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▪ Solution to y t = C ⋅ eAt ⋅ x0 + C ⋅ 0׬
t
eA t−τ Bu t dτ + D ⋅ u t , u t = est:

▪ 𝐲 𝐭 = 𝐂𝐞𝐀𝐭 𝐱𝟎 − 𝐬𝐈 − 𝐀 −𝟏𝐁 + 𝐂 𝐬𝐈 − 𝐀 −𝟏𝐁 + 𝐃 𝐞𝐬𝐭

▪ The first part CeAt x0 − sI − A −1B converges to 0 if the system is asymptotical stable

▪ Steady State Output (what we want) is given by:

▪ y t = G s est, s ∈ ℂ

▪ G s is the Transfer Function

▪ G s = C sI − A −1B + D = C
adj sI−A

det sI−A
B + D

▪ Matrix inverse:

▪ M−1 =
adj(M)

det(M)
,

▪ 2x2:  
a b
c d

−1

=
1

ad−bc

d −b
−c a

, 3x3:

Last Week

2

Time Response for Exponential Inputs -> Transfer Function



▪ Transfer Function in a General case: 

▪ G s = C sI − A −1B + D = C
adj sI−A

det sI−A
B + D =

bn−1s
n−1+bn−2s

n−2+⋯+b0

sn+an−1sn−1+an−2sn−2+⋯+a0
+ d

▪ Properties:

▪ Transfer Function allows us to determine BIBO stability:

▪ Denominator of G(s) is the characteristic polynomial of A det sI − A (Eigenvalue calculation)

▪ I.e. the poles of G(s) (roots of det sI − A ) are the eigenvalues of the system

▪ Main result: Systems with poles on the imaginary axis are not BIBO stable 

▪ Minimal Realization:

▪ When constructing the Transfer Function unnecessary states will be removed

▪ Can use the transfer function to derive the minimal realization of the system

▪ More on this today
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Transfer Function



▪ If in partial fraction form: 

▪ G s =
p1

s−λ1
+

p2

s−λ2
+⋯+

pn

s−λn
+ d

A =
λ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ λn

, B =

p1
p2
…
pn

, C = p1, p2, … , pn , D = d

▪ General case: (Controllable Canonical Form)

▪ G s =
bn−1s

n−1+bn−2s
n−2+⋯+b0

sn+an−1sn−1+an−2sn−2+⋯+a0
+ d
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State Space <-> Transfer Function

▪ If A is diagonal with eigenvalues λi:

▪ A =
λ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ λn

▪ G s =
c1b1

s−λ1
+

c2b2

s−λ2
+⋯+

cnbn

s−λn
+ d

▪ General case:

▪ G s = C sI − A −1B + D =

C
adj sI−A

det sI−A
B + D

▪ G s =
bn−1s

n−1+bn−2s
n−2+⋯+b0

sn+an−1sn−1+an−2sn−2+⋯+a0
+ d



▪ What?

▪ Given a function u(t) the Laplace Transform U s is defined by: (Use Tables)

▪ ℒ u(t) = U s = 0׬
∞
u t e−stdt , s ∈ ℂ

▪ The inverse Laplace Transform is defined by: (Use Tables)

▪ ℒ−1 U(s) = u t =
1

2πj
lim
ω→∞

σ−jω׬
σ+jω

U s estds

▪ Inverse Laplace Transform allows us to write every signal as an infinite sum of exponentials

▪ Using: ℒ
𝑑𝑛𝑥(𝑡)

𝑑𝑡𝑛
= 𝑠𝑛𝑋(𝑠)

▪
d

dt
x t = Ax t + Bu t → sX s = AX s + BU s → X s = sI − A −1𝐵𝑈(𝑠)

▪ y t = Cx t + Du t → Y s = CX s + DU s

▪ 𝒀 𝒔 = 𝑪 𝐬𝐈 − 𝑨 −𝟏𝑩𝑼 𝒔 + 𝑫𝑼 𝒔 = [ 𝐬𝐈 − 𝑨 −𝟏𝑩 + 𝑫] 𝑼(𝒔)

▪ Laplace Transform of the State Space Results in the Transfer Function

▪ We can compute the output as: (using Tables)

▪ 𝑦𝑠𝑠 𝑡 = ℒ−1 Y(s)
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Laplace Transform



▪ Transfer Function describes the steady state output to a exponential input:

▪ yss t = C sI − A −1B + D est = G s est

▪ Transfer Function allows us to determine BIBO stability:

▪ The poles of G(s) (roots of det sI − A ) are the eigenvalues of the system

▪ Minimal Realization:

▪ When constructing the Transfer Function unnecessary states will be removed

▪ Know how to Convert between State Space and Transfer Functions!

▪ Laplace Transform helps us to compute the steady state output for exponential inputs:

▪ ℒ
dnx(t)

dtn
= snX(s)

▪ Y s = C sI − A −1BU s + DU s = [ sI − A −1B + D] U(s)

▪ yss t = ℒ−1 Y(s) (use tables for this)
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What was relevant!



Outline
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▪ Transfer Function continued - Different Forms of the Transfer Function

▪ Why? 

▪ Steady State Response

▪ General Input

▪ Sinusoidal Input

▪ Step Input

▪ Impulse Input

▪ Transfer Function continued – Effects of Poles and Zeros

▪ Example



▪ Transfer Function in a general form:  (note some of the ai, bi values can be zero)

▪ G s =
bn−1s

n−1+bn−2s
n−2+⋯+b0

sn+an−1sn−1+an−2sn−2+⋯+a0
+ d =

N s

D s
+ d

▪ We can rewrite the Transfer Function in different ways (purely mathematical rewriting):

▪ Partial Fraction Expansion:

▪ G s =
r1

s−p1
+

r2

s−p2
+

r3

s−p3
+⋯+ r0

▪ Root Locus Form:

▪ G s =
krl
sq

s−z1 s−z2 … s−zm

s−p1 s−p2 … s−pn−q

▪ Bode Form:

▪ G s =
kbd
sq

s

−z1
+1

s

−z2
+1 …

s

−z1
+1

s

−p1
+1

s

−p2
+1 …

s

−pn−q
+1

Transfer Function
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Different Forms

▪ 𝑝𝑖 are the poles of the system (can be imaginary)

▪ “instabilities” of the system

▪ 𝑟𝑖 are the residuals

▪ Describe the system response of each pole

▪ 𝑧𝑖 are the zeros of the transfer function

▪ “blind spots” of the system



▪ Rewriting can make the interpretation easier:

▪ Direct access to the poles / zeros of a system

▪ Direct access to the residuals of the system

▪ Direct access to relevant quantities (becomes important in the following weeks)

▪ Allows for graphical interpretation of the Transfer Function

▪ Use computers to do this (MatLab, SymPy, …):

▪ See Notebook for a tool

▪ For the residuals there is a trick (Cover up method):

▪ Non-repeating pole:

▪ ri = lim
s→pi

s − pi G(s)

▪ Repeating pole (m)

▪ ri =
1

m−1 !
lim
s→pi

dm−1

dsm−1 s − pi G s

Transfer Function

9

Different Forms - Why?



▪ We already looked at this last week:

▪ Given the Transfer Function

▪ Y s = C sI − A −1BU s + DU s = [ sI − A −1B + D] U(s)

▪ We can compute the output as: (using Tables)

▪ yss t = ℒ−1 Y(s)

▪ Usually using:

▪ yss t → ∞ = lim
s→0

sY s

▪ For sinusoidal Inputs u t = sin ωt , s = jω

▪ yss t = G(jω) sin t + ∠G jω

▪ We can even do this graphically

Steady State Response
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General Input and Sinusoidal Input



▪ For sinusoidal Inputs u t = sin ωt , s = jω

▪ yss t = G(jω) sin t + ∠G jω

▪ Having the Root Locus Form G s =
krl
sq

s−z1 s−z2 … s−zm

s−p1 s−p2 … s−pn−q
we get:

▪ → G(jω) =
kl
ωq

(jω−z1) (jω−z2) … (jω−zm)

(jω−p1) (jω−p2) … (jω−pm)

▪ Where (jω − z1) is the distance from the zero/pole to jω

▪ → ∠G jω = ∠ jω − z1 + ∠ jω − z2 +⋯− ∠(jω)q − ∠ jω − p1 − ∠ jω − p2 +⋯

▪ Where∠ jω − z1 are the angles of the vector from the zeros/poles to jω to the real axis

Steady State Response

11

Sinusoidal Input - Graphical Calculation



▪ Given the pole zero plot of G s

▪ Circles are zeros crosses are poles

▪ Calculate the steady state response for u t = sin 2t

▪ atan 2 + atan 3 = 135°

▪ Solution:

▪ We have s = j2

▪ yss t = G(jω) sin t + ∠G jω

▪ G(jω) =
(j2+2)

(j2+1) (j2+1−j) … (j2+1+j)
=

22+22

22+12 11+11 12+32
=

8

5 2 10
=

8

2∗3∗10
=

2

50
≈ 0.2828

▪ ∠G jω = ∠ j2 + 2 − ∠ j2 + 1 − ∠ j2 + 1 + j − ∠ j2 + 1 − j

▪ ∠G jω = 45° − atan 2 − 45° − atan 3 = −135°

▪ yss t = 0.2828 sin(2t − 135°)

Steady State Response
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Sinusoidal Input - Graphical Calculation - Example



▪ Solution:

▪ G(jω) =
2

50
≈ 0.2828

▪ ∠G jω = −135°

Steady State Response
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Sinusoidal Input - Graphical Calculation - Example



▪ For step Inputs u t = h(t), with h(t) being the Heaviside function (impulse modelling)

▪ h t = ቊ
1, t ≥ 0
0, t < 0

▪ For D = 0, x 0 = 0, u t = h t the output becomes:

▪ ystep t = 0׬
t
CeA(t−τ)B dτ = −CA−1B + CA−1eAtB

▪ For stable systems:

▪ yss t = −CA−1B = const

▪ First order systems (scalar):

▪ ystep t = yss(t)(1 − eat)

▪ More on this in lecture 8 or 9

▪ In general, we need to use Laplace:

▪ y t = ℒ−1 Y(s) = ℒ−1 G s U(s) , U s =
1

s

Steady State Response
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Step Input



▪ Given the system G s =
s−4

(s+3)(s+2)
calculate the output y t given u t = h t :

▪ Hint: First calculate Y s , then the residuals and then do the inverse

▪ Solution:

▪ Y s = G s U s =
s−4

s+3 s+2

1

s
, U s =

1

s

▪ Poles and residuals:

▪ s1 = −3: 𝑟1 = lim
s→−3

s + 3
s−4

s+3 s+2 s
= lim

s→−3

s−4

s+2 s
= lim

s→−3

−3−4

−3+2 −3
= −

7

3

▪ s2 = −2: r2 = lim
s→−2

s + 2
s−4

s+3 s+2 s
= lim

s→−2

s−4

s+3 s
= lim

s→−2

−2−4

−2+3 −2
= 3

▪ s2 = 0: r3 = lim
s→0

s
s−4

s+3 s+2 s
= lim

s→0

s−4

s+3 (s+2)
= lim

s→0

−4

3 2
= −

2

3

▪ Y s = −
7

3

1

s+3
+

3

s+2
−

2

3

1

s

▪ y t = −
7

3
e−3t + 3e−2t −

2

3

Steady State Response
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Step Input – Example (Old exam question)



▪ For impulse Inputs u t = δ(t), with δ(t) being the Dirac delta function (impulse modelling)

▪ δ t = ቊ
∞, t = 0
0, else

, ∞−׬
∞

δ t = 1, ∞−׬
∞

f t δ t = f(0)

▪ For D = 0, x 0 = 0, u t = kδ(t) the output becomes:

▪ yimp t = 0׬
t
CeA(t−τ)B kδ t dτ = kCeAtB

▪ The impulse response is basically the same as the initial condition response with x 0 = B

▪ In other words: the impulse response describes the system (see Signal and Systems)

▪ If we have the Transfer Function in Partial Fraction G s =
r1

s−p1
+

r2

s−p2
+

r3

s−p3
+⋯+ r0:

▪ y t = r1e
p1t + r2e

p2t+…+ rne
pnt

▪ Every pole contributes to the system response (weighted by the residual)

▪ If pole is imaginary, we get a sinusoidal (Notebook example)

▪ The zeros effect the residuals

▪ How do poles and zeros explain the behaviour of the system?

Steady State Response
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Impulse Input



▪ What poles do is clear by now: 

▪ G s =
r1

s−p1
+

r2

s−p2
+

r3

s−p3
+⋯+ r0 → 𝑦 𝑡 = 𝑟1𝑒

𝑝1𝑡 + 𝑟2𝑒
𝑝2𝑡+…+ 𝑟𝑛𝑒

𝑝𝑛𝑡

▪ Every pole contributes to the system response (weighted by the residual)

▪ If pole is imaginary, we get a sinusoidal (Notebook example)

▪ What is the effect of the zeros? G s =
krl
sq

s−z1 s−z2 … s−zm

s−p1 s−p2 … s−pn−q

▪ A zero close to the pole weakens its effect (see lecture)

▪ If a zero is equal to the pole we get a pole-zero cancellation

▪ This is what happened when we got the minimal realization of a system

▪ This means this state is not reachable from the input or we can’t see it in the output

▪ Controllability and Observability will be looked at in CSII

▪ If the pole is stable no worries

▪ If the pole is unstable, we have a problem! -> change your system design

Transfer Function Continued
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Effects of Poles and Zeros



▪ Zeros are derivative terms (Poles are integrals: 
d

dt
y t = u t → sY s = U s → Y s =

U s

s
)

▪ y t =
d

dt
u t → Y s = sU(s)

▪ Note a zero by itself is not possible, as this would be an acausal system

▪ If a system can be written as G s =
s

−z
+ 1 ෩G s = ෩G s +

s

−z
෩G(s), the output will be:

▪ y t = ෤y t +
1

−z
ሶ෤y(t), where we use that ෩G s → ෤y(t)

▪ When plotting the step response for a system with different zeros we get:

Transfer Function Continued
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Effects of Poles and Zeros



▪ What we learn:

▪ Zeros introduce a non-zero derivative from the start ሶ𝑦 0 ≠ 0

▪ Larger zeros have a smaller influence -> Smaller zeros have larger effects

▪ If zero is negative, we “go in the right direction”

▪ If zero is positive we go into the wrong direction -> Non-minimum phase zero (bad)

▪ Zeros are the result of the matrices B and C -> we can tune them to get a desired zero

Transfer Function Continued
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Effects of Poles and Zeros



▪ For the systems 𝐺𝑖 𝑠 =
𝑎𝑖𝑠+1

𝑠2+𝑠+1
we have the following step response plots: 𝑎𝑖 ∝ −

1

𝑧𝑖
, zi=zero

▪ Given the step response plots what can be said about the parameters 𝑎𝑖?

▪ 𝑎3 is non minimum phase thus has the largest zero (𝑎3 < 0)

▪ 𝑎2 has a no derivative at 𝑡 = 0 thus the zero is very large (𝑎2 = 0)

▪ In other words, we don’t have a s term in the nominator

▪ 𝑎1 has a derivative at 𝑡 = 0 and is minimum phase (𝑎1 > 0)

Transfer Function Continued

20

Effects of Poles and Zeros – Example (Old exam question)



▪ Know the different forms and what we can use them form

▪ Conversion less important since often a lot of work

▪ Use residual trick where needed

▪ Know how to compute the steady state response for different signals -> Laplace

▪ We have solutions for some important functions (remember superposition)

▪ Behaviour of zeros

▪ A zero close to the pole weakens its effect (see lecture)

▪ If a zero is equal to the pole we get a pole-zero cancellation

▪ Pole zero cancellation results in minimal realisation

▪ Only okay if pole is stable, else its a PROBLEM

▪ Zeros behave like a derivative

▪ Larger zeros have a smaller influence -> Smaller zeros have larger effects

▪ If zero is negative, we “go in the right direction”

▪ If zero is positive we go into the wrong direction -> Non-minimum phase zero (bad)

Summary
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Whats relevant?
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