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Last Week

. . . Transient Steady State
Time Response for Exponential Inputs -> Transfer Function T —e— B e

Time 7 [s] Time [s]

= Solutiontoy(t) =C-eft.x,+C- fot eAt=DBy(t)dt + D - u(t), u(t) = est:
= y(t) = Certxg — (s —A)"IB] + [C(sI — A)"'B + D|eSt
= The first part Ce®t[x, — (sI — A)~'B] converges to 0 if the system is asymptotical stable

= Steady State Output (what we want) is given by:
= y(t) =G(s)eSt,seC

= G(s) is the Transfer Function . 3 b ;]
= e
- adj(sI-A) .
= G(s)=C(l-A)'B+D=C————B+D g b
(s) ( ) det(sI-A) [ei—fh ho—ib bf—ce
=  Matrix inverse: gf-di ai-ge de-af
. A_l__dh—ge gh—dh ae—db
det(M)’ G—fh ho—ib bf—ce
-1 of—di ai—ge de—af
2X2. la b = 1 d _b], 3x3: _ | dhi-ge gh—dh ae—db
c d ad-bcl—c a " aei + bl + cdh— gec— hia— idb
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Last Week

Transfer Function

= Transfer Function in a General case:
- G(S) — C(SI — A)_lB 4+ D= CMB 4+ D= bn—lsn_1+bn_25n_2+...+b0

+d

= Properties:

= Transfer Function allows us to determine BIBO stability:
Denominator of G(s) is the characteristic polynomial of A det(sI — A) (Eigenvalue calculation)
l.e. the poles of G(s) (roots of det(sl — A)) are the eigenvalues of the system
Main result: Systems with poles on the imaginary axis are not BIBO stable

= Minimal Realization:
When constructing the Transfer Function unnecessary states will be removed
Can use the transfer function to derive the minimal realization of the system

= More on this today
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Last Week

State Space <-> Transfer Function

If in partial fraction form:

_ _P1 P2 Pn
G(s) = — + —y + -+ —w +d

NS

= A=|: . :
0 - A
’ /Pn.
= General case: (Controllable Canonical Form)
. _ bn_lsn_1+bn_25n_2+"‘+b0
G(s) = st+ap_1st 1+an_,sM24-4ag +d
(0 1 0 0 0 |
0 0 1 0 0
A == ) B =
1
| —d0 —a1 —dn—1
C — [bo b]_ bnl] ) D - [d]’

,B = \@ ,C = [\yP1, VP2 - Pn|,D=d

If A is diagonal with eigenvalues A;:

Ay - O
0 - A
. __ Cq1bg c,b, Cnbn
G(s) = —y + —y + -+ p—ry +d
General case:
= G(s)=C(sI—A)B+D=
adj(sI-A)
C det(sI-A) B+D
" G(s) =
bp—1S" " 1+by_,s%"2+---+b, 1 d

sP+ap_1sP1+ay_,s0724+-4a,



Last Week

Laplace Transform

= What?

Given a function u(t) the Laplace Transform U(s) is defined by: (Use Tables)
L{u®} = U(s) = [, u®eStdt,s € C
The inverse Laplace Transform is defined by: (Use Tables)
-1 . _ 1 .. o+jw st
L7HUG)} =ul) = = (})1_r)rgof U(s)eStds

o—jw

Inverse Laplace Transform allows us to write every signal as an infinite sum of exponentials

= Using: L{%} = s"X(s)

2 dgtx(t) = Ax(t) + Bu(t) - sX(s) = AX(s) + BU(s) - X(s) = (s = A)"1BU(s)
= y(t) = Cx(t) + Du(t) - Y(s) = CX(s) + DU(s)
= Y(s) =C(s1—A)"1BU(s) + DU(s) = [(s — A)"1B + D] U(s)
= Laplace Transform of the State Space Results in the Transfer Function
= We can compute the output as: (using Tables)
= yes(t) = L7HY(s)}
ETH:zurich



Last Week

What was relevant!

= Transfer Function describes the steady state output to a exponential input:
=y (t) = [C(sI — A)7!B + D]est = G(s)eSt
= Transfer Function allows us to determine BIBO stability:
The poles of G(s) (roots of det(sI — A)) are the eigenvalues of the system
= Minimal Realization:
When constructing the Transfer Function unnecessary states will be removed
= Know how to Convert between State Space and Transfer Functions!

= Laplace Transform helps us to compute the steady state output for exponential inputs:

T =

= Y(s) = C(sl —A)~IBU(s) + DU(s) = [(s — A)~1B + D] U(s)
=y () = L7HY(s)} (use tables for this)
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Outline

=  Transfer Function continued - Different Forms of the Transfer Function
= Why?

= Steady State Response
= General Input
= Sinusoidal Input
= Step Input
= Impulse Input

=  Transfer Function continued — Effects of Poles and Zeros
=  Example

ETH:irich



Transfer Function
Different Forms

= Transfer Function in a general form: (note some of the a;, b; values can be zero)

bp_1s" 1+b,_,s""%+.--4+b N(s)
. G(S):nr11 n—1n2 n-2 > +d:_
sh+a,_1s" 1+a,_,s02+---42a, D(s)

+d

= We can rewrite the Transfer Function in different ways (purely mathematical rewriting):

= Partial Fraction Expansion: = p; are the poles of the system (can be imaginary)
G(s) = —— + + 4ty “instabilities” of the system

S—P1 S—P2 S—ps3
= Root Locus Form: i L
G(s) = ke (s=z,)(s—2z;)..(s—zp) r; are the residuals

sq (s—p1)(s—p2)..(s—Pn-q) Describe the system response of each pole

I

= Bode Form:

ko (t1)(So) (1) = z; are the zeros of the transfer function
G(S) — —bd 21 22 = w1t ”
9 ()28 +1)___( s +1) blind spots” of the system
—P1 —Pb2 —Pn—-q
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Transfer Function
Different Forms - Why?

= Rewriting can make the interpretation easier:
= Direct access to the poles / zeros of a system
= Direct access to the residuals of the system
= Direct access to relevant quantities (becomes important in the following weeks)
= Allows for graphical interpretation of the Transfer Function

= Use computers to do this (MatLab, SymPy, ...):
= See Notebook for a tool

= For the residuals there is a trick (Cover up method):
= Non-repeating pole:
Iy = Sli_)rgi(s — pi)G(s)
= Repeating pole (m)
o= — —((s - pG(s))

(m-— 1)'s—>p d m-1

ETH:irich



Steady State Response
General Input and Sinusoidal Input

= We already looked at this last week:
= Given the Transfer Function
Y(s) = C(sI — A)71BU(s) + DU(s) = [(sI — A)"1B + D] U(s)
= We can compute the output as: (using Tables)
yss(B) = L_l{Y(S)}
Usually using:
n y(to o) = 21_1)1(} sY(s)

= For sinusoidal Inputs u(t) = sin(wt), s = jw
= y.(t) = |G(jw)] sin(t + AG(joo))
= We can even do this graphically

ETH:irich
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Steady State Response

Sinusoidal Input - Graphical Calculation . J
= For sinusoidal Inputs u(t) = sin(wt), s =jw
/
" yss(® = 1G(w)] sin(t + 2G(w)) /

ke (5-21)(5=25) ..(S—Zm)

s4 (S_pl)(s_pz)---(s_pn—q)
N1 — kil 1o=z)[o=22)|..|(w=2m)|

= 1600 = 1odliG@mpniiGo-po)l- [Go—pm)

Where |(jw — z;)| is the distance from the zero/pole to jw

- £G(jw) = £(jw — z1) + £(jo — z3) + -+ — £(jw)T — £(jo — p1) — £(jw — pz) + -
Wheres(jw — z,) are the angles of the vector from the zeros/poles to jw to the real axis

= Having the Root Locus Form G(s) = we get:

X

ETH:zrich 1
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Steady State Response 25

Sinusoidal Input - Graphical Calculation - Example 2r
15rF
= Given the pole zero plot of G(s)
L *
= Circles are zeros crosses are poles '
05+
= Calculate the steady state response for u(t) = sin(2t)
0 @] %
= atan(2) + atan(3) = 135°
_05 L
-1k x
__’]_5 -
= Solution: ol
= We have s =j2 s
= ¥ss() = 1G(Gw)|sin(t + 2G(jw)) 0 i b ' o
B} : _ |(j2+2)] _ V22422 _ V8 8 2
IGGw)l = G2+ DIG2+1-P]..|G2+1+) ~ V22+12V1IT+11V1Z432 ~ V5V2V10 [ 2#3+10 V50 0.2828

= £G(jw) =2G24+2) —2G2+1) —2(G2+1+4+j) —2(G2+1—))
= £G(w) = 45° — atan(2) — 45° — atan(3) = —135°
=y () = 0.2828 sin(2t — 135°)

ETH:zrich 12



Steady State Response

Sinusoidal Input - Graphical Calculation - Example

1 System Output

= Solution:
= |G(w)| = % ~ 0.2828 08
= /G(jw) = —135° 0.6

0.4
0.2

0

Amplitude

-0.2

0.4}

0.6

-0.8 -

-1 1 1
0 5 10
Time (s)
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Steady State Response

Step Input
= For step Inputs u(t) = h(t), with h(t) being the Heaviside function (impulse modelling)
1, t=0
h(t) = {O,t <0

= ForD = 0,x(0) = 0,u(t) = h(t) the output becomes:
Vstep(® = [ CeACDB dt = —CA™'B + CA~Te'B
= For stable systems:
yes(t) = —CA™1B = const
= First order systems (scalar):
Ystep() = yss(D)(1 — €9
More on this in lecture 8 or 9
= |n general, we need to use Laplace:

y(©) = L7HY(s)} = L7H{G(s)U(s)}, U(s) ==

S

ETH:irich
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Steady State Response

Step Input — Example (Old exam question)

= Given the system G(s) =

(s +3)( +2)

calculate the output y(t) given u(t) = h(t):

= Hint: First calculate Y(s), then the residuals and then do the inverse

=  Solution:
= Poles and residuals:
. s—4 T s—4 . —3—4 .
Sp=—3: = Sl_‘fllg(s +3) (s+3)(s+2)s sl—1>r£13 (s+2)s sl—1>r£13 (=3+2)(-3)
: s—4 Y s—4 .. —2—4
Sp = —2i Iy = hm (S +2) (s+3)(s+2)s sl_IEIZ (s+3)s sl—l>r£12 (—2+3)(-2)
= 0: = 1 s—4 — L—l —4 —_g
5270 T3 = S i) Gr2s  sm0 13 (5+2)  sm0 (@) 3
7 1 3 21
Y = =355 Y5 75
- y(t)——3 —3t 4 3e72 —§

ETH:irich
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Steady State Response

Impulse Input

For impulse Inputs u(t) = 6(t), with §(t) being the Dirac delta function (impulse modelling)

= 8(D) = {°°(;, 07800 = 1, {7 )80 = f(0)

For D = 0,x(0) = 0, u(t) = k&(t) the output becomes:
Yimp(t) = fot CeAt-DB k§(t)dt = kCe/'B

The impulse response is basically the same as the initial condition response with x(0) = B

In other words: the impulse response describes the system (see Signal and Systems)
If we have the Transfer Function in Partial Fraction G(s) = —— +—=2

r
- 3

_|_

S=Pp1 S—=Pz2 STPp

+ o+ 1
) 0
y(t) = ryeP1t + ryeP2t+ 4 r ePnt

Every pole contributes to the system response (weighted by the residual)

If pole is imaginary, we get a sinusoidal (Notebook example)
The zeros effect the residuals

= How do poles and zeros explain the behaviour of the system?

ETH:irich
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Transfer Function Continued
Effects of Poles and Zeros

= What poles do is clear by now:

r r r
= G(s) =——+ =2+ 41y > y(t) =rePrt + rePel+  +rePnt
S=™Pp1 S7P2  S7P3

= Every pole contributes to the system response (weighted by the residual)
= |If pole is imaginary, we get a sinusoidal (Notebook example)

Kk (s—21)(s—27;)..(s—Zp)
sd (S—p1)(5_p2)---(5_pn—q)

= A zero close to the pole weakens its effect (see lecture)
= |fazero is equal to the pole we get a pole-zero cancellation
This is what happened when we got the minimal realization of a system
This means this state is not reachable from the input or we can’t see it in the output
= Controllability and Observability will be looked at in CSlI
If the pole is stable no worries
If the pole is unstable, we have a problem! -> change your system design

= What is the effect of the zeros? G(s) =

ETH:irich
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Transfer Function Continued

Effects of Poles and Zeros

= Zeros are derivative terms (poles are integrals: < y(t) = u(® - s¥(s) = U(s) -~ Y(s) = X2)

d
= y(® = Zu® - Y(s) = sU(s)
Note a zero by itself is not possible, as this would be an acausal system

= |f a system can be written as G(s) = (_iz + 1) G(s) = G(s) + _iZ'G'(s), the output will be:

y(t) = §(t) + _izfr(t), where we use that G(s) = §(t)

= When plotting the step response for a system with different zeros we get:

y(t) 4
§=1/2
1___ R N —— — —
¢ <0 | >
051 (=%co| 1 /T
— (>0

ETH:irich
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Transfer Function Continued
Effects of Poles and Zeros

=  What we learn:
= Zeros introduce a non-zero derivative from the start y(0) # 0
= Larger zeros have a smaller influence -> Smaller zeros have larger effects
= |f zero is negative, we “go in the right direction”
= |f zero is positive we go into the wrong direction -> Non-minimum phase zero (bad)
= Zeros are the result of the matrices B and C -> we can tune them to get a desired zero

§=1/2

1_ _____
C<O I >
051 ¢ = +oc 1 t/ Ty
— (>0

ETH:irich
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Transfer Function Continued

Effects of Poles and Zeros — Example (Old exam guestion)

a;s+1 . 1
= For the systems G;(s) = 52:—s+1 we have the following step response plots: a; < ——,Z{=Z€ro
i

Zeit ['-,]

= Given the step response plots what can be said about the parameters a;?
" gz IS hon minimum phase thus has the largest zero (a; < 0)

" g, has ano derivative at t = 0 thus the zero is very large (a, = 0)
= |n other words, we don’t have a s term in the nominator
* a4 has aderivative at t = 0 and is minimum phase (a; > 0)

a; < ag < asg
as < a1 < ds
as < as < aj
a; < az < a9

Ol OO

20

ETH:irich



Summary
Whats relevant?

=  Know the different forms and what we can use them form
= Conversion less important since often a lot of work
= Use residual trick where needed

= Know how to compute the steady state response for different signals -> Laplace
= We have solutions for some important functions (remember superposition)

= Behaviour of zeros

= A zero close to the pole weakens its effect (see lecture)

= |fazero is equal to the pole we get a pole-zero cancellation
Pole zero cancellation results in minimal realisation
Only okay if pole is stable, else its a PROBLEM

= Zeros behave like a derivative
Larger zeros have a smaller influence -> Smaller zeros have larger effects
If zero is negative, we “go in the right direction”

If zero is positive we go into the wrong direction -> Non-minimum phase zero (bad)

ETH:irich
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