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▪ From the derivation we found:

▪ 𝐲 𝐭 = 𝐂 ⋅ 𝐞𝑨𝒕 ⋅ 𝐱𝟎 + 𝐂 ⋅ 𝟎׬
𝐭
𝐞𝐀 𝐭−𝛕 𝐁𝐮 𝐭 𝐝𝛕 + 𝐃 ⋅ 𝐮(𝐭)

▪ Initial Condition Response:

▪ yIC t = C ⋅ e𝐴𝑡 ⋅ x0

▪ Describes how the system behaves naturally

▪ Force Response:

▪ yF t = C ⋅ 0׬
t
eA t−τ Bu t dτ

▪ How the system reacts to the input

▪ Feedthrough:

▪ yFF t = D ⋅ u t

▪ Direct effect of the input (usually 0)

Last Week

2

Time Response



▪ From the derivation we found:

▪ 𝐲 𝐭 = 𝐂 ⋅ 𝐞𝑨𝒕 ⋅ 𝐱𝟎 + 𝐂 ⋅ 𝟎׬
𝐭
𝐞𝐀 𝐭−𝛕 𝐁𝐮 𝐭 𝐝𝛕 + 𝐃 ⋅ 𝐮 𝐭

▪ Matrix Exponential: 

▪ eAt = σk=0
∞ At k

k!
= 𝕀 + At +

1

2
At 2 +⋯+

1

k!
At k +⋯

▪ eAt = 𝑒𝐴11𝑡 0
0 𝑒𝐴22𝑡

, if A is diagonal

▪ Jordan Form:

▪ 𝐴 =
𝜆 1
0 𝜆

→ 𝑒𝐴𝑡 =
1 𝑡
0 1

𝑒𝜆𝑡

𝐴 =
𝜆 1 0
0 𝜆 1
0 0 𝜆

→ 𝑒𝐴𝑡 =
1 𝑡

1

2!
𝑡2

0 1 𝑡
0 0 1

𝑒𝜆𝑡

▪ Keep in mind in practice we never calculate this by hand
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▪ Define an invertible matrix 𝑇 𝑥 𝑡 = 𝑇 ⋅ ෤𝑥 𝑡 → ෤𝑥 𝑡 = 𝑇−1𝑥 𝑡 :

▪ This results in the system:

▪

𝑑

𝑑𝑡
෤𝑥 𝑡 = ሚ𝐴 ⋅ ෤𝑥 𝑡 + ෨𝐵 ⋅ 𝑢 𝑡

𝑦 𝑡 = ሚ𝐶 ⋅ ෤𝑥 𝑡 + ෩𝐷 𝑢(𝑡)
, 𝑤𝑖𝑡ℎ ሚ𝐴 = 𝑇−1𝐴𝑇, ෨𝐵 = 𝑇−1𝐵, ሚ𝐶 = 𝐶𝑇

▪ The system stays the same!

▪ Most often we use the Eigenvalue Transform:

▪ 𝑇 = 𝑉 and ෩A = Λ, ෩B = V−1𝐵, ሚ𝐶 = 𝐶𝑉, 𝑥 = 𝑉 ෤𝑥 → ෤𝑥 = 𝑉−1𝑥

▪ with V = v1, v2, … , vn and Λ = diag λ1, λ2, … , λn

▪ vi and λi being the i’th Eigenvector and Eigenvalue.

▪ For the output we have:

▪ y t = ሚ𝐶 ⋅ e
෩At ⋅ ෤x0 + ሚ𝐶 ⋅ 0׬

t
e
෩A t−τ ෩Bu t dτ + D ⋅ u(t)

▪ y t = C ⋅ V ⋅ eΛt ⋅ 𝑉−1𝑥0 + C ⋅ 𝑉 ⋅ 0׬
t
eΛ t−τ V−1Bu t dτ + D ⋅ u(t)
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▪ 1. Calcualte the Eigenvalues of the A matrix. det 𝐴 − 𝐼𝜆 = 0

▪ 2. Lyapunov:

▪ Lyapunov Stable: x0 < ϵ, and u = 0 → x(t) < δ, ∀t ≥ 0

▪ A system is Lyapunov stable if Re λi ≤ 0, ∀λi

▪ All Eigenvalues of A have real-part less or equal to zero

▪ Lyapunov Asymptotically Stable: x0 < ϵ, and u = 0 → lim
t→∞

x(t) = 0

▪ A system is Lyapunov asymptotically stable if Re λi < 0, ∀λi

▪ All Eigenvalues of A have real-part less than zero

▪ Lyapunov Unstable (Neither Stable nor asymptotically stable)

▪ A system is Lyapunov unstable stable if Re λi > 0, for any λi

▪ 3. BIBO:

▪ BIBO Stable: 𝑢(𝑡) < ϵ ∀𝑡 ≥ 0, and x0 = 0 → y(t) < δ, ∀t ≥ 0

▪ A minimal LTI system is BIBO stable if it is Lyapunov Asymptotically Stable
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▪ This notion of stability only holds for the linear system!!!

▪ For the non-linear system we have:

▪ If Lyapunov unstable -> Non-linear system is unstable

▪ If Lyapunov asymptotically stable -> Non-linear system is stable

▪ If Lyapunov system is stable -> nothing can be said (non-linear systems theory is needed)
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▪ What?

▪ Solution to y t = C ⋅ e𝐴𝑡 ⋅ x0 + C ⋅ 0׬
t
eA t−τ Bu t dτ + D ⋅ u t :

▪ For zero input we saw what happens (Eigenvalues -> Stability analysis)

▪ For general inputs?

▪ We use exponential inputs 𝑢 𝑡 = 𝑒𝑠𝑡, 𝑠 = 𝜎 + 𝑗 ⋅ 𝜔 ∈ ℂ

▪ Real number: 𝑢 𝑡 = 𝑒𝜎𝑡

▪ Imaginary: 𝑢 𝑡 = 𝑒𝑗𝜔𝑡 + 𝑒−𝑗𝜔𝑡 = 2 cos 𝜔𝑡

▪ Complex: 𝑢 𝑡 = 𝑒𝜎𝑡𝑒𝑗𝜔𝑡 + 𝑒𝜎𝑡𝑒−𝑗𝜔𝑡 = 2𝑒𝜎𝑡 cos 𝜔𝑡

▪ Why?

▪ Output can be computed easily

▪ Any function can be expressed as a sum of exponentials -> Laplace Transform

Time Response – Exponential Functions
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▪ Solution to y t = C ⋅ eAt ⋅ x0 + C ⋅ 0׬
t
eA t−τ Bu t dτ + D ⋅ u t , u t = est:

▪ y t = C ⋅ eAt ⋅ x0 + C ⋅ 0׬
t
eA t−τ Besτdτ + D ⋅ est

▪ y t = C ⋅ eAt ⋅ x0 + CeAt0׬
t
e sI−A τBdτ + D ⋅ est

▪ y t = C ⋅ eAt ⋅ x0 + CeAt sI − A −1 e sI−A t − I + D ⋅ est

▪ 𝐲 𝐭 = 𝐂𝐞𝐀𝐭 𝐱𝟎 − 𝐬𝐈 − 𝐀 −𝟏𝐁 + 𝐂 𝐬𝐈 − 𝐀 −𝟏𝐁 + 𝐃 𝐞𝐬𝐭

▪ The first part CeAt x0 − sI − A −1B converges to 0 if the system is asymptotical stable

▪ Steady State Output (what we want) is given by:

▪ 𝑦 𝑡 = 𝐺 𝑠 𝑒𝑠𝑡, 𝑠 ∈ ℂ

▪ 𝐺 𝑠 is the Transfer Function

▪ Note: If the system is not stable then the output will diverge, and the steady state discussion will become obsolete (there is not 
steady state). However, the mathematical validity of the Transfer Function and its system describing properties remains valid!

Time Response – Exponential Functions
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▪ What?

▪ Relates the steady state output of the system as function of the exponential input signal:

▪ 𝑦 𝑡 = 𝐺 𝑠 𝑒𝑠𝑡, 𝑠 ∈ ℂ

▪ G s = C sI − A −1B + D = C
adj sI−A

det sI−A
B + D

▪ Matrix inverse:

▪ 𝑀−1 =
𝑎𝑑𝑗(𝑀)

det(𝑀)
,

▪ 2x2:  
𝑎 𝑏
𝑐 𝑑

−1

=
1

𝑎𝑑−𝑏𝑐

𝑑 −𝑏
−𝑐 𝑎

, 3x3:

▪ Why?

▪ Systems can be viewed as Multiplication (see Block Diagrams)

▪ Basics for System Analysis Tools

Transfer Function

10

What? Why?



▪ Transfer Function in a General case: 

▪ G s = C sI − A −1B + D = C
adj sI−A

det sI−A
B + D =

bn−1s
n−1+bn−2s

n−2+⋯+b0

sn+an−1sn−1+an−2sn−2+⋯+a0
+ d

▪ Properties:

▪ Transfer Function allows us to determine BIBO stability:

▪ Denominator of G(s) is the characteristic polynomial of A det sI − A (Eigenvalue calculation)

▪ I.e. the poles of G(s) (roots of det sI − A ) are the eigenvalues of the system

▪ Main result: Systems with poles on the imaginary axis are not BIBO stable 

▪ Minimal Realization:

▪ When constructing the Transfer Function unnecessary states will be removed

▪ Can use the transfer function to derive the minimal realization of the system

Transfer Function
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▪ General case:

▪ G s = C sI − A −1B + D = C
adj sI−A

det sI−A
B + D

▪ G s =
bn−1s

n−1+bn−2s
n−2+⋯+b0

sn+an−1sn−1+an−2sn−2+⋯+a0
+ d

▪ If A is diagonal with eigenvalues λi:

▪ A =
λ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ λn

▪ G s =
c1b1

s−λ1
+

c2b2

s−λ2
+⋯+

cnbn

s−λn
+ d

Transfer Function
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▪ If in partial fraction form: 

▪ G s =
p1

s−λ1
+

p2

s−λ2
+⋯+

pn

s−λn
+ d

A =
λ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ λn

, B =

p1
p2
…
pn

, C = p1, p2, … , pn , D = d

▪ General case: (Controllable Canonical Form)

▪ G s =
bn−1s

n−1+bn−2s
n−2+⋯+b0

sn+an−1sn−1+an−2sn−2+⋯+a0
+ d

Transfer Function
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▪ Given the system:

▪ A =
−2 0
0 1

, B =
2
1
, C = 1 0 , D = 0

▪ Calculate the Transfer Function:

▪ G s = C sI − A −1B

▪ sI − A =
s + 2 0
0 s − 1

, sI − A −1 =
1

(s+2)(s−1)

s − 1 0
0 s + 2

▪ G s = 1 0
1

(s+2)(s−1)

s − 1 0
0 s + 2

2
1

=
2 s−1

s+2 s−1)

▪ But wait we can reduce the system (this was not the minimal realisation):

▪ G s =
2

(s+2)

▪ This also makes intuitive sense when we look at the state space (for larger systems or in different form this is not the case)

Transfer Function
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▪ Why?

▪ We said every signal can be computed as a sum of exponential inputs:

▪ u t = σiUie
sit, because of linearity y t = σiG si Ui e

sit

▪ This is not entirely true (we need an integral for this to be true for every function):

▪ u t = K׬ U s estds → y t = K׬ G s U s estds

▪ We use the Laplace Transform to define the U s

▪ What?

▪ Given a function u(t) the Laplace Transform U s is defined by:

▪ ℒ u(t) = U s = 0׬
∞
u t e−stdt , s ∈ ℂ

▪ The inverse Laplace Transform is defined by:

▪ ℒ−1 U(s) = u t =
1

2πj
lim
ω→∞

σ−jω׬
σ+jω

U s estds

▪ Inverse Laplace Transform allows us to write every signal as an infinite sum of exponentials

Laplace Transform
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▪ We usually don’t calculate this by hand but use Laplace Tables

Laplace Transform
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Laws



▪ The Laplace Transform, lifts the system from the time domain into the frequency domain:

▪ The time domain “describes how a signal is composed of sinusoidal with exponential decay”

▪ Extension of the Fourier Series/Transform

▪ Check this video: https://www.youtube.com/watch?v=n2y7n6jw5d0&ab_channel=ZachStar

Laplace Transform
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What the heeeeeell? 

https://www.youtube.com/watch?v=n2y7n6jw5d0&ab_channel=ZachStar


▪ You don’t really need to understand the Laplace Transform and Frequency Domain, but you need to 
need to use the math of it.

▪ From Analysis III remember: ℒ
𝑑𝑛𝑥(𝑡)

𝑑𝑡𝑛
= 𝑠𝑛𝑋(𝑠)

▪
d

dt
x t = Ax t + Bu t

▪ y t = Cx t + Du t

▪ sX s = AX s + BU s → X s = sI − A −1𝐵𝑈(𝑠)

▪ Y s = CX s + DU s

▪ 𝒀 𝒔 = 𝑪 𝐬𝐈 − 𝑨 −𝟏𝑩𝑼 𝒔 + 𝑫𝑼 𝒔 = [ 𝐬𝐈 − 𝑨 −𝟏𝑩 + 𝑫] 𝑼(𝒔)

▪ We again get the Transfer Function! 

▪ Laplace Transform of the State Space Results in the Transfer Function

▪ We can compute the output as: (using Tables)

▪ 𝑦𝑠𝑠 𝑡 = ℒ−1 Y(s)

Laplace Transform
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▪ We have:

▪ m
𝑑𝑣

𝑑𝑡
+ 𝐵𝑣 = 𝐹 𝑡 , 𝐹 𝑡 = 𝛿 𝑡 𝑑𝑖𝑟𝑎𝑐 𝑑𝑒𝑙𝑡𝑎 = 𝑖𝑚𝑝𝑢𝑙𝑠𝑒 , 𝐵 = 20,𝑚 = 10

▪ Calculate how far the block moves (steady state output of the position):

▪ Augment the system to incorporate the position: 
𝑑𝑣

𝑑𝑡
= −

𝐵

𝑚
𝑣 +

1

𝑚
𝐹 𝑡 ,

𝑑𝑥

𝑑𝑡
= 𝑣

▪ 𝐴 =
0 1
0 −2

, 𝐵 =
0
1

10

, 𝐶 = 1, 0 , 𝐷 = 0

▪ Calculate the Laplace Transform: 𝑌 𝑠 = 𝐺 𝑠 𝑈 𝑠 = C sI − A −1BU(s)

▪ G s = C sI − A −1𝐵 = 1, 0
𝑠 −1
0 𝑠 + 2

−1 0
1

𝑚

= 1, 0
𝑠+2 1
0 𝑠

−1

𝑠 𝑠+2

0
1

10

= ⋯ =
1

10

1

𝑠(𝑠+2)

▪ 𝑈 𝑠 = 1 (see Table)

▪ 𝑌 𝑠 =
1

10

1

𝑠(𝑠+2)

▪ Calculate the steady state output

▪ 𝑦∞ 𝑡 → ∞ = lim
𝑠→0

𝑠𝑌 𝑠 = 𝑠
1

10

1

𝑠(𝑠+2)
=

1

10

1

2
= 0.05𝑚

Laplace Transform
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Example (Old exam question)



▪ When designing a Controller, we basically come up with another Transfer Function:

▪ G s =
cn−1s

n−1+cn−2s
n−2+⋯+c0

sn+an−1sn−1+an−2sn−2+⋯+a0
+ k

▪ But here the input is the error, and the output is the control input?

▪ Will be relevant later on, so don’t worry about it now!

Dynamic Compensator
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Main Idea



▪ Transfer Function describes the steady state output to a exponential input:

▪ 𝑦ss t = C sI − A −1B + D est = 𝐺 𝑠 𝑒𝑠𝑡

▪ Transfer Function allows us to determine BIBO stability:

▪ The poles of G(s) (roots of det sI − A ) are the eigenvalues of the system

▪ Minimal Realization:

▪ When constructing the Transfer Function unnecessary states will be removed

▪ Know how to Convert between State Space and Transfer Functions!

▪ Laplace Transform helps us to compute the steady state output for exponential inputs:

▪ ℒ
𝑑𝑛𝑥(𝑡)

𝑑𝑡𝑛
= 𝑠𝑛𝑋(𝑠)

▪ 𝑌 𝑠 = 𝐶 𝑠𝐼 − 𝐴 −1𝐵𝑈 𝑠 + 𝐷𝑈 𝑠 = [ 𝑠𝐼 − 𝐴 −1𝐵 + 𝐷] 𝑈(𝑠)

▪ 𝑦𝑠𝑠 𝑡 = ℒ−1 Y(s) (use tables for this)

▪ For now, ignore Dynamic Compensator

Summary
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What is actually relevant!
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