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System Classification



▪ LTI state-space model: notice A, B, C and D are constant

▪ Remember this is always a deviation from the equilibrium point:

Last Week
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LTI-Systems



Outline
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▪ What?

▪ Find a solution to the LTI system

▪ y t = S u t , x0, A, B, C, D

▪ Why?

▪ Test different Inputs (as last week)

▪ Understand/Derive the notion of Stability

▪ Groundwork for Frequency Domain calculations

Time Response
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What? Why?



▪ We can use superposition(linearity) and look at two cases:

▪ 1. No input and any initial condition: uIC t = 0, x0,IC = x0

▪ 2. Any input and zero initial condition: uF t = u t , x0,F= 0

▪ They satisfy x0 = x0,IC + x0,F and u t = uIC t + uF t thus we have y t = yIC t + yF t

▪ Looking at the zero input we have (Initial Condition Response):

▪
d

dt
xIC t = A ⋅ xIC t

▪ Easy to solve: xIC t = eAtx0

▪ Looking at the zero initial condition we have (Forced Response):

▪
d

dt
xF t = A ⋅ xF t + B ⋅ u(t)

▪ Not so easy put can be shown that: xF t = 0
t
eA t−τ Bu t dτ

Time Response
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How?



▪ Using the definition of y(t) and the previous solutions we get:

▪ 𝐲 𝐭 = 𝐂 ⋅ 𝐞𝑨𝒕 ⋅ 𝐱𝟎 + 𝐂 ⋅ 𝟎
𝐭
𝐞𝐀 𝐭−𝛕 𝐁𝐮 𝐭 𝐝𝛕 + 𝐃 ⋅ 𝐮(𝐭)

▪ Initial Condition Response:

▪ yIC t = C ⋅ e𝐴𝑡 ⋅ x0

▪ Describes how the system behaves naturally

▪ Force Response:

▪ yF t = C ⋅ 0
t
eA t−τ Bu t dτ

▪ How the system reacts to the input

▪ Feedthrough:

▪ yFF t = D ⋅ u t

▪ Direct effect of the input (usually 0)

Time Response
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How?



▪ We have:

▪ 𝐲 𝐭 = 𝐂 ⋅ 𝐞𝑨𝒕 ⋅ 𝐱𝟎 + 𝐂 ⋅ 𝟎
𝐭
𝐞𝐀 𝐭−𝛕 𝐁𝐮 𝐭 𝐝𝛕 + 𝐃 ⋅ 𝐮 𝐭

▪ Matrix Exponential: 

▪ eAt = σk=0
∞ At k

k!
= 𝕀 + At +

1

2
At 2 +⋯+

1

k!
At k +⋯

▪ eAt = 𝑒𝐴11𝑡 0
0 𝑒𝐴22𝑡

, if A is diagonal

▪ Jordan Form:

▪ 𝐴 =
𝜆 1
0 𝜆

→ 𝑒𝐴𝑡 =
1 𝑡
0 1

𝑒𝜆𝑡

𝐴 =
𝜆 1 0
0 𝜆 1
0 0 𝜆

→ 𝑒𝐴𝑡 =
1 𝑡

1

2!
𝑡2

0 1 𝑡
0 0 1

𝑒𝜆𝑡

▪ See Similarity Transform to get these matrices

▪ Keep in mind in practice we never calculate this by hand (useful for theory)

Time Response
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How?



▪ We got the LTI system with u t = u0 = const. , x0 = 0, 0 T:

▪
d

dt
x t =

0 1

0 −
1

m
ρcwAvwind

x1
x2

+
0
1

m

u(t) =
0 1
0 −L

x1
x2

+
0
b
u(t)

▪ y t = 1 0
x1
x2

+ 0 u(t)

▪ Using: y t = C ⋅ eAt ⋅ x0 + C ⋅ 0
t
eA t−τ Bu t dτ + D ⋅ u(t)

▪ We have: eAt = 1 −
e−Lt−1

L

0 e−Lt

▪ y t = 1 0
1 −

e−Lt−1

L

0 e−Lt

0
0

+ 1 0 ⋅ 0
t 1 −

e−L t−τ −1

L

0 e−L t−τ

0
b
u0dτ

▪ y t = 0 + 0
t
−

e−L t−τ −1

L
bu0dτ = −

bu0

L
0
t
e−L t−τ − 1dτ =

b

L2
e−Lt − 1 + Lt

▪ y t =
b

L2
e−Lt − 1 + Lt

▪ If we would have chosen C = 0, 1 (only velocity as output)

▪ y t =
b

L
1 − e−Lt

Time Response
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Example - Train Driving up a Hill (vwind = vwind t , α = const)



▪ What?

▪ Rewrite the state of our system 𝑥 𝑡 = 𝐾𝑥 𝑡

▪ Not so relevant for exam but good to know/useful trick

▪ Why?

▪ Sometimes easier system to work with

▪ Get minimal realisation

▪ Diagonalize the system

▪ Matrix Exponential

Similarity Transform
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What? Why?



▪ Define an invertible matrix 𝑇:

▪ 𝑥 𝑡 = 𝑇 ⋅ 𝑥 𝑡 → 𝑥 𝑡 = 𝑇−1𝑥(𝑡)

▪ Our system then becomes:

▪
𝑇

𝑑

𝑑𝑡
𝑥 𝑡 = 𝐴 ⋅ 𝑇 ⋅ 𝑥 𝑡 + 𝐵 ⋅ 𝑢 𝑡

𝑦 𝑡 = 𝐶 ⋅ 𝑇 ⋅ 𝑥 𝑡 + 𝐷 𝑢(𝑡)
⟹

𝑑

𝑑𝑡
𝑥 𝑡 = 𝑇−1 ⋅ 𝐴 ⋅ 𝑇 ⋅ 𝑥 𝑡 + 𝑇−1 ⋅ 𝐵 ⋅ 𝑢 𝑡

𝑦 𝑡 = 𝐶 ⋅ 𝑇 ⋅ 𝑥 𝑡 + 𝐷 𝑢(𝑡)

▪ This results in the system:

▪

𝑑

𝑑𝑡
𝑥 𝑡 = ሚ𝐴 ⋅ 𝑥 𝑡 + ෨𝐵 ⋅ 𝑢 𝑡

𝑦 𝑡 = ሚ𝐶 ⋅ 𝑥 𝑡 + ෩𝐷 𝑢(𝑡)
, 𝑤𝑖𝑡ℎ ሚ𝐴 = 𝑇−1𝐴𝑇, ෨𝐵 = 𝑇−1𝐵, ሚ𝐶 = 𝐶𝑇

▪ It can be shown that these systems are the same

Similarity Transform
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How?



▪ Most often we use Eigenvalue Transform (Eigendecomposition):

▪ Recall Eigenvalues: 𝐴𝑣𝑖 = 𝜆𝑖𝑣𝑖

▪ Put that into a matrix: V is the matrix of Eigenvectors

▪ 𝐴𝑉 = 𝐴 𝑣1, 𝑣2, … , 𝑣𝑛 = 𝜆1𝑣1, 𝜆2𝑣2, … , 𝜆𝑛𝑣𝑛 = 𝑉Λ, Λ = diag 𝜆1, 𝜆2, … , 𝜆𝑛

▪ 𝑉−1𝐴𝑉 = Λ

▪ This looks very familiar:

▪

d

dt
x t = ෩A ⋅ x t + ෩B ⋅ u t

y t = ෨C ⋅ x t + ෩D u(t)
, with ෩A = T−1AT, ෩B = T−1B, ෨C = CT

▪ We have 𝑇 = 𝑉 and ෩A = Λ, ෩B = V−1𝐵, ሚ𝐶 = 𝐶𝑉, 𝑥 = 𝑉 𝑥 → 𝑥 = 𝑉−1𝑥

▪ with V = v1, v2, … , vn and Λ = diag λ1, λ2, … , λn

▪ For the output we have:

▪ y t = ሚ𝐶 ⋅ e
෩At ⋅ x0 + ሚ𝐶 ⋅ 0

t
e
෩A t−τ ෩Bu t dτ + D ⋅ u(t)

▪ y t = C ⋅ V ⋅ eΛt ⋅ 𝑉−1𝑥0 + C ⋅ 𝑉 ⋅ 0
t
eΛ t−τ V−1Bu t dτ + D ⋅ u(t)

Similarity Transform
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How?



▪ Recall the system with u t = u0 = const. , x0 = 0, 0 T:

▪
d

dt
x t =

0 1
0 −L

x1
x2

+
0
b
u(t)

▪ y t = 1 0
x1
x2

+ 0 u(t)

▪ Get eigenvalues and Eigenvectors of A:

▪ 𝑉 =
1 −

1

𝐿

0 1
, Λ =

0 0
0 −𝐿

, 𝑉−1 =
1

1

𝐿

0 1

▪ y t = C ⋅ V ⋅ eΛt ⋅ 𝑉−1𝑥0 + C ⋅ 𝑉 ⋅ 0
t
eΛ t−τ V−1Bu t dτ + D ⋅ u(t)

▪ 𝑦 𝑡 = 0 + 1 0
1 −

1

𝐿

0 1
0
𝑡 1 0
0 𝑒−𝐿 𝑡−𝜏 𝑑𝜏

1
1

𝐿

0 1

0
b
𝑢0

▪ 𝑦 𝑡 = 0 + 1 −
1

L

𝑡 0

0
1−𝑒−𝐿𝑡

𝐿

1

L
b

b
𝑢0 =

b

L2
e−Lt − 1 + Lt

▪ We see same as before!!

Similarity Transform
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Example - Train Driving up a Hill (vwind = vwind t , α = const)



▪ We had the Eigenvalue Transform (Eigendecomposition):

▪ ෩A = Λ, ෩B = V−1𝐵, ሚ𝐶 = 𝐶𝑉, 𝑥 = 𝑉 𝑥 → 𝑥 = 𝑉−1𝑥

▪ with V = v1, v2, … , vn and Λ = diag λ1, λ2, … , λn

▪ y t = C ⋅ V ⋅ eΛt ⋅ 𝑉−1𝑥0 + C ⋅ 𝑉 ⋅ 0
t
eΛ t−τ V−1Bu t dτ + D ⋅ u(t)

▪ For a system with no input (natural response):

▪ If only real Eigenvalues:

▪ eΛt = 𝑒𝜆1𝑡 0
0 𝑒𝜆2𝑡

▪ some sort of exponential decay/growth

▪ In the case of imaginary Eigenvalues/Eigenvectors: 𝜆 = 𝜎 + 𝑗𝜔

▪ eΛt = 𝑒 𝜎+𝑗𝜔 𝑡 0
0 𝑒 𝜎+𝑗𝜔 𝑡

=
𝑒𝜎𝑡sin(𝜔𝑡 + 𝜙) 0

0 𝑒𝜎𝑡sin(−𝜔𝑡 + 𝜙)

▪ some sort of exponential decay/growth with oscillation

▪ This gives us a hint for Stability

▪ Keep in mind this may be some “unreal” state but the qualitative behavior is the same

Similarity Transform
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Connection to Stability



▪ Lyapunov:

▪ Lyapunov Stable: 

▪ For no input and a bounded initial condition the system remains bounded

▪ x0 < ϵ, and u = 0 → x(t) < δ, ∀t ≥ 0

▪ Lyapunov Asymoptotically Stable:

▪ For a bounded initial condition and no input the system converges to 0

▪ x0 < ϵ, and u = 0 → lim
t→∞

x(t) = 0

▪ Lyapunov Unstable: If not stable or asymptotically stable

▪ BIBO:

▪ BIBO (Bounded Input, Bounded Output):

▪ For a zero initial condition and bounded input the systems ouput remains bounded 

▪ 𝑢(𝑡) < ϵ ∀𝑡 ≥ 0, and x0 = 0 → y(t) < δ, ∀t ≥ 0

Stability
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Definition



▪ We saw that the Eigenvalues tell us a lot about the system!!!

▪ 1. Calcualte the Eigenvalues of the A matrix. det 𝐴 − 𝐼𝜆 = 0

▪ 2. Lyapunov:

▪ Lyapunov Stable:

▪ A system is Lyapunov stable if Re λi ≤ 0, ∀λi

▪ All Eigenvalues of A have real-part less or equal to zero

▪ Lyapunov Asymptotically Stable

▪ A system is Lyapunov asymptotically stable if Re λi < 0, ∀λi

▪ All Eigenvalues of A have real-part less than zero

▪ Lyapunov Unstable

▪ A system is Lyapunov unstable stable if Re λi > 0, for any λi

▪ 3. BIBO:

▪ BIBO Stable:

▪ A minimal LTI system is BIBO stable if it is Lyapunov Asymptotically Stable

Stability
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How?



▪ This notion of stability only holds for the linear system!!!

▪ For the non-linear system we have:

▪ If Lyapunov unstable -> Non-linear system is unstable

▪ If Lyapunov asymptotically stable -> Non-linear system is stable

▪ If Lyapunov system is stable -> nothing can be said (non-linear systems theory is needed)

▪ For the train example:

▪ A =
0 1
0 −L

▪ Λ =
0 0
0 −L

→ λ1 = 0, λ2 = −L

▪ System is Lyapunov stable

▪ Non-linear system:

▪ We can’t know, form the linear system itself.

▪ Depends on α, vwind etc.

Stability
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Linear and Non-Linear systems



▪ We have a matrix A:

▪ A =
1 −2
α −3

▪ For what α is the system asymptotically stable?

▪ λ1,2 =
−2± 4−4 2α−3

2
=

−2± 4−8α+12

2
=

−2± 16−8α

2

▪ Re(λ1) < 0 for any α

▪ Re λ2 < 0:

▪ −2 + 16 − 8α < 0 → 16 − 8α < 4 → 12 < 8 α

▪ Re λ2 < 0: for α > 1.5

Stability
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Example – Old Exam question
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