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▪ Until now we only looked at the system: u t → y(t)

▪ Stability and Analysis until now only for this

▪ We can introduce a Controller (no feedback yet):

▪ Open Loop System: r t → y(t)

▪ L s = C s G(s)

▪ We can Introduce Feedback:

▪ Closed Loop System: r t → y(t)

▪ T s =
L s

1+L(s)
=

C s G(s)

1+C s G(s)

▪ Changes the system behaviour dynamically

▪ Unstable –> stable

▪ Stable -> “More” stable (quicker or less oscillation)

▪ Stable -> unstable

Controllers and Feedback
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Introduction

L(s)
r(t) y(t)

C(s) G(s)
u(t) y(t)r(t)

G(s)
u(t) y(t)

C(s) G(s)
u(t) y(t)e(t)r(t)

T(s)



▪ Add proportional controller to the open loop system:

▪ kL s = k
N(s)

D(s)
→ T s =

kL s

1+kL(s)
=

kN s

D s +kN(s)

▪ kL s = k
s−z1 s−z2 … s−zm

s−p1 s−p2 … s−pn

▪ Root Locus = Graphical analysis of the closed loop system for different values of kor any other parameter

▪ Plot the position of the zeros and poles for all possible k

▪ Using only the open loop system to analyse the closed loop system!

▪ We only need to know L(s)!!!

▪ Get quick (qualitative) info about the system response

▪ Different extremes:

▪ k = 0: Poles of T s → Poles of L s

▪ k → ∞: Poles of T s → Zeros of L s

▪ This also explains why we should avoid non-minimum phase zeros

▪ Since degree of N(s) is smaller than D(s) the ”excess” poles go to ∞

Root Locus
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What?

K L(s)
u(t) y(t)e(t)r(t)



▪ Get Open Loop Transfer Function:

▪ Zeros are circles

▪ Poles are crosses

▪ L s =
s−z1 s−z2 … s−zm

s−p1 s−p2 … s−pn

▪ Stability:

▪ Check for poles with positive real part

▪ Zeros with positive real part mean that the 

system becomes unstable if k to large

▪ Damping and Oscillation (poles and zeros):

▪ Imaginary parts -> Oscillation

▪ Negative real part -> Damping

Root Locus
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Extracting Information



Outline
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▪ System Analysis

▪ What is there to check?

▪ Different Transfer Functions

▪ Sidenote on Total System Behaviour

▪ Time Response

▪ Steady State Error

▪ Example

▪ Step Response: 1 order system

▪ Step Response: 2 order system

▪ PID Controller

▪ Proportional Part

▪ Integral Part

▪ Derivative Part

▪ PID Tuning



Conceptual Recap
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Classical Control Approach

System 

Descripton

System 

Analysis

Controller 

Design

Deployment on 

System

System Modeling

ሶx t = f x, u, t
y t = g(x, u, t)

Transfer Function

G s = [ sI − A −1B]U s
Y s = G s U(s)

Linearizatrion

ሶx t = Ax t + Bu t
y t = Cx t + Du(t)

For convenience

For convenience

New Theory

Lyapunov Stability

𝜆𝑖 < 0 ∀𝜆𝑖

BIBO Stability

If Lyapunov 

asymptoticaly Stable

Controllability and 

Observability (CSII)

Root Locus 

Test Different

System Parameters

Bode Diagram

Nyquist Diagram

Effects of Poles and 

Zeros

Time Domain 

Response

Frequency Response

PID Control

Performance Limitations

Robustness (Uncertainty)

Time Delays

Other Control Methods 

(CSII and onwards)

Introduction of 

Feedback



▪ Qualitative Analysis: (already seen)

▪ Stability Analysis: Lyapunov, BIBO, Root Locus

▪ Quantitative Analysis: (today)

▪ Steady State behaviour 

▪ Do we converge to the desired value?

▪ Speed of Convergence

▪ How fast do we converge?

▪ Overshoot

▪ Do we have oscillation and if so, how big are these?

▪ How about robustness? (next week)

▪ Modelling errors

▪ If the nominal system is stable is the real system also stable?

▪ How big of an error can the system compensate for?

▪ Noise/Disturbance Rejection

▪ If we have disturbances/noise how good can the closed loop system handle these?

System Analysis
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What is there to check?

C(s) G(s)
u(t) y(t)e(t)r(t)



▪ We saw the Closed Loop System: 

▪ Complementary Sensitivity: r t → y t or n t → y(t)

▪ T s =
Y s

N s
=

Y(s)

R(s)
=

L s

1+L(s)
=

C s G(s)

1+C s G(s)

▪ There are more:

▪ Sensitivity: r t → e t or d t → y(t)

▪ S s =
E(s)

R(s)
=

Y(s)

D(s)
=

1

1+L(s)
=

1

1+C s G(s)

▪ We also see that S s + T s = 1

▪ We can either track the reference perfect or reject noise perfect

System Analysis
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Different Transfer Functions

C(s) G(s)

u(t) y(t)e(t)r(t)

d(t)

n(t)



▪ We can do this for all possible inputs to the system:

▪ We get:

▪ Linearity allows us to:

▪ We thus get: T s =
L s

1+L(s)
, S s =

1

1+L(s)
→

▪ Learnings:

▪ System is stable iff
1

1+L(s)
is stable

System Analysis
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Sidenote on Total System Behaviour



▪ Error: e t = r t − y(t) should ideally go to zero lim
t→∞

e t = 0

▪ Sensitivity describes the relation between r t → e t : E s = S s R s =
1

1+L s
R(s)

▪ For a step input R s =
1

s
→ E s =

1

s

1

1+L(s)

▪ Steady state behaviour:

▪ ess = lim
t→∞

e t = lim
s→0

sE s = lim
s→0

1

1+L(s)
=

1

1+L(0)

▪ How can we make sure we have no steady state error?

▪ L 0 → ∞ → need a pole at s = 0 (integrator)

▪ If the closed loop system is stable and we have an integrator we have 0 steady state error

▪ How do we get L 0 ?

▪ L s =
kbd
sq

s

−z1
+1

s

−z2
+1 …

s

−z1
+1

s

−p1
+1

s

−p2
+1 …

s

−pn−q
+1

s→0
L 0 →

kbd
sq

▪ q is called type L s for q = 0 we get L 0 = kbd which is called the DC-gain

▪ q > 0: L 0 → ∞

Time Response
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Steady State Error



▪ Steady State error for a step input R s =
1

s
→ E s =

1

s

1

1+L(s)

▪ ess = lim
t→∞

e t = lim
s→0

sE s = lim
s→0

1

1+L(s)
=

1

1+L(0)

▪ What about ramps r t =
1

q!
tq → R s =

1

sq+1
?

▪ ess = lim
t→∞

e t = lim
s→0

sE s = lim
s→0

1

sq
1

1+L(s)

▪ To have 0 ss-error we need at least one integrator more in our system

▪ The same derivations go for disturbances!

Time Response
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Steady State Error



▪ Given the system: G s =
s+3

s3+5s+3
and a Controller C s = 3 + 6s

▪ What is the steady state error for a step input a linear ramp?

▪ L s =
s+3

s3+5s+3
(3 + 6s)

▪ L 0 =
3

3
3 = 3

▪ Step input: ess = lim
s→0

sE s =
1

1+L(0)
=

1

1+3
=

1

2

▪ Impulse input: 

▪ ess = lim
t→∞

e t = lim
s→0

sE s = lim
s→0

1

s

1

1+L(s)
= lim

s→0

1

s

1

1+
s+3

s3+5s+3
(3+6s)

▪ ess = lim
s→0

1

s

s3+5s+3

s3+5s+(s+3)(3+6s)
→ ∞

▪ Propose a controller that we get a zero ss error:

▪ C s = 3 + 6s +
3

s2

Time Response
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Steady State Error



▪ First order system:

▪ ሶx t = −
1

τ
x t +

k

τ
u t , y t = x(t)

▪ G s =
k

τs+1

▪ Time response to a step input:

▪ y t = x0e
−
t

τ + k(1 − e−
t

τ )

▪ What we can see:

▪ x0 determines the start value

▪ DC-gain/Steady State: yss = k

▪ Evaluating the derivative at t = 0:

▪ The tangent crosses y = k at t = τ

▪ Large τ slow convergence

▪ Settling Time: Time it takes to be at d% of yss (beware this is the opposite as in the lecture)

▪ Td = τ ln
100

1−d
→ τ =

Td

ln
100

1−d

Time Response
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Step Response: 2 order system



▪ Secon order system:

▪ ሶx t =
0 1

−ωn
2 −2ζωn

x t +
0
ωn
2 u t , y(t) = x(t)

▪ G s =
ωn
2

s2+2ζωn+ωn
2

▪ Time response to a step input (depends on ζ): (in Mechanics III)

▪ Underdamped (ζ < 1):

▪ y t = 1 −
1

cos φ
eσt cos ωt + φ

▪ φ = arctan
ζ

ω
, σ = ζωn, ω = ωn

2 − ζωn
2 = ωn 1 − ζ2

▪ Overdamped ζ > 1 : We get cosh() and sinh() terms 
(not relevant for you)

Time Response
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Step Response: 2 order system



▪ Time response to a step input  underdamped (ζ < 1):

▪ y t = 1 −
1

cos φ
eσt cos ωt + φ

▪ φ = arctan
ζ

ω
, σ = ζωn, ω = ωn

2 − ζωn
2 = ωn 1 − ζ2

▪ What can we specify?

▪ Settling time: (on exponential envelope)

▪ Td =
1

σ
ln

100

1−d
→ σ =

ln
100

1−d

Td

▪ Time to peak:

▪ Tp =
π

ω

▪ Overshoot: (low damping = high overshoot)

▪ Mp = e
σπ

ω → ζ2 =
ln Mp

2

π2+ ln Mp

2

▪ Rise Time:

▪ T100 =
π

2
−φ

ω
≈

π

2ωn

Time Response
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Step Response: 2 order system



▪ What about higher order systems?

▪ Approximate them with a 1 or 2 order system

▪ Apply the specifications to the approximation

▪ What poles to choose?

▪ No zeros: Chose the poles with the slowest decay time

▪ With zeros: Highest residuals

▪ In General:

▪ We want high real part (fast decay)

▪ We want low imaginary part (smaller overshoot)

▪ We can see this in the Imaginary Plane

Time Response
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Step Response: Higher Order Systems



▪ We have a electrical system that can be described by:

▪ u t = RC ሶy t + y t , R = 1

▪ We got the plot of a step input voltage:

▪ u t = a ⋅ h(t)

▪ What is the value of C?

▪ ሶy t = −
1

C
y t +

a

C
h t , τ = C, k = a

▪ τ: where y(t) crosses u(t)

▪ τ = 0.5 → C = 0.5F

▪ What are the value of a?

▪ yss = k = a = 3

▪ If we choose R = 2 what does C need to be for an 

identical system behaviour?

▪ RC = 0.5 → 2C = 0.5 → C = 0.25

Time Response
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Step Response: Example



▪ General Formulation:

▪ u t = kpe t + kd ሶe t + ki∫ e t dt

▪ U s = kp + kds +
ki
s

E s = C s E(s)

▪ We get: T s : r t → y t or n t → y t , S s : r t → e t or d t → y(t)

▪ T s =
kp+kds+

ki
s
G(s)

1+ kp+kds+
ki
s
G(s)

, S s =
1

1+ kp+kds+
ki
s
G(s)

▪ Proportional Part:

▪ T s =
kp G(s)

1+ kp G(s)
, S s =

1

1+ kp G(s)

▪ High kp: T s → 1, S s → 0

▪ Faster response

▪ Lower steady state error

▪ Higher sensitivity to noise

PID Control
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Proportional Part



▪ General Formulation:

▪ u t = kpe t + kd ሶe t + ki∫ e t dt

▪ U s = kp + kds +
ki
s

E s = C s E(s)

▪ Proportional and Integrator Part:

▪ As seen before integrator part reduces steady state error to 0

▪ High ki: 

▪ System starts to oscillate

▪ Integrator fills up and needs to be emptied on the other side

▪ Still sensitive to noise

PID Control
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Integral Part



▪ General Formulation:

▪ u t = kpe t + kd ሶe t + ki∫ e t dt

▪ U s = kp + kds +
ki
s

E s = C s E(s)

▪ Proportional, Derivative and Integrator Part:

▪ High kd: 

▪ Steady state error not affected

▪ Less oscillation (more damping)

▪ Slows down the system

▪ Sensitivity to noise increases

▪ High frequency noise derivatives are large

PID Control
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Derivative Part



▪ Proportional Part:

▪ Faster response

▪ Lower steady state error

▪ Higher sensitivity to noise

▪ Reduces stability margin -> can make system unstable

▪ Integrator Part:

▪ Eliminates steady state error (step input)

▪ Introduces oscillation

▪ Reduces stability margin -> can make system unstable

▪ Derivative Part

▪ Reduces Overshooting, Increases Damping

▪ Improves stability margins

▪ Very sensitive to noise

▪ Not physically realizable (use approximation)

PID Control
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Summary



▪ Freestyle:

▪ Start with kp add a bit of kd to dampen and add ki to 

remove ss-error, see what works

▪ Root Locus in the lecture

▪ Recursively changing the values of kp, kd, ki

▪ Ziegler-Nichols: systematic approach

▪ Increase kp until the system becomes marginally stable 

(start oscillating without decay)

▪ Get kp
∗ and T∗ =

ω∗

2π

▪ Aström-Hägglund: systematic approach

▪ Get kp
∗ and T∗ like Ziegler-Nichols

▪ Get P(0) using measurements of a step response

▪ Optimal Design and Stability not guaranteed

▪ Real world testing often needed

PID Control
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PID Design/PID Tuning



▪ 1:

▪ A) do

▪ B) look at solution and think about the answer

▪ C) look at solution and think about the answer

▪ D) optional

▪ E) play around a bit

▪ 2:

▪ A) optional

▪ B) do, need solution of A)

▪ C) do, cumbersome but good practice

▪ D) do

▪ 3:

▪ A) do

▪ B) do

▪ C) optional

Exercise 07
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What to do?
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