



# Last Week

#### **Different Forms**

- Transfer Functions:
  - $G(s) = \frac{b_{n-1}s^{n-1} + b_{n-2}s^{n-2} + \dots + b_0}{s^n + a_{n-1}s^{n-1} + a_{n-2}s^{n-2} + \dots + a_0} + d = \frac{N(s)}{D(s)} + d$
  - Partial Fraction Expansion:

• 
$$G(s) = \frac{r_1}{s-p_1} + \frac{r_2}{s-p_2} + \frac{r_3}{s-p_3} + \dots + r_0$$

Root Locus Form:

• 
$$G(s) = \frac{k_{rl}}{s^q} \frac{(s-z_1)(s-z_2)...(s-z_m)}{(s-p_1)(s-p_2)...(s-p_{n-q})}$$

Bode Form:

$$G(s) = \frac{k_{bd}}{s^q} \frac{\left(\frac{s}{-z_1} + 1\right)\left(\frac{s}{-z_2} + 1\right) ...\left(\frac{s}{-z_1} + 1\right)}{\left(\frac{s}{-p_1} + 1\right)\left(\frac{s}{-p_2} + 1\right) ...\left(\frac{s}{-p_{n-q}} + 1\right)}$$

- $p_i$  are the poles of the system (can be imaginary)
  - "instabilities" of the system
- $r_i$  are the residuals
  - Describe the system response of each pole
- $z_i$  are the zeros of the transfer function
  - "blind spots" of the system
- Non-repeating pole:

$$r_i = \lim_{s \to p_i} (s - p_i)G(s)$$

Repeating pole (m)

$$r_{i} = \frac{1}{(m-1)!} \lim_{s \to p_{i}} \frac{d^{m-1}}{ds^{m-1}} ((s - p_{i})G(s))$$

# Last Week

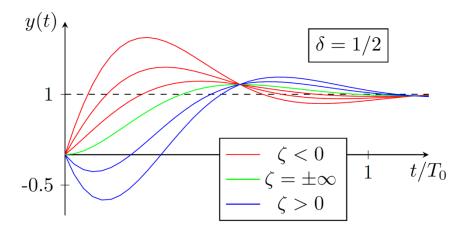
(Steady) State Response for Different Input Signals

- General Case (Use Tables)
  - $Y(s) = [(sI A)^{-1}B + D] U(s) = G(s)U(s) \rightarrow y(t) = \mathcal{L}^{-1}\{Y(s)\}, \quad y_{ss}(t \rightarrow \infty) = \lim_{s \rightarrow 0} sY(s)$
- For sinusoidal Inputs  $u(t) = \sin(\omega t)$ ,  $s = j\omega$ 
  - $y_{ss}(t) = |G(j\omega)| \sin(t + \angle G(j\omega))$  (We can even do this graphically)
- Step Input u(t) = h(t)
  - $y_{\text{step}}(t) = -CA^{-1}B + CA^{-1}e^{At}B \rightarrow y_{ss}(t) = -CA^{-1}B = \text{const}$ 
    - $y_{\text{step}}(t) = y_{\text{ss}}(t)(1 e^{at})$
    - $y(t) = \mathcal{L}^{-1}{Y(s)} = \mathcal{L}^{-1}{G(s)U(s)}, U(s) = \frac{1}{s}$
- Impulse Inputs  $u(t) = \delta(t)$ 
  - $y_{imp}(t) = \int_0^t Ce^{A(t-\tau)}B k\delta(t)d\tau = kCe^{At}B$
  - If we have the Transfer Function in Partial Fraction  $G(s) = \frac{r_1}{s-p_1} + \frac{r_2}{s-p_2} + \frac{r_3}{s-p_3} + \cdots + r_0$ :
    - $y(t) = r_1 e^{p_1 t} + r_2 e^{p_2 t} + ... + r_n e^{p_n t}$

# Last Week

#### Effects of Zeros

- What is the effect of the zeros?  $G(s) = \frac{k_{rl}}{s^q} \frac{(s-z_1)(s-z_2)...(s-z_m)}{(s-p_1)(s-p_2)...(s-p_{n-q})}$ 
  - A zero close to the pole weakens its effect (see lecture)
  - If a zero is equal to the pole we get a pole-zero cancellation (minimal realization)
    - If the pole is stable no worries
    - If the pole is unstable, we have a problem! -> change your system design (B&C)
  - Zeros introduce a non-zero derivative from the start  $\dot{y}(0) \neq 0$
  - Larger zeros have a smaller influence -> Smaller zeros have larger effects
  - If zero is negative, we "go in the right direction" (pole-zero cancellation doable)
  - If zero is positive we go into the wrong direction -> Non-minimum phase zero (bad)





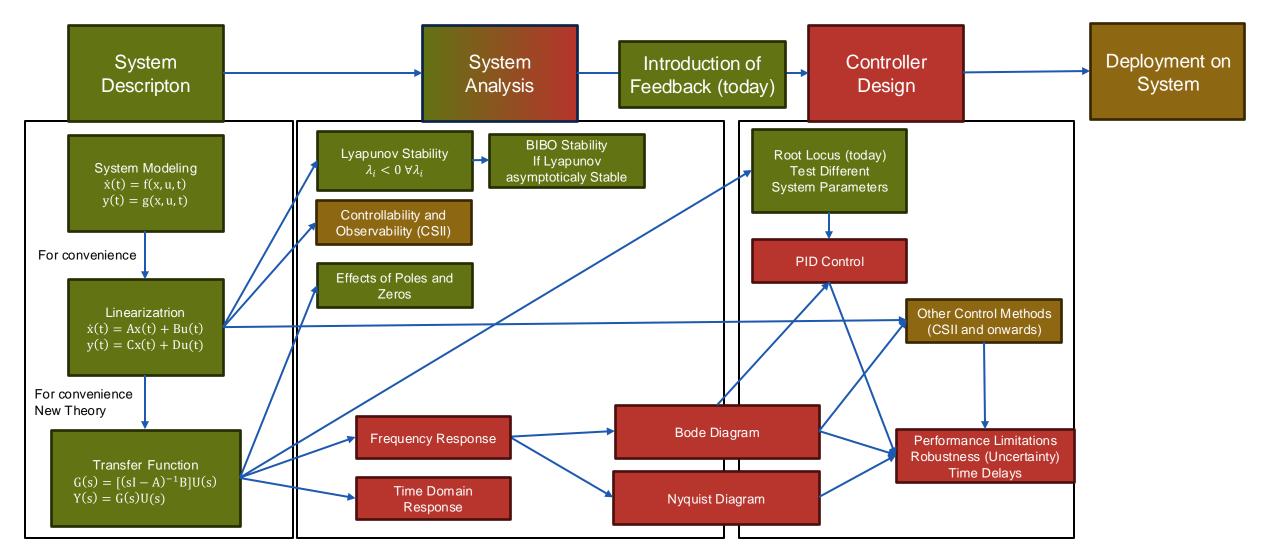
# Outline

- Conceptual Recap
  - Classical Control Approach
- Controllers and Feedback
  - Introduction
- Root Locus
  - What?
  - Some Analysis Upfront
  - Drawing a Root Locus Curve
  - Extracting Information from a Root Locus Plot
  - Example



# Conceptual Recap

### Classical Control Approach

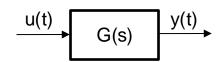




### Controllers and Feedback

#### Introduction

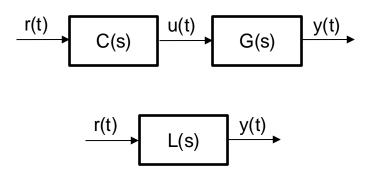
- Until now we only looked at the system:  $u(t) \rightarrow y(t)$ 
  - Stability and Analysis until now only for this

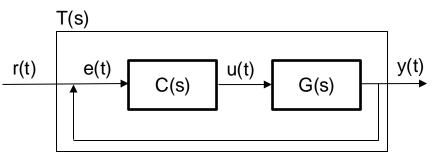


- We can introduce a Controller (no feedback yet):
  - Open Loop System:  $r(t) \rightarrow y(t)$ 
    - L(s) = C(s)G(s)
- We can Introduce Feedback:
  - Closed Loop System: r(t) → y(t)

T(s) = 
$$\frac{L(s)}{1+L(s)} = \frac{C(s)G(s)}{1+C(s)G(s)}$$

- Changes the system behaviour dynamically
  - Unstable –> stable
  - Stable -> "More" stable (quicker or less oscillation)
  - Stable -> unstable





#### What?

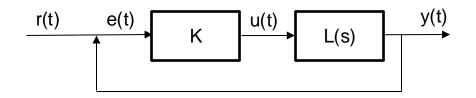
• Add proportional controller to the open loop system:

• 
$$kL(s) = k\frac{N(s)}{D(s)} \rightarrow T(s) = \frac{kL(s)}{1+kL(s)} = \frac{kN(s)}{D(s)+kN(s)}$$

• 
$$kL(s) = k \frac{(s-z_1)(s-z_2)...(s-z_m)}{(s-p_1)(s-p_2)...(s-p_n)}$$



- Sidenotes:
  - Poles are symmetric about the real axis (either on it or complex conjugates)
  - The degree of D(s) + kN(s) is the same as  $D(s) \rightarrow \#OL poles = \#CL poles$
- Root Locus = Graphical analysis of the closed loop system for different values of kor any other parameter
  - Plot the position of the zeros and poles for all possible k
- Using only the open loop system to analyse the closed loop system!
  - We only need to know L(s)!!!
  - Get quick (qualitative) info about the system response

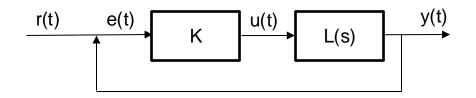




### Some Analysis Upfront

- Add proportional controller to the open loop system:
  - $kL(s) = k\frac{N(s)}{D(s)} \rightarrow T(s) = \frac{kL(s)}{1+kL(s)} = \frac{kN(s)}{D(s)+kN(s)}$

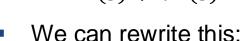
• 
$$kL(s) = k \frac{(s-z_1)(s-z_2)...(s-z_m)}{(s-p_1)(s-p_2)...(s-p_n)}$$

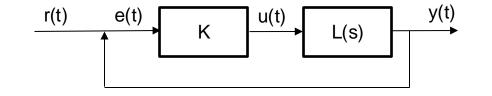


- Different extremes:
  - k = 0: Poles of  $T(s) \rightarrow Poles$  of L(s)
  - $k \to \infty$ : Poles of  $T(s) \to Zeros$  of L(s)
    - This also explains why we should avoid non-minimum phase zeros
    - Since degree of N(s) is smaller than D(s) the "excess" poles go to ∞

### Some Analysis Upfront

- The poles of T(s) define the system behaviour
  - D(s) + kN(s) = 0





To now find a connection between the zeros and poles we analyse the angle and magnitude

• Angle: 
$$\angle \frac{(s-z_1)(s-z_2)...(s-z_m)}{(s-p_1)(s-p_2)...(s-p_n)} = \angle -\frac{1}{k}$$

$$\angle (s - z_1) + \angle (s - z_2) + \dots - \angle (s - p_1) - \angle (s - p_2) = \begin{cases} 180^\circ + q \cdot 360^\circ & \text{if } k > 0 \\ 0^\circ + q \cdot 360^\circ & \text{if } k < 0 \end{cases}$$

• Magnitude: 
$$\frac{|(s-z_1)||(s-z_2)|...|(s-z_m)|}{|(s-p_1)||(s-p_2)|...|(s-p_n)|} = \left|-\frac{1}{k}\right|$$

$$\frac{|(s-z_1)||(s-z_2)|...|(s-z_m)|}{|(s-p_1)||(s-p_2)|...|(s-p_n)|} = \frac{1}{|k|}$$

- All possible poles of T(s) (closed loop system) must satisfy the above equalities
  - We call all these points (i.e. the resulting curve) the root locus

Drawing a Root Locus Curve - Rules

- Starting Points: k = 0: Poles of  $T(s) \rightarrow$  Poles of L(s)
- End Points:  $k \to \infty$ : Poles of  $T(s) \to \text{Zeros of L}(s)/\infty$
- Root Locus on the Real Axis:
  - All points on the real axis to the left of an odd number of poles/zeros are on the positive k
    root locus.
  - All points on the real axis to the left of an even number of poles/zeros (or none) are on the negative k root locus.
  - Can be derived from the angle criterion
- Asymptotic behaviour for  $k \to \infty$ :
  - Poles move to zeros
  - Excess Pole "radiate" outwards (m and n are the highest power of N(s) and D(s))

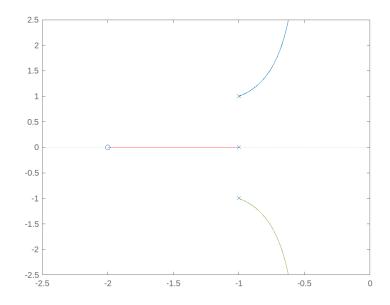
    - The asymptotes meet at

$$S = \frac{\sum p_i - \sum z_i}{n - m}$$



Drawing a Root Locus Curve - Rules

- Break away/Break In points (when the root locus meet or diverge from the real axis)
  - At the break away / break in points it must hold:
    - N'(s)D(s) = N(s)D'(s)
- Crossing at Imaginary Axis:
  - Find the value k analytically using D(s) + kN(s) = 0
- Many more on the website but not necessary for you
- Usually use MatLab or Python to plot the root locus of a system

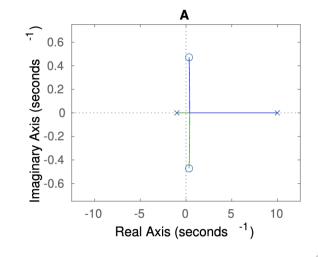


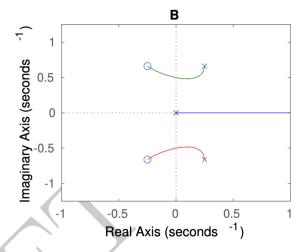
### **Extracting Information**

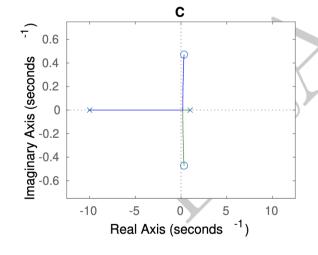
- Get Open Loop Transfer Function:
  - Zeros are circles
  - Poles are crosses

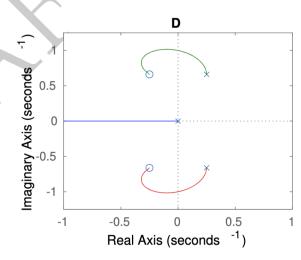
L(s) = 
$$\frac{(s-z_1)(s-z_2)...(s-z_m)}{(s-p_1)(s-p_2)...(s-p_n)}$$

- Stability:
  - Check for poles with positive real part
  - Zeros with positive real part mean that the system becomes unstable if k to large
- Damping and Oscillation (poles and zeros):
  - Imaginary parts -> Oscillation
  - Negative real part -> Damping









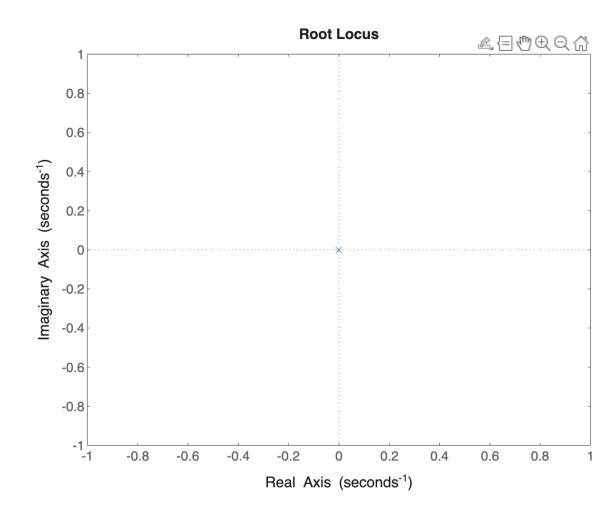
### Summary

- We looked only at the proportional Gain:
  - We could vary any parameter
- We can also use other controllers and vary any parameter:
  - PI compensator:  $C(s) = k_P + k_I \frac{1}{s} = k_P \frac{s + k_I/k_P}{s}$ ,
  - PD compensator:  $C(s) = k_P + k_D s$  (this is an idealized compensator),
  - PID compensator:  $C(s) = k_{\text{P}} + k_{\text{I}} \frac{1}{s} + k_{\text{D}} s = k_{\text{P}} \frac{k_{\text{I}}/k_{\text{P}} + s + k_{\text{D}}/k_{\text{P}} s}{s}$ ,
  - Lead compensator:  $\frac{s-z}{s-p}$ , with z < p,
  - Lag compensator:  $\frac{s-z}{s-p}$ , with p < z,
  - Serial combination of several of these...

### Example - Together

L(s) = 
$$\frac{s^2+2s+2}{s^2-4s-5} = \frac{(s+1+j)(s+1-j)}{(s+1)(s-5)}$$

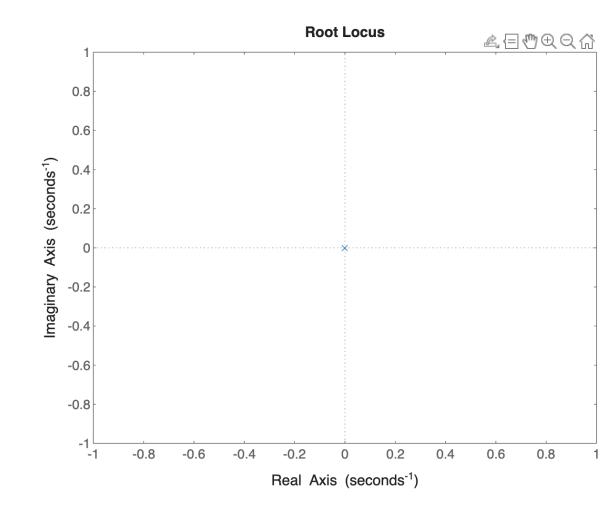
- Draw Poles and Zeros
- Find Break Away Point
  - N'(s)D(s) = N(s)D'(s)
- Connect lines



Example - Drawing

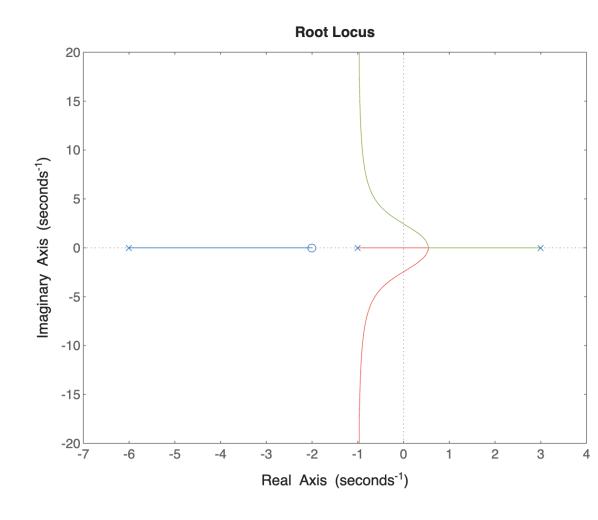
L(s) = 
$$\frac{s+2}{s^3-4s^2-5s} = \frac{(s+2)}{s(s+1)(s-5)}$$

- Draw Poles and Zeros
- Find Asymptotic Behaviour:
  - n m = 2
  - ∠
  - s =
- Could determine Break Away Point (not necessary)
- Connect lines



Example - Analysis

- Open Loop Transfer Function:
  - $L(s) = \frac{(s+2)}{(s-3)(s+6)(s+1)}$
- Is the open loop system stable?
  - Yes
  - No
- Is there a k s.t. the closed loop system is stable?
  - Yes
  - No
- Is there a k s.t. the closed loop system is stable and has no overshoot/oscillation?
  - Yes
  - No
- See Notebook



#### Example – Exam Style question

 Assign the plots to the corresponding Transfer Functions:

$$F_1 = \frac{s^2 + 3s + 5}{(s+2)*(s-3)*s}, F_2 = \frac{s^2 + 3s + 5}{(s+2)*(s-3)*s^3}$$

$$\mathbf{F}_3 = \frac{s^2 + 3s + 5}{(s+2)*(s-3)*(s+1)^6}, \mathbf{F}_4 = \frac{s^2 + 3s + 5}{(s+2)*(s-3)*(s+1)}$$

- Solution:
- A →
- B →
- C →
- D -

