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Last Week

Different Forms

= Transfer Functions:
bp—1S" " 1+by_,s%"2+---+b,

) G(S) - s+a,_,s""1+a,_,s""2+---4a, td=
= Partial Fraction Expansion:
G(s) == +—2 +— 4 -~ 471,

S—P1 S—P2 S—P3
= Root Locus Form:

_ kyy (s=21)(5-23)..(s=Zp)
G(s) = sq (s—p1)(s—p2)..(S—Pn-q)

= Bode Form:

(o) = oo G-

s4 (_;1+1)(_;2+1)m(_p;_q+1)

ETH:irich

p; are the poles of the system (can be imaginary)

“instabilities” of the system
r; are the residuals

Describe the system response of each pole

z; are the zeros of the transfer function
“blind spots” of the system

Non-repeating pole:
ri = lim (s — p;)G(s)
S—pj

Repeating pole (m)
1 d

m-—1
= o M G (Gs = pDG(s))
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Last Week

(Steady) State Response for Different Input Signals

= General Case (Use Tables)
= Y(s) = [(sI=A)T'B + D] U(s) = G()U(s) = y() = LTHY(5)}, yss(t = e0) = lim sY(s)

= For sinusoidal Inputs u(t) = sin(wt), s =jw
= yss(t) = |G(jw)] sin(t + 2G(jw)) (We can even do this graphically)
= Step Input u(t) = h(t)
YStep(t) = —CA™'B + CA™1eA'B - ySs(t) = —CA™!B = const
YStep(t) = yss(D)(1 — e
y(®) = L7H{Y(9)} = L7HG(s)U(s)}, U(s) =
= Impulse Inputs u(t) = &(t)
Vimp(®) = [, CeAt-DB k§(t)dt = kCeA'B

1
S

= |f we have the Transfer Function in Partial Fraction G(s) = —— +
s-p; S—-p2 S-Pp

y(t) = ryePit + ryeP2t+ |+ r ePnt

ETH:irich



Last Week

Effects of Zeros

= What is the effect of the zeros? G(s) = ! (5-21)(5-25)..(S=Zm)

59 (s—p1)(s—p2).-(S—Pn-q)

A zero close to the pole weakens its effect (see lecture)
If a zero is equal to the pole we get a pole-zero cancellation (minimal realization)

If the pole is stable no worries

If the pole is unstable, we have a problem! -> change your system design (B&C)
Zeros introduce a non-zero derivative from the start y(0) # 0
Larger zeros have a smaller influence -> Smaller zeros have larger effects
If zero is negative, we “go in the right direction” (pole-zero cancellation doable)
If zero is positive we go into the wrong direction -> Non-minimum phase zero (bad)

y(t) 4
5=1/2
1,__ _______ _ = = = = = _
(<0 J+—0
0.5 1 (=o0| 1 HTo
ETHziirich — ¢>0




Outline

= Conceptual Recap
= Classical Control Approach

= Controllers and Feedback
= |ntroduction

= Root Locus
=  What?
= Some Analysis Upfront
= Drawing a Root Locus Curve
= Extracting Information from a Root Locus Plot
=  Example
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Conceptual Recap

Classical Control Approach

System Introduction of Controller Deployment on

System

Descripton

Analysis Feedback (today) Design System

BIBO Stability
If Lyapunov Root Locus (today)

q Test Different
. asymptoticaly Stable
x(t) = f(x,u,t) ymp i System Parameters

y(®) = gxu,t) H
Controllability and
Observability (CSII)

q

For convenience

Lyapunov Stability
System Modeling A <0V

PID Control
Effects of Poles and
Zeros

Linearizatrion Other Control Methods
x(t) = Ax(t) + Bu(t) (CSll and onwards)
y(t) = Cx(t) + Du(t)

For convenience
New Theory

Frequency Response Performance Limitations
Robustness (Uncertainty)

Transfer Function Time Delays

G(s) = [(s1 = A)BJU(S) | Time Domain
Y(s) = G(s)U(s) Response Nyquist Diagram

ETH:zrich 6



Controllers and Feedback
Introduction

= Until now we only looked at the system: u(t) - y(t)
= Stability and Analysis until now only for this

= We can introduce a Controller (no feedback yet):
= Open Loop System: r(t) - y(t)
L(s) = C(s)G(s)

= We can Introduce Feedback:
= Closed Loop System: r(t) — y(t)

_ L(s) _ C(s)G(s)
T(s) = 1+L(s)  14+C(s)G(s) r(t)

u(t) &) y(t)
r(t) s u(t) &) y(t)
r(t) Ls) y(t)
T(s)
t
o C(s) Lo, G(s) vl

= Changes the system behaviour dynamically
Unstable —> stable
Stable -> “More” stable (quicker or less oscillation)
Stable -> unstable
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Root Locus

What?

ut)

r(t) e(t)
= Add proportional controller to the open loop system: *

. _ w _ kL(s) KN(s)
KL(s) = D(s) T(s) = 14+KL(s)  D(s)+kN(s)

. 1. (s=z1)(5-2Z)..(s—Zp)
KL(s) = k(s—pl)(s—pz)-..(s—pn)

= We want to analyse the poles of T(s) for different k

y()

L(s)

= Sidenotes:
= Poles are symmetric about the real axis (either on it or complex conjugates)
= The degree of D(s) + kN(s) is the same as D(s) —» #0OL — poles = #CL — poles
= Root Locus = Graphical analysis of the closed loop system for different values of ker any other parameter
= Plot the position of the zeros and poles for all possible k
= Using only the open loop system to analyse the closed loop system!
=  We only need to know L(s)!!!
= Get quick (qualitative) info about the system response

ETH:irich



Root Locus

Some Analysis Upfront

r(t) e(t)
= Add proportional controller to the open loop system: *

ut)

L(s)

y()

. _ w _ kL(s) KN(s)
KL(s) = D(s) T(s) = 14+KL(s)  D(s)+kN(s)

1. (s=z1)(5-2Z)..(s—Zp)
KL(s) = k(s—pl)(s—pz)-..(s—pn)

= Different extremes:
= k = 0:Poles of T(s) = Poles of L(s)
= k — oo: Poles of T(s) - Zeros of L(s)
This also explains why we should avoid non-minimum phase zeros
Since degree of N(s) is smaller than D(s) the "excess” poles go to o

ETH:irich



Root Locus

Some Analysis Upfront

= The poles of T(s) define the system behaviour 1
= D(s)+kN(s) =0

() e

ut)

L(s)

y()

= We can rewrite this:

NG _ 1 _ (5-24)(5-23)..(5-Zm)
D(s) k  (s—p1)(s—p2)..(s—pn)
= To now find a connection between the zeros and poles we analyse the angle and magnitude
. ., (5—21)(5-23)..(s—2) 1
ANgle: D p) op) ~ £ TR

= Magnitude:

180°+ q-360° ifk>0
£(s—12z9) +£(s —2z3) + - — £(s —py) — 2(s — py) ={ Oo_|_qq. 360° ifk < 0

|(s—z)Il(s—22)|...|(s—2m)| _ |_}|
|(s—pII(s—p2)I...|(s5—pn)I k
|(s—z)II(s—z)|..|(s—zm)| _ 1

|(s—p)Il(s=p2)l...I(s—pn)l B K|

= All possible poles of T(s)(closed loop system) must satisfy the above equalities

ETH:irich

We call all these points (i.e. the resulting curve) the root locus
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Root Locus

Drawing a Root Locus Curve - Rules

Starting Points: k = 0: Poles of T(s) — Poles of L(s)
End Points: k - oo: Poles of T(s) - Zeros of L(s) /o

Root Locus on the Real Axis:

= All points on the real axis to the left of an odd number of poles/zeros are on the positive k
root locus.

= All points on the real axis to the left of an even number of poles/zeros (or none) are on the
negative k root locus.

= Can be derived from the angle criterion

Asymptotic behaviour for k — oo:
= Poles move to zeros
= Excess Pole “radiate” outwards (m and n are the highest power of N(s) and D(s))

180°+q-360° 0°+qg-360°
z =! k> 0or 2— k<0
n—-m n-—-m

The asymptotes meet at

_ YPi—XZi
n—m

S

ETH:irich
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https://lpsa.swarthmore.edu/Root_Locus/DeriveRootLocusRules.html

Root Locus
Drawing a Root Locus Curve - Rules

= Break away/Break In points (when the root locus meet or diverge from the real axis)
= Atthe break away / break in points it must hold:
N’(s)D(s) = N(s)D(s)

= Crossing at Imaginary AXxis: ' ‘ ‘ .
= Find the value k analytically using D(s) + kN(s) = 0

= Many more on the website but not necessary for you

= Usually use MatLab or Python to plot the root locus of a system of

ETH:zrich 12


https://lpsa.swarthmore.edu/Root_Locus/DeriveRootLocusRules.html

Root Locus
Extracting Information

= Get Open Loop Transfer Function:
= Zeros are circles

= Poles are crosses
. _ (s=24)(s=%3)..(s—Zp)
L(S) = (52 ) 5=ps) (o=pm)

= Stability:
= Check for poles with positive real part
= Zeros with positive real part mean that the
system becomes unstable if k to large
= Damping and Oscillation (poles and zeros):
= |maginary parts -> Oscillation
= Negative real part -> Damping

ETH:irich
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Root Locus

Summary

= We looked only at the proportional Gain:
= We could vary any parameter

= We can also use other controllers and vary any parameter:

— Pl compensator: C(s) = kp + k'% —_ sz -+ I:/kp'

— PD compensator: C(s) = kp + kps (this is an idealized compensator),

k|/kp +S+kD/kPS
S ’

— PID compensator: C(s) = kp + ké + kps = kp

s§s—2z

— Lead compensator: , with z < p,

s—z
Lag compensator: , with p < z,

— Serial combination of several of these...

ETH:irich
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Root Locus

Example - Together

$2+2s+2 _ (s+14j)(s+1-j)
s2—4s—5 (s+1)(s—-5)

= L(s) =

= Draw Poles and Zeros

= Find Break Away Point
= N'(s)D(s) = N(s)D’(s)
= N'(s) =2s+2
= D'(s)=2s—4
= (2s+2)(s2—4s—5)=(2s—4)(s? +25+2)
= —8s2—-185s—10=—4s — 8
= 654+ 14s+2=0
= s, =-0.153,s, =—-2.18

= Connectlines

ETH:irich
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Root Locus

Example - Drawing

S+2 _ (s+2)
s3-4s2-5s  s(s+1)(s-5)

= L(s) =

= Draw Poles and Zeros

= Find Asymptotic Behaviour:
= n—m=2

180° _ 900

. g = YPi—Y.Zj _ 0+5—-14+2 _

n—m 2

= Could determine Break Away Point (not necessary)

3

= Connectlines

ETH:irich
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Root Locus

Example - Analysis

Open Loop Transfer Function:

. _ (s+2)
L(s) = (s—3)(s+6)(s+1)

= |s the open loop system stable?
O Yes
v No

= |sthere ak s.t. the closed loop system is stable?
v Yes
O No
= |sthere ak s.t. the closed loop system is stable and
has no overshoot/oscillation?
O Yes
v No

See Notebook

ETH:irich
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Root Locus

Example — Exam Style question
Assign the plots to the corresponding
Transfer Functions:

_ s%+3s+5 _ s2+3s+5
(s+2)%(s=3)*s’ 2~ (s+2)*(s—3)#s3

Fq

s2+3s+5 s2+3s+5

Imaginary Axis (seconds™)

37 (s+2)+(s-3)#(s+1)6” " 4~ (s+2)x(s—3)*(s+1)
Solution:
A—-F,
B - F;
C—-F,
D - F;

ETH:irich
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