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▪ Transfer Functions: 

▪ G s =
bn−1s

n−1+bn−2s
n−2+⋯+b0

sn+an−1sn−1+an−2sn−2+⋯+a0
+ d =

N s

D s
+ d

▪ Partial Fraction Expansion:

▪ G s =
r1

s−p1
+

r2

s−p2
+

r3

s−p3
+⋯+ r0

▪ Root Locus Form:

▪ G s =
krl
sq

s−z1 s−z2 … s−zm

s−p1 s−p2 … s−pn−q

▪ Bode Form:

▪ G s =
kbd
sq

s

−z1
+1

s

−z2
+1 …

s

−z1
+1

s

−p1
+1

s

−p2
+1 …

s

−pn−q
+1
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Different Forms

▪ 𝑝𝑖 are the poles of the system (can be imaginary)

▪ “instabilities” of the system

▪ 𝑟𝑖 are the residuals

▪ Describe the system response of each pole

▪ 𝑧𝑖 are the zeros of the transfer function

▪ “blind spots” of the system

▪ Non-repeating pole:

▪ ri = lim
s→pi

s − pi G(s)

▪ Repeating pole (m)

▪ ri =
1

m−1 !
lim
s→pi

dm−1

dsm−1 s − pi G s



▪ General Case (Use Tables)

▪ Y s = [ sI − A −1B + D] U s = G s U s → y t = ℒ−1 Y(s) , yss t → ∞ = lim
s→0

sY s

▪ For sinusoidal Inputs u t = sin ωt , s = jω

▪ yss t = G(jω) sin t + ∠G jω (We can even do this graphically)

▪ Step Input u t = h(t)

▪ ystep t = −CA−1B + CA−1eAtB → yss t = −CA−1B = const

▪ ystep t = yss(t)(1 − eat)

▪ y t = ℒ−1 Y(s) = ℒ−1 G s U(s) , U s =
1

s

▪ Impulse Inputs u t = δ t

▪ yimp t = 0
t
CeA(t−τ)B kδ t dτ = kCeAtB

▪ If we have the Transfer Function in Partial Fraction G s =
r1

s−p1
+

r2

s−p2
+

r3

s−p3
+⋯+ r0:

▪ y t = r1e
p1t + r2e

p2t+…+ rne
pnt
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(Steady) State Response for Different Input Signals



▪ What is the effect of the zeros? G s =
krl
sq

s−z1 s−z2 … s−zm

s−p1 s−p2 … s−pn−q

▪ A zero close to the pole weakens its effect (see lecture)

▪ If a zero is equal to the pole we get a pole-zero cancellation (minimal realization)

▪ If the pole is stable no worries

▪ If the pole is unstable, we have a problem! -> change your system design (B&C)

▪ Zeros introduce a non-zero derivative from the start ሶ𝑦 0 ≠ 0

▪ Larger zeros have a smaller influence -> Smaller zeros have larger effects

▪ If zero is negative, we “go in the right direction” (pole-zero cancellation doable)

▪ If zero is positive we go into the wrong direction -> Non-minimum phase zero (bad)

Last Week
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Effects of Zeros



Outline
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▪ Conceptual Recap

▪ Classical Control Approach

▪ Controllers and Feedback

▪ Introduction

▪ Root Locus

▪ What?

▪ Some Analysis Upfront

▪ Drawing a Root Locus Curve

▪ Extracting Information from a Root Locus Plot

▪ Example



Conceptual Recap
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Classical Control Approach

System 

Descripton

System 

Analysis

Controller 

Design

Deployment on 

System

System Modeling

ሶx t = f x, u, t
y t = g(x, u, t)

Transfer Function

G s = [ sI − A −1B]U s
Y s = G s U(s)

Linearizatrion

ሶx t = Ax t + Bu t
y t = Cx t + Du(t)

For convenience

For convenience

New Theory

Lyapunov Stability

𝜆𝑖 < 0 ∀𝜆𝑖

BIBO Stability

If Lyapunov 

asymptoticaly Stable

Controllability and 

Observability (CSII)

Root Locus (today)

Test Different

System Parameters

Bode Diagram

Nyquist Diagram

Effects of Poles and 

Zeros

Time Domain 

Response

Frequency Response

PID Control

Performance Limitations

Robustness (Uncertainty)

Time Delays

Other Control Methods 

(CSII and onwards)

Introduction of 

Feedback (today)



▪ Until now we only looked at the system: u t → y(t)

▪ Stability and Analysis until now only for this

▪ We can introduce a Controller (no feedback yet):

▪ Open Loop System: r t → y(t)

▪ L s = C s G(s)

▪ We can Introduce Feedback:

▪ Closed Loop System: r t → y(t)

▪ T s =
L s

1+L(s)
=

C s G(s)

1+C s G(s)

▪ Changes the system behaviour dynamically

▪ Unstable –> stable

▪ Stable -> “More” stable (quicker or less oscillation)

▪ Stable -> unstable

Controllers and Feedback
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Introduction

L(s)
r(t) y(t)

C(s) G(s)
u(t) y(t)r(t)

G(s)
u(t) y(t)

C(s) G(s)
u(t) y(t)e(t)r(t)

T(s)



▪ Add proportional controller to the open loop system:

▪ kL s = k
N(s)

D(s)
→ T s =

kL s

1+kL(s)
=

kN s

D s +kN(s)

▪ kL s = k
s−z1 s−z2 … s−zm

s−p1 s−p2 … s−pn

▪ We want to analyse the poles of T(s) for different k

▪ Sidenotes: 

▪ Poles are symmetric about the real axis (either on it or complex conjugates)

▪ The degree of 𝐷 𝑠 + 𝑘𝑁(𝑠) is the same as 𝐷 𝑠 → #𝑂𝐿 − 𝑝𝑜𝑙𝑒𝑠 = #𝐶𝐿 − 𝑝𝑜𝑙𝑒𝑠

▪ Root Locus = Graphical analysis of the closed loop system for different values of kor any other parameter

▪ Plot the position of the zeros and poles for all possible k

▪ Using only the open loop system to analyse the closed loop system!

▪ We only need to know L(s)!!!

▪ Get quick (qualitative) info about the system response

Root Locus
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What?

K L(s)
u(t) y(t)e(t)r(t)



▪ Add proportional controller to the open loop system:

▪ kL s = k
N(s)

D(s)
→ T s =

kL s

1+kL(s)
=

kN s

D s +kN(s)

▪ kL s = k
s−z1 s−z2 … s−zm

s−p1 s−p2 … s−pn

▪ Different extremes:

▪ k = 0: Poles of T s → Poles of L s

▪ k → ∞: Poles of T s → Zeros of L s

▪ This also explains why we should avoid non-minimum phase zeros

▪ Since degree of N(s) is smaller than D(s) the ”excess” poles go to ∞

Root Locus
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Some Analysis Upfront

K L(s)
u(t) y(t)e(t)r(t)



▪ The poles of T s define the system behaviour

▪ D s + kN s = 0

▪ We can rewrite this: 

▪
N s

D s
= −

1

k
=

s−z1 s−z2 … s−zm

s−p1 s−p2 … s−pn

▪ To now find a connection between the zeros and poles we analyse the angle and magnitude

▪ Angle: ∠
s−z1 s−z2 … s−zm

s−p1 s−p2 … s−pn
= ∠ −

1

k

▪ ∠ s − z1 + ∠ s − z2 +⋯− ∠ s − p1 − ∠ s − p2 = ቊ
180° + q ⋅ 360° if k > 0
0° + q ⋅ 360° if k < 0

▪ Magnitude: 
(s−z1) (s−z2) … (s−zm)

(s−p1) (s−p2) … (s−pn)
= −

1

k

▪
(s−z1) (s−z2) … (s−zm)

(s−p1) (s−p2) … (s−pn)
=

1

k

▪ All possible poles of T(s)(closed loop system) must satisfy the above equalities

▪ We call all these points (i.e. the resulting curve) the root locus

Root Locus
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Some Analysis Upfront

K L(s)
u(t) y(t)e(t)r(t)



▪ Starting Points: k = 0: Poles of T s → Poles of L s

▪ End Points: k → ∞: Poles of T s → Zeros of L s /∞

▪ Root Locus on the Real Axis:

▪ All points on the real axis to the left of an odd number of poles/zeros are on the positive k 

root locus.

▪ All points on the real axis to the left of an even number of poles/zeros (or none) are on the 
negative k root locus.

▪ Can be derived from the angle criterion

▪ Asymptotic behaviour for k → ∞:

▪ Poles move to zeros

▪ Excess Pole “radiate” outwards (m and n are the highest power of N(s) and D(s))

▪ ∠
180°+q⋅360°

n−m
, k > 0 or ∠

0°+q⋅360°

n−m
, k < 0

▪ The asymptotes meet at

▪ s =
∑pi−∑zi
n−m

Root Locus
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Drawing a Root Locus Curve - Rules

https://lpsa.swarthmore.edu/Root_Locus/DeriveRootLocusRules.html


▪ Break away/Break In points (when the root locus meet or diverge from the real axis)

▪ At the break away / break in points it must hold:

▪ N′ s D s = N s D′(s)

▪ Crossing at Imaginary Axis:

▪ Find the value k analytically using D s + kN s = 0

▪ Many more on the website but not necessary for you

▪ Usually use MatLab or Python to plot the root locus of a system

Root Locus
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Drawing a Root Locus Curve - Rules

https://lpsa.swarthmore.edu/Root_Locus/DeriveRootLocusRules.html


▪ Get Open Loop Transfer Function:

▪ Zeros are circles

▪ Poles are crosses

▪ L s =
s−z1 s−z2 … s−zm

s−p1 s−p2 … s−pn

▪ Stability:

▪ Check for poles with positive real part

▪ Zeros with positive real part mean that the 

system becomes unstable if k to large

▪ Damping and Oscillation (poles and zeros):

▪ Imaginary parts -> Oscillation

▪ Negative real part -> Damping

Root Locus
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Extracting Information



▪ We looked only at the proportional Gain:

▪ We could vary any parameter

▪ We can also use other controllers and vary any parameter:

Root Locus
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Summary



▪ L s =
s2+2s+2

s2−4s−5
=

(s+1+j)(s+1−j)

(s+1)(s−5)

▪ Draw Poles and Zeros

▪ Find Break Away Point

▪ N′ s D s = N s D′(s)

▪ N′(s) = 2s + 2

▪ D′ s = 2s − 4

▪ 2s + 2 s2 − 4s − 5 = 2s − 4 s2 + 2s + 2

▪ −8s2 − 18s − 10 = −4s − 8

▪ 6s2 + 14s + 2 = 0

▪ s1 = −0.153, s2 = −2.18

▪ Connect lines

Root Locus
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Example - Together



▪ L s =
s+2

s3−4s2−5s
=

(s+2)

s(s+1)(s−5)

▪ Draw Poles and Zeros

▪ Find Asymptotic Behaviour:

▪ n − m = 2

▪ ∠
180°

2
= 90°

▪ s =
∑pi−∑zi
n−m

=
0+5−1+2

2
= 3

▪ Could determine Break Away Point (not necessary)

▪ Connect lines

Root Locus

16

Example - Drawing



▪ Open Loop Transfer Function:

▪ L s =
(s+2)

(s−3)(s+6)(s+1)

▪ Is the open loop system stable?

❑ Yes

✓ No

▪ Is there a k s.t. the closed loop system is stable?

✓ Yes

❑ No

▪ Is there a k s.t. the closed loop system is stable and 

has no overshoot/oscillation?

❑ Yes

✓ No

▪ See Notebook

Root Locus
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Example - Analysis



▪ Assign the plots to the corresponding 
Transfer Functions:

▪ F1 =
s2+3s+5

s+2 ∗ s−3 ∗s
, F2 =

s2+3s+5

s+2 ∗ s−3 ∗s3

▪ F3 =
s2+3s+5

s+2 ∗ s−3 ∗(s+1)6
, F4 =

s2+3s+5

s+2 ∗ s−3 ∗(s+1)

▪ Solution:

▪ A → F4

▪ B → F1

▪ C → F2

▪ D → F3

Root Locus
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Example – Exam Style question
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