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Last Week

System Modelling

= 1. Identify system boundaries
= |nputs, Outputs, State, Parameters

2. Write down differential equations:

d :
"= 4 Storage = Yinfows — Y outflows

= YF=ma=mk— YT =10

3. Formulate in standard form
= Sx(®) = f(x(0), u(®)
= y(®) = h(x(®),u®)

4. Normalize (not relevant)

5. Linearize (today)
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Last Week

Output Calculation

= Almost impossible to find a closed form solution y(t) = g(u(t), x¢) V u(t), xq
= Rely on discretization and approximations:

% = f(X(t),U_(t)) ~ X(t+AAtz—X(t)

x(t + At) =~ x(t) + At - f(x(t), u(t))
Solve this at every time step to get a simulation
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Last Week

Y

u
Block Diagrams and Block Diagram Algebra g
= Combine large systems to one block {
= 1. Pick and Place different interconnections u . w .

= Serial: 3,2, Parallel: ¥; + 2, , Negative Feedback: (I + ;2,) 13,

y +

+ 4+

= 2. Start from the end and work yourself to the start:

23

24_ -

= 1. Define every output of a block as function of its immediate input

Vi = 2 U
= 2. Define each input as function of other systems output (if applicable)
u; = f(y;)V ]

3. Solve system of equation
Best to start from the back and work your way to the beginning
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Outline

= System Classification
= What? Why? How?
=  Example

= Linearization and LTI
= What? Why? How?
=  Example
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System Classification
What? and Why?

= What? -> Determine/Compare system characteristics:

Linear — Superposition possible
Y(a-ur+8-u2) =a-X(ur) + B - X(uz2)
y(t) = a-u(t), y(t) = gul®), y(t) = [, u(r)dr

Non-Linear
Y(a-ur+ B-u2) #a-X(u) + B - X(uz)
y(t) = a-u(t) + B, y(t) =sin(u(t))

Causal = not dependant on future values
y(t) =ult—r) Vr>0, y(t)=[" u(r)dr

Non-Causal = dependant on future values
y(t) =u(t+5), ['7 u(r)dr

Static = dependant on current values only

Dynamic = also dependant on past values.

y(t) =3-u(t), y(t) =u(®) y(t) = [y u(r)dr, y(t) =ult—71) Vr#0
Time invariant Time varying = parameters are time dependant
y(t) = Su(t), y(t)=3-u(t) y(t) = sin(t) - u(t), y(t) =u(t)+1

State z(¢)

Vector z(t) € R™ of values at ¢ that fully describe
the system. Past and future!

Dimension

Minimal number of variables, n, to fully describe the
system.

=  Why? -> Know the assumptions/limitations of the system/model -> applicable theories
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System Classification
How?

= Linear:
= Checkifii(t) = auy(t) + bu,(t) - y(t) = ay,(t) + by,(t): yes —> linear, no -> non-linear
= Orcheck if there is a non-linear function present (be careful of affine functions y(t) = au(t) + b

= Causal:
= |nifthereis af(t+a),a> 0 or f(bt),b > 1 -> non-causal.
= JIfonly f(t —a),a = 0 -> causal

=  Dynamic:
= |fy(t) is a direct function of u(t)or y(t) - y(t) = g(u(t), y(t))-> static

= Else dynamic, e.g. y(t) = g(u(t+a)) ory(t) = dit[f(y(t)) + g(u(®)]

= Time varying:
= Istdirectly in there -> f(t, y(t), u(t))

= State and Dimension:
= From modelling and state reduction
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System Classification

Example

= y(t) = Lsin(u(t — 3)),u(v),y(t) € R?

= Linearity: ->
i(t) = auy (1) + buy(t) - F(©) =
Or see that

= Causality: ->
We see

= Static/Dynamic:
We see

= Time Varying: ->

= Dimension:; ->
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System Classification

Example

= Sy(® =ty +ut+ 1)
= Linearity:

Showing this is is a bit more tricky (see PS02 — 1f)
= Causality: ->
We see
= Static/Dynamic: ->
We see
= Time Varying: ->
We see
= Dimension: ->
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Linearization
What? Why?
=  What?

= Approximate Non-Linear ODE with first order Linear ODE:

ditx(t) = f(x(t), u(t)) - ditx(t) = Ax(t) + Bu(t)
y(®) = h(x(1), u(®) - y(© = Cx(t) + Du(t)
= Around an equilibrium point: There can be multiple!!
ditx(t) = f(x(t), u(t)) =0 - Xq, Ug and y,
= Results in an Linear Time Invariant System (LTI System)
= Why?
= Way easier math:
Superposition
= Closed form solution possible
= Valid for operation around equilibrium

ETH:irich
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Linearization
How?

= 1. Equilibrium determination:
d
: d—tx(t) = f(x(t),u(t)) =0 —> X Ug and y,
= Sometimes we can choose X, U, and y,

= 2. Approximate Non-Linear ODE with Linear ODE:
= Looking at points near equilibrium point:
x;(t) = Xje + 0x(1), where [8x;(t)| < 1
u(t) = ue + 6u(t), where [Su(t)] « 1
u(t) = ue + du(t), where |6u(t)| « 1
= We get:
= (xe + 8x(D) = = 8x(1) = f(xe + 8x(1), ue + Su(t))

Ve + 8y(t) = g(xe + 6x(t), ue + Su(t))

ETH:irich
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Linearization

How?
= We get:
dit(xe + 8x(1)) = ditSX(t) = f(xe + 8x(1), ue + Su(t))

Ye + 8y(t) = g(xe + 6x(1), ue + Su(t))
= Using Taylor Expansion:

0 0
F (e + Ba(t),ue + bu(t)) = f(ze, ue) + o0 sa(t) + 2 u(t) + O2)
:O b () - e - (S - e
dg dg
g (e + 82(t), e + bu(t)) = glae, ue) + 0 sa(t) + 29 Su(t) + O(2)
— x I=Te,U=Ue 6’& T=Te,U=Ue

=Ye
= This results in: y, gets cancelled
= 8x(t) = A 8x(t) + B Su(t)
8y(t) = C 6x(t) + DSu(t)
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Linearization

How?

= This results in:

ditgx(t) = A 8x(t) + B 8u(v)

Sy(t) = C &x(t) + Déu(t)

= With:

A of (x, u)
Ox

5 _ of (x, u)
Ou
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Linearization

How?

= For convenience we remove the deviation x(t) = 6x(t)
= And we the the LTI state-space model: notice A, B, C and D are constant

ekt
Ix1

Of (x, u) .

Ox

(e, ue) '
e, Ue of,
L Ox1

ekt
8[11
of (x, u)

ou

Xe U
(xe,e) of,

L duy

%x(t) = A-a(t) + B - u(t)
y(t) = C - z(t) + D - u(t)

of
Oxp

€ RHX n
Ofy
Oxp

(Xe,ue)

of

Oum,

c RHX m

ofy

6Um (Xe ’ "Je)

og(x, u)

ox

0g(x, u)
ou

(Xe H UE)

(Xe ’ UE)

[ 981

Bxl
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- Bxl

[ 941

duy

ogp

L 0wy

= Remember this is always a deviation from the equilibrium point:

If you want the actual value, you must add the equilibrium value

758
Oxp
. = Rp)(n

Ogp
Oxn

(e Ue)

g1
dum

e RpXm

Ogp
Oum (%eUe)

If from the simulation we have x(t = 3) = 5, then the actual value is X .t = 3) = 5 + X,
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Linearization

Example - Train Driving up a Hill (vyying = Vwing(t), @ = const)

= We have: (vying = const)
d %2
u ax(t) =

] = f(x(t), u(v))

[é lu(t) - % pewA(x, (1) — vwind)ZSign(XZ () — Vwina) — sin(a) mg]
= y(®) =x1(0)
= 1. Get equilibrium point:

X2
[0
e ue) = [é lu(t) - % PewA(X2 (1) — Viying) *sign(xz(t) — vying) — sin(e) mg]] - lo]
" X1e = — Ve =
" Xze= andug =
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Linearization

Example - Train Driving up a Hill (vyying = Vwing(t), @ = const)

1. Get equilibrium point:

X2

f(Xe, Ue) = [ﬁ [u(t) - % pewA(X2 (D) — Vying)

?sign(x2 () — Vyying) — sin(a) m
X1,e = > Ve =

X2e = andug =

= 2. Calculate MatriX'

i a
S |-
2 2t
6X1 6X2 2

]
ws)
Il
1
I—I
| ———
e—

g]] B lgl

16



Linearization

Example - Train Driving up a Hill (vyying = Vwing(t), @ = const)

= 3. Write down LTI system:
- =] |G +] [ue

cyO=0 ]+ o
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