

Last Week

System Classification

Linear → Superposition possible	Non-Linear
$\Sigma(\alpha \cdot u_1 + \beta \cdot u_2) = \alpha \cdot \Sigma(u_1) + \beta \cdot \Sigma(u_2)$	$\Sigma(\alpha \cdot u_1 + \beta \cdot u_2) \neq \alpha \cdot \Sigma(u_1) + \beta \cdot \Sigma(u_2)$
$y(t) = lpha \cdot u(t), y(t) = rac{d}{dt}u(t), y(t) = \int_0^t u(au)d au$	$y(t) = \alpha \cdot u(t) + \beta, y(t) = \sin(u(t))$
Causal = not dependant on future values	Non-Causal = dependant on future values
$y(t) = u(t - \tau) \forall \tau \ge 0, y(t) = \int_{-\infty}^{0} u(\tau) d\tau$	$y(t) = u(t+5), \int_{-\infty}^{t+1} u(\tau)d\tau$
Static = dependant on current values only	Dynamic = also dependant on past values.
$y(t) = 3 \cdot u(t), y(t) = \sqrt{u(t)}$	$y(t) = \int_0^t u(\tau)d\tau, y(t) = u(t-\tau) \forall \tau \neq 0$
Time invariant	Time varying = parameters are time dependant
$y(t) = \frac{d}{dt}u(t), y(t) = 3 \cdot u(t)$	$y(t) = sin(t) \cdot u(t), y(t) = u(t) + t$
State $x(t)$	Dimension
Vector $x(t) \in \mathbb{R}^n$ of values at t that fully describe the system. Past and future!	Minimal number of variables, n , to fully describe the system.

Last Week

LTI-Systems

LTI state-space model: notice A, B, C and D are constant

$$\begin{vmatrix} \frac{d}{dt}x(t) = A \cdot x(t) + B \cdot u(t) \\ y(t) = C \cdot x(t) + D \cdot u(t) \end{vmatrix}$$

$$A = \frac{\partial f(x,u)}{\partial x}\Big|_{(x_{e},u_{e})} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}} \end{bmatrix}\Big|_{(x_{e},u_{e})} \in \mathbb{R}^{n \times n}$$

$$C = \frac{\partial g(x,u)}{\partial x}\Big|_{(x_{e},u_{e})} = \begin{bmatrix} \frac{\partial g_{1}}{\partial x_{1}} & \cdots & \frac{\partial g_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{p}}{\partial x_{1}} & \cdots & \frac{\partial g_{p}}{\partial x_{n}} \end{bmatrix}\Big|_{(x_{e},u_{e})} \in \mathbb{R}^{p \times n}$$

$$B = \frac{\partial f(x,u)}{\partial u}\Big|_{(x_{e},u_{e})} = \begin{bmatrix} \frac{\partial f_{1}}{\partial u_{1}} & \cdots & \frac{\partial f_{1}}{\partial u_{m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{n}}{\partial u_{1}} & \cdots & \frac{\partial f_{n}}{\partial u_{m}} \end{bmatrix}\Big|_{(x_{e},u_{e})} \in \mathbb{R}^{n \times m}$$

$$D = \frac{\partial g(x,u)}{\partial u}\Big|_{(x_{e},u_{e})} = \begin{bmatrix} \frac{\partial g_{1}}{\partial x_{1}} & \cdots & \frac{\partial g_{1}}{\partial u_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{p}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{m}} \end{bmatrix}\Big|_{(x_{e},u_{e})} \in \mathbb{R}^{p \times m}$$

Remember this is always a deviation from the equilibrium point:

Outline

- Time Response
 - What? Why? How?
 - Example
- Similarity Transform
 - What? Why? How?
 - Example
 - Connection to Stability
- Stability
 - Definition
 - How?
 - Linear and Non-Linear Systems

What? Why?

- What?
 - Find a solution to the LTI system

$$\frac{d}{dt}x(t) = A \cdot x(t) + B \cdot u(t)$$
$$y(t) = C \cdot x(t) + D \cdot u(t)$$

- $y(t) = S(u(t), x_0, A, B, C, D)$
- Why?
 - Test different Inputs (as last week)
 - Understand/Derive the notion of Stability
 - Groundwork for Frequency Domain calculations

How?

 $\frac{d}{dt}x(t) = A \cdot x(t) + B \cdot u(t)$ $y(t) = C \cdot x(t) + D \cdot u(t)$

- We can use superposition(linearity) and look at two cases:
 - 1. No input and any initial condition: $u_{IC}(t) = 0$, $x_{0,IC} = x_0$
 - 2. Any input and zero initial condition: $u_F(t) = u(t)$, $x_{0,F} = 0$
 - They satisfy $x_0 = x_{0,IC} + x_{0,F}$ and $u(t) = u_{IC}(t) + u_F(t)$ thus we have $y(t) = y_{IC}(t) + y_F(t)$
- Looking at the zero input we have (Initial Condition Response):

 - Easy to solve: $x_{IC}(t) = e^{At}x_0$
- Looking at the zero initial condition we have (Forced Response):

 - Not so easy put can be shown that: $x_F(t) = \int_0^t e^{A(t-\tau)} Bu(t) d\tau$

How?

- Using the definition of y(t) and the previous solutions we get:
 - $y(t) = C \cdot e^{At} \cdot x_0 + C \cdot \int_0^t e^{A(t-\tau)} Bu(t) d\tau + D \cdot u(t)$
 - Initial Condition Response:
 - $y_{IC}(t) = C \cdot e^{At} \cdot x_0$
 - Describes how the system behaves naturally
 - Force Response:
 - $y_F(t) = C \cdot \int_0^t e^{A(t-\tau)} Bu(t) d\tau$
 - How the system reacts to the input
 - Feedthrough:
 - $y_{FF}(t) = D \cdot u(t)$
 - Direct effect of the input (usually 0)

$$\begin{vmatrix} \frac{d}{dt}x(t) = A \cdot x(t) + B \cdot u(t) \\ y(t) = C \cdot x(t) + D \cdot u(t) \end{vmatrix}$$

How?

We have:

Matrix Exponential:

•
$$e^{At} = \sum_{k=0}^{\infty} \frac{(At)^k}{k!} = \mathbb{I} + At + \frac{1}{2}(At)^2 + \dots + \frac{1}{k!}(At)^k + \dots$$

- $e^{At} = \begin{bmatrix} e^{A_{11}t} & 0 \\ 0 & e^{A_{22}t} \end{bmatrix}$, if A is diagonal
- Jordan Form:

$$A = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix} \to e^{At} = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} e^{\lambda t}$$

$$A = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix} \to e^{At} = \begin{bmatrix} 1 & t & \frac{1}{2!}t^2 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{bmatrix} e^{\lambda t}$$

- See Similarity Transform to get these matrices
- Keep in mind in practice we never calculate this by hand (useful for theory)

$$\begin{vmatrix} \frac{d}{dt}x(t) = A \cdot x(t) + B \cdot u(t) \\ y(t) = C \cdot x(t) + D \cdot u(t) \end{vmatrix}$$

Example - Train Driving up a Hill ($v_{wind} = v_{wind}(t)$, $\alpha = const$)

•
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 0 u(t)$$

• Using:
$$y(t) = C \cdot e^{At} \cdot x_0 + C \cdot \int_0^t e^{A(t-\tau)} Bu(t) d\tau + D \cdot u(t)$$

• We have:
$$e^{At} = \begin{bmatrix} 1 & -\frac{e^{-Lt}-1}{L} \\ 0 & e^{-Lt} \end{bmatrix}$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -\frac{e^{-Lt}-1}{L} \\ 0 & e^{-Lt} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \int_0^t \begin{bmatrix} 1 & -\frac{e^{-L(t-\tau)}-1}{L} \\ 0 & e^{-L(t-\tau)} \end{bmatrix} \begin{bmatrix} 0 \\ b \end{bmatrix} u_0 d\tau$$

$$y(t) = 0 + \int_0^t -\frac{e^{-L(t-\tau)}-1}{L} bu_0 d\tau = -\frac{bu_0}{L} \int_0^t e^{-L(t-\tau)} - 1 d\tau = \frac{b}{L^2} \left(e^{-Lt} - 1 + Lt \right)$$

$$y(t) = \frac{b}{L^2} \left(e^{-Lt} - 1 + Lt \right)$$

• If we would have chosen C = [0, 1] (only velocity as output)

$$y(t) = \frac{b}{L} (1 - e^{-Lt})$$

What? Why?

- What?
 - Rewrite the state of our system $\tilde{x}(t) = Kx(t)$

$$\frac{d}{dt}x(t) = A \cdot x(t) + B \cdot u(t)$$
$$y(t) = C \cdot x(t) + D \cdot u(t)$$

- Not so relevant for exam but good to know/useful trick
- Why?
 - Sometimes easier system to work with
 - Get minimal realisation
 - Diagonalize the system
 - Matrix Exponential

How?

$$\frac{d}{dt}x(t) = A \cdot x(t) + B \cdot u(t)$$
$$y(t) = C \cdot x(t) + D \cdot u(t)$$

- Define an invertible matrix T:
 - $x(t) = T \cdot \tilde{x}(t) \rightarrow \tilde{x}(t) = T^{-1}x(t)$
 - Our system then becomes:

$$T \frac{d}{dt} \tilde{x}(t) = A \cdot T \cdot \tilde{x}(t) + B \cdot u(t) \Longrightarrow \frac{d}{dt} \tilde{x}(t) = T^{-1} \cdot A \cdot T \cdot \tilde{x}(t) + T^{-1} \cdot B \cdot u(t)$$
$$y(t) = C \cdot T \cdot \tilde{x}(t) + D u(t) \qquad y(t) = C \cdot T \cdot \tilde{x}(t) + D u(t)$$

This results in the system:

$$\frac{d}{dt}\tilde{x}(t) = \tilde{A} \cdot \tilde{x}(t) + \tilde{B} \cdot u(t), with \, \tilde{A} = T^{-1}AT, \, \tilde{B} = T^{-1}B, \, \tilde{C} = CT$$
$$y(t) = \tilde{C} \cdot \tilde{x}(t) + \tilde{D} u(t)$$

It can be shown that these systems are the same

How?

- Most often we use Eigenvalue Transform (Eigendecomposition):
 - Recall Eigenvalues: $Av_i = \lambda_i v_i$
 - Put that into a matrix: V is the matrix of Eigenvectors
 - $AV = A[v_1, v_2, \dots, v_n] = [\lambda_1 v_1, \lambda_2 v_2, \dots, \lambda_n v_n] = V\Lambda, \quad \Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$
 - $V^{-1}AV = \Lambda$
 - This looks very familiar:

$$\frac{d}{dt}\widetilde{x}(t) = \widetilde{A} \cdot \widetilde{x}(t) + \widetilde{B} \cdot u(t), \text{ with } \widetilde{A} = T^{-1}AT, \ \widetilde{B} = T^{-1}B, \widetilde{C} = CT$$
$$y(t) = \widetilde{C} \cdot \widetilde{x}(t) + \widetilde{D} u(t)$$

- We have T = V and $\widetilde{A} = \Lambda$, $\widetilde{B} = V^{-1}B$, $\widetilde{C} = CV$, $x = V\widetilde{x} \to \widetilde{x} = V^{-1}x$
 - with $V = [v_1, v_2, ..., v_n]$ and $\Lambda = diag(\lambda_1, \lambda_2, ..., \lambda_n)$
- For the output we have:
 - $y(t) = \tilde{C} \cdot e^{\tilde{A}t} \cdot \tilde{x}_0 + \tilde{C} \cdot \int_0^t e^{\tilde{A}(t-\tau)} \tilde{B}u(t) d\tau + D \cdot u(t)$
 - $y(t) = C \cdot V \cdot e^{\Lambda t} \cdot V^{-1} x_0 + C \cdot V \cdot \int_0^t e^{\Lambda(t-\tau)} V^{-1} Bu(t) d\tau + D \cdot u(t)$

Example - Train Driving up a Hill ($v_{wind} = v_{wind}(t)$, $\alpha = const$)

•
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 0 u(t)$$

Get eigenvalues and Eigenvectors of A:

•
$$V = \begin{bmatrix} 1 & -\frac{1}{L} \\ 0 & 1 \end{bmatrix}, \Lambda = \begin{bmatrix} 0 & 0 \\ 0 & -L \end{bmatrix}, V^{-1} = \begin{bmatrix} 1 & \frac{1}{L} \\ 0 & 1 \end{bmatrix}$$

$$y(t) = C \cdot V \cdot e^{\Lambda t} \cdot V^{-1} x_0 + C \cdot V \cdot \int_0^t e^{\Lambda(t-\tau)} V^{-1} Bu(t) d\tau + D \cdot u(t)$$

$$y(t) = 0 + \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -\frac{1}{L} \\ 0 & 1 \end{bmatrix} \int_0^t \begin{bmatrix} 1 & 0 \\ 0 & e^{-L(t-\tau)} \end{bmatrix} d\tau \begin{bmatrix} 1 & \frac{1}{L} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ b \end{bmatrix} u_0$$

$$y(t) = 0 + \begin{bmatrix} 1 & -\frac{1}{L} \end{bmatrix} \begin{bmatrix} t & 0 \\ 0 & \frac{1 - e^{-Lt}}{L} \end{bmatrix} \begin{bmatrix} \frac{1}{L} b \\ b \end{bmatrix} u_0 = \frac{b}{L^2} \left(e^{-Lt} - 1 + Lt \right)$$

We see same as before!!

Connection to Stability

- We had the Eigenvalue Transform (Eigendecomposition):
 - $\widetilde{A} = \Lambda$, $\widetilde{B} = V^{-1}B$, $\widetilde{C} = CV$, $x = V\widetilde{x} \to \widetilde{x} = V^{-1}x$
 - with $V = [v_1, v_2, ..., v_n]$ and $\Lambda = diag(\lambda_1, \lambda_2, ..., \lambda_n)$
 - $y(t) = C \cdot V \cdot e^{\Lambda t} \cdot V^{-1} x_0 + C \cdot V \cdot \int_0^t e^{\Lambda(t-\tau)} V^{-1} Bu(t) d\tau + D \cdot u(t)$
- For a system with no input (natural response):
 - If only real Eigenvalues:

$$\bullet \quad e^{\Lambda t} = \begin{bmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{bmatrix}$$

- some sort of exponential decay/growth
- In the case of imaginary Eigenvalues/Eigenvectors: $\lambda = \sigma + j\omega$

•
$$e^{\Lambda t} = \begin{bmatrix} e^{(\sigma+j\omega)t} & 0 \\ 0 & e^{(\sigma+j\omega)t} \end{bmatrix} = \begin{bmatrix} e^{\sigma t}\sin(\omega t + \phi) & 0 \\ 0 & e^{\sigma t}\sin(-\omega t + \phi) \end{bmatrix}$$

- some sort of exponential decay/growth with oscillation
- This gives us a hint for Stability
- Keep in mind this may be some "unreal" state but the qualitative behavior is the same

Definition

- Lyapunov:
 - Lyapunov Stable:
 - For no input and a bounded initial condition the system remains bounded
 - $\|\mathbf{x}_0\| < \epsilon$, and $\mathbf{u} = 0 \rightarrow \|\mathbf{x}(t)\| < \delta$, $\forall t \ge 0$
 - Lyapunov Asymoptotically Stable:
 - For a bounded initial condition and no input the system converges to 0
 - $\|\mathbf{x}_0\| < \epsilon$, and $\mathbf{u} = 0 \to \lim_{t \to \infty} \|\mathbf{x}(t)\| = 0$
 - Lyapunov Unstable: If not stable or asymptotically stable
- BIBO:
 - BIBO (Bounded Input, Bounded Output):
 - For a zero initial condition and bounded input the systems ouput remains bounded
 - $||u(t)|| < \epsilon \quad \forall t \ge 0$, and $x_0 = 0 \rightarrow ||y(t)|| < \delta$, $\forall t \ge 0$

How?

- We saw that the Eigenvalues tell us a lot about the system!!!
- 1. Calcualte the Eigenvalues of the A matrix. $det(A I\lambda) = 0$
- 2. Lyapunov:
 - Lyapunov Stable:
 - A system is Lyapunov stable if $Re(\lambda_i) \leq 0, \forall \lambda_i$
 - All Eigenvalues of A have real-part less or equal to zero
 - Lyapunov Asymptotically Stable
 - A system is Lyapunov asymptotically stable if Re(λ_i) < 0, ∀λ_i
 - All Eigenvalues of A have real-part less than zero
 - Lyapunov Unstable
 - A system is Lyapunov unstable stable if Re(λ_i) > 0, for any λ_i
- 3. BIBO:
 - BIBO Stable:
 - A minimal LTI system is BIBO stable if it is Lyapunov Asymptotically Stable

Linear and Non-Linear systems

- This notion of stability only holds for the linear system!!!
- For the non-linear system we have:
 - If Lyapunov unstable -> Non-linear system is unstable
 - If Lyapunov asymptotically stable -> Non-linear system is stable
 - If Lyapunov system is stable -> nothing can be said (non-linear systems theory is needed)
- For the train example:

$$\bullet \quad A = \begin{bmatrix} 0 & 1 \\ 0 & -L \end{bmatrix}$$

- System is Lyapunov stable
- Non-linear system:
 - We can't know, form the linear system itself.
 - Depends on α , v_{wind} etc.

Example - Old Exam question

- We have a matrix A:
 - $\bullet \quad A = \begin{bmatrix} 1 & -2 \\ \alpha & -3 \end{bmatrix}$
 - For what α is the system asymptotically stable?

$$\det(\lambda I - A) = \det\begin{pmatrix} \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} - \begin{bmatrix} 1 & -2 \\ \alpha & -3 \end{bmatrix} \end{pmatrix}$$
$$= \det\begin{pmatrix} \begin{bmatrix} \lambda - 1 & 2 \\ -\alpha & \lambda + 3 \end{bmatrix} \end{pmatrix}$$
$$= (\lambda - 1)(\lambda + 3) + 2\alpha$$
$$= \lambda^2 + 2\lambda + (2\alpha - 3) \stackrel{!}{=} 0$$

$$\lambda_{1,2} = \frac{\left(-2 \pm \sqrt{4 - 4(2\alpha - 3)}\right)}{2} = \frac{\left(-2 \pm \sqrt{4 - 8\alpha + 12}\right)}{2} = \frac{\left(-2 \pm \sqrt{16 - 8\alpha}\right)}{2}$$

- $Re(\lambda_1) < 0$ for any α
- $Re(\lambda_2) < 0$:

$$-2 + \sqrt{16 - 8\alpha} < 0 \rightarrow 16 - 8\alpha < 4 \rightarrow 12 < 8\alpha$$

• $Re(\lambda_2) < 0$: for $\alpha > 1.5$

