{u}(t)) \approx \frac{\mathbf{x}(t + \Delta t) - \mathbf{x}(t)}{\Delta t}$$

- $\mathbf{x}(\mathbf{t} + \Delta \mathbf{t}) \approx \mathbf{x}(\mathbf{t}) + \Delta \mathbf{t} \cdot \mathbf{f}(\mathbf{x}(\mathbf{t}), \mathbf{u}(\mathbf{t}))$
- Solve this at every time step to get a simulation
- Example together with controller intro

Control Intro

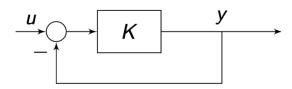
Benefits and Dangers

- Let's say we have a model --> What's next?
 - Setup simulation
 - Analyse system
 - Synthesize Controller
 - Notebook 1 demo
- Benefits:
 - Stabilize a system
 - Improve performance
 - Reach desired state
- Dangers:
 - Can break your physical system
 - Dangerous for people

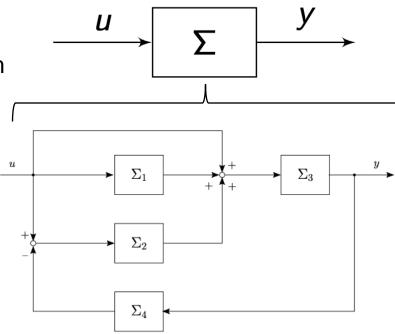
Block Diagrams and Block Diagram Algebra

What? and Why?

- What?
 - Graphical representation how system interact with each other
 - Mathematical Formulation of Transfer Functions a Block Diagram
 - $y(t) = \Sigma \cdot u(t)$
- Why?
 - Simulink uses them
 - Can break down complex control systems
 - Graphical sometimes easier to grasp
 - Solving Algebraic Loops → one system
 - Algebraic Loop:



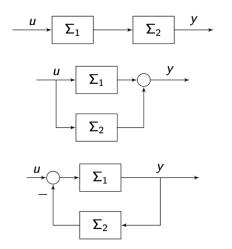
 When the input of a system depends on the output of the system (bad)



Block Diagrams and Block Diagram Algebra

How?

- How?
 - 1. Pick and Place different interconnections
 - Serial: $\Sigma_2 \Sigma_1$ (order matters for MIMO systems!)
 - Parallel: $\Sigma_1 + \Sigma_2$
 - Negative Feedback: $(I + \Sigma_1 \Sigma_2)^{-1} \Sigma_1$
 - Often not possible or very hard



- 2. Start from the end and work yourself to the start:
 - 1. Define every output of a block as function of its immediate input
 - $y_i = \Sigma_i u_i$
 - 2. Define each input as function of other systems output (if applicable)
 - $u_i = f(y_j) \forall j$
 - 3. Solve system of equation
 - Best to start from the back and work your way to the beginning

Block Diagrams and Block Diagram Algebra

Example

Derive the Transfer Function:

=

=

=

=

• 1. Define outputs:

 $\begin{array}{c} & \Sigma_1 \\ & & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ &$

• 2. Define inputs:

= = = = • 3. Solve system of equations (starting from the back)