

Control Systems I Recitation 08

https://n.ethz.ch/~jgeurts/ jgeurts@ethz.ch

Controllers and Feedback

Introduction

- Until now we only looked at the system: $u(t) \rightarrow y(t)$
 - Stability and Analysis until now only for this
- We can introduce a Controller (no feedback yet):
 - **Open Loop** System: $r(t) \rightarrow y(t)$
 - L(s) = C(s)G(s)
- We can Introduce Feedback:
 - **Closed Loop** System: $r(t) \rightarrow y(t)$
 - $T(s) = \frac{L(s)}{1+L(s)} = \frac{C(s)G(s)}{1+C(s)G(s)}$
 - Changes the system behaviour dynamically
 - Unstable –> stable
 - Stable -> "More" stable (quicker or less oscillation)
 - Stable -> unstable

Root Locus

What?

Add proportional controller to the open loop system:

•
$$kL(s) = k \frac{N(s)}{D(s)} \rightarrow T(s) = \frac{kL(s)}{1+kL(s)} = \frac{kN(s)}{D(s)+kN(s)}$$

• $kL(s) = k \frac{(s-z_1)(s-z_2)...(s-z_m)}{(s-p_1)(s-p_2)...(s-p_n)}$

- Root Locus = Graphical analysis of the closed loop system for different values of k^{or any other parameter}
 - Plot the position of the zeros and poles for all possible ${\bf k}$
- Using only the open loop system to analyse the closed loop system!
 - We only need to know L(s)!!!
 - Get quick (qualitative) info about the system response
- Different extremes:
 - k = 0: Poles of $T(s) \rightarrow$ Poles of L(s)
 - $k \rightarrow \infty$: Poles of $T(s) \rightarrow$ Zeros of L(s)
 - This also explains why we should avoid non-minimum phase zeros
 - Since degree of N(s) is smaller than D(s) the "excess" poles go to ∞

Root Locus

Extracting Information

- Get Open Loop Transfer Function:
 - Zeros are circles
 - Poles are crosses

•
$$L(s) = \frac{(s-z_1)(s-z_2)...(s-z_m)}{(s-p_1)(s-p_2)...(s-p_n)}$$

- Stability:
 - Check for poles with positive real part
 - Zeros with positive real part mean that the system becomes unstable if k to large
- Damping and Oscillation (poles and zeros):
 - Imaginary parts -> Oscillation
 - Negative real part -> Damping

Outline

- System Analysis
 - What is there to check?
 - Different Transfer Functions
 - Sidenote on Total System Behaviour
- Time Response
 - Steady State Error
 - Example
 - Step Response: 1 order system
 - Step Response: 2 order system
- PID Controller
 - Proportional Part
 - Integral Part
 - Derivative Part
 - PID Tuning

Conceptual Recap

Classical Control Approach

System Analysis

What is there to check?

- Qualitative Analysis: (already seen)
 - Stability Analysis: Lyapunov, BIBO, Root Locus
- Quantitative Analysis: (today)
 - Steady State behaviour
 - Do we converge to the desired value?
 - Speed of Convergence
 - How fast do we converge?
 - Overshoot
 - Do we have oscillation and if so, how big are these?
- How about robustness? (next week)
 - Modelling errors
 - If the nominal system is stable is the real system also stable?
 - How big of an error can the system compensate for?
 - Noise/Disturbance Rejection
 - If we have disturbances/noise how good can the closed loop system handle these?

System Analysis

Different Transfer Functions

- We saw the Closed Loop System:
 - Complementary Sensitivity: $r(t) \rightarrow y(t)$ or $n(t) \rightarrow y(t)$

T(s) =
$$\frac{Y(s)}{N(s)} = \frac{Y(s)}{R(s)} = \frac{L(s)}{1+L(s)} = \frac{C(s)G(s)}{1+C(s)G(s)}$$

• There are more:

• Sensitivity:
$$r(t) \rightarrow e(t)$$
 or $d(t) \rightarrow y(t)$

•
$$S(s) = \frac{E(s)}{R(s)} = \frac{Y(s)}{D(s)} = \frac{1}{1+L(s)} = \frac{1}{1+C(s)G(s)}$$

- We also see that S(s) + T(s) = 1
 - We can either track the reference perfect or reject noise perfect

System Analysis

Sidenote on Total System Behaviour

• We can do this for all possible inputs to the system:

• We get:

$$Y_R(s) = \frac{P(s)C(s)}{1 + P(s)C(s)} \cdot R(s), \quad Y_N(s) = \frac{P(s)C(s)}{1 + P(s)C(s)} \cdot N(s)$$
$$Y_W(s) = \frac{P(s)}{1 + P(s)C(s)} \cdot W(s), \quad Y_D(s) = \frac{1}{1 + P(s)C(s)} \cdot D(s)$$

• Linearity allows us to: $Y(s) = Y_R(s) + Y_N(s) + Y_W(s) + Y_D(s)$

• We thus get:
$$T(s) = \frac{L(s)}{1+L(s)}$$
, $S(s) = \frac{1}{1+L(s)} \rightarrow$

$$Y(s) = S(s) \cdot [D(s) + P(s) \cdot W(s)] + T(s) \cdot [R(s) + N(s)]$$

• Learnings:

• System is stable iff
$$\frac{1}{1+L(s)}$$
 is stable

Steady State Error

- Error: e(t) = r(t) y(t) should ideally go to zero $\lim_{t \to \infty} e(t) = 0$
- Sensitivity describes the relation between $r(t) \rightarrow e(t)$: $E(s) = S(s)R(s) = \frac{1}{1+L(s)}R(s)$
- For a step input $R(s) = \frac{1}{s} \rightarrow E(s) = \frac{1}{s} \frac{1}{1+L(s)}$
 - Steady state behaviour:
 - $e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{1}{1 + L(s)} = \frac{1}{1 + L(0)}$
 - How can we make sure we have no steady state error?
 - $L(0) \rightarrow \infty \rightarrow$ need a pole at s = 0 (integrator)
 - If the closed loop system is stable and we have an integrator we have 0 steady state error
- How do we get L(0)?

•
$$L(s) = \frac{k_{bd}}{s^q} \frac{\left(\frac{s}{-z_1}+1\right)\left(\frac{s}{-z_2}+1\right)...\left(\frac{s}{-z_1}+1\right)}{\left(\frac{s}{-p_1}+1\right)\left(\frac{s}{-p_2}+1\right)...\left(\frac{s}{-p_n-q}+1\right)} \xrightarrow{s \to 0} L(0) \to \frac{k_{bd}}{s^q}$$

• q is called type L(s) for q = 0 we get $L(0) = k_{bd}$ which is called the DC-gain

•
$$q > 0: L(0) \rightarrow \infty$$

Steady State Error

• Steady State error for a step input $R(s) = \frac{1}{s} \rightarrow E(s) = \frac{1}{s} \frac{1}{1+L(s)}$

•
$$e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{1}{1 + L(s)} = \frac{1}{1 + L(0)}$$

• What about ramps
$$r(t) = \frac{1}{q!}t^q \rightarrow R(s) = \frac{1}{s^{q+1}}?$$

•
$$e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{1}{s^q} \frac{1}{1 + L(s)}$$

• To have 0 ss-error we need at least one integrator more in our system

e _{ss}	q = 0	q = 1	<i>q</i> = 2	
Type 0	$rac{1}{1+k_{Bode}}$	∞	∞	
Type 1	0	$\frac{1}{k_{\text{Bode}}}$	∞	
Type 2	0	0	$rac{1}{k_{Bode}}$	

• The same derivations go for disturbances!

Steady State Error

- Given the system: $G(s) = \frac{s+3}{s^3+5s+3}$ and a Controller C(s) = 3 + 6s
- What is the steady state error for a step input a linear ramp?
 - $L(s) = \frac{s+3}{s^3+5s+3}(3+6s)$
 - $L(0) = \frac{3}{3}(3) = 3$

• Step input:
$$e_{ss} = \lim_{s \to 0} sE(s) = \frac{1}{1+L(0)} = \frac{1}{1+3} = \frac{1}{2}$$

• Impulse input:

•
$$e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{1}{s} \frac{1}{1 + L(s)} = \lim_{s \to 0} \frac{1}{s} \frac{1}{1 + \frac{s+3}{s^3 + 5s+3}(3 + 6s)}$$

•
$$e_{ss} = \lim_{s \to 0} \frac{1}{s} \frac{s^3 + 5s + 3}{s^3 + 5s + (s+3)(3+6s)} \to \infty$$

Propose a controller that we get a zero ss error:

•
$$C(s) = 3 + 6s + \frac{3}{s^2}$$

Step Response: 2 order system

- First order system:
 - $\dot{x}(t) = -\frac{1}{\tau}x(t) + \frac{k}{\tau}u(t), \ y(t) = x(t)$
 - $G(s) = \frac{k}{\tau s + 1}$
- Time response to a step input:
 - $y(t) = x_0 e^{-\frac{t}{\tau}} + k(1 e^{-\frac{t}{\tau}})$
- What we can see:
 - x₀ determines the start value
 - DC-gain/Steady State: $y_{ss} = k$
 - Evaluating the derivative at t = 0:
 - The tangent crosses y = k at $t = \tau$
 - Large τ slow convergence
 - Settling Time: Time it takes to be at d% of y_{ss} (beware this is the opposite as in the lecture)

•
$$T_d = \tau \ln\left(\frac{100}{1-d}\right) \rightarrow \tau = \frac{T_d}{\ln\left(\frac{100}{1-d}\right)}$$

$$\begin{array}{c}
 & \uparrow y(t)/k \\
1 & & \downarrow \\
0.6 & & \downarrow \\
 & \downarrow \\
0 & 1 & 2 & t/\tau
\end{array}$$

Step Response: 2 order system

• Secon order system:

•
$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & 1 \\ -\omega_n^2 & -2\zeta\omega_n \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ \omega_n^2 \end{bmatrix} \mathbf{u}(t), \ \mathbf{y}(t) = \mathbf{x}(t)$$

• $\mathbf{G}(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n + \omega_n^2}$

- Time response to a step input (depends on ζ): (in Mechanics III)
 - Underdamped ($\zeta < 1$):

•
$$y(t) = 1 - \frac{1}{\cos(\phi)} e^{\sigma t} \cos(\omega t + \phi)$$

•
$$\phi = \arctan\left(\frac{\zeta}{\omega}\right)$$
, $\sigma = \zeta \omega_n$, $\omega = \sqrt{\omega_n^2 - (\zeta \omega_n)^2} = \omega_n \sqrt{1 - \zeta^2}$

 Overdamped (ζ > 1): We get cosh() and sinh() terms (not relevant for you)

Step Response: 2 order system

- Time response to a step input underdamped ($\zeta < 1$):
 - $y(t) = 1 \frac{1}{\cos(\phi)} e^{\sigma t} \cos(\omega t + \phi)$
 - $\phi = \arctan\left(\frac{\zeta}{\omega}\right)$, $\sigma = \zeta \omega_n$, $\omega = \sqrt{\omega_n^2 (\zeta \omega_n)^2} = \omega_n \sqrt{1 \zeta^2}$
- What can we specify?
 - Settling time: (on exponential envelope)

•
$$T_d = \frac{1}{\sigma} \ln\left(\frac{100}{1-d}\right) \rightarrow \sigma = \frac{\ln\left(\frac{100}{1-d}\right)}{T_d}$$

• Time to peak:

$$T_p = \frac{\pi}{\omega}$$

Overshoot: (low damping = high overshoot)

•
$$M_p = e^{\frac{\sigma \pi}{\omega}} \rightarrow \zeta^2 = \frac{\left(\ln(M_p)\right)^2}{\pi^2 + \left(\ln(M_p)\right)^2}$$

• Rise Time:

$$T_{100} = \frac{\frac{\pi}{2} - \varphi}{\omega} \approx \frac{\pi}{2\omega_n}$$

 3τ

 $\overline{\pm}5\%$

 $y_{\rm ss}$

 $y(t) = 1 - rac{1}{\cos arphi} e^{\sigma t} \cos(\omega t + arphi), \quad t \geq 0.$

Step Response: Higher Order Systems

- What about higher order systems?
 - Approximate them with a 1 or 2 order system
 - Apply the specifications to the approximation
- What poles to choose?
 - No zeros: Chose the poles with the slowest decay time
 - With zeros: Highest residuals
- In General:
 - We want high real part (fast decay)
 - We want low imaginary part (smaller overshoot)
 - We can see this in the Imaginary Plane

Step Response: Example

- We have a electrical system that can be described by:
 - $u(t) = RC\dot{y}(t) + y(t), R = 1$
- We got the plot of a step input voltage:
 - $u(t) = a \cdot h(t)$
- What is the value of C?
 - $\dot{y}(t) = -\frac{1}{C}y(t) + \frac{a}{C}h(t), \tau = C, k = a$
 - τ: where y(t) crosses u(t)
 - $\tau = 0.5 \rightarrow C = 0.5F$
- What are the value of a?
 - $y_{ss} = k = a = 3$
- If we choose R = 2 what does C need to be for an identical system behaviour?
 - $RC = 0.5 \rightarrow 2C = 0.5 \rightarrow C = 0.25$

Proportional Part

- General Formulation:
 - $u(t) = k_p e(t) + k_d \dot{e}(t) + k_i \int e(t) dt$

•
$$U(s) = \left(k_p + k_d s + \frac{k_i}{s}\right)E(s) = C(s)E(s)$$

• We get: $T(s): r(t) \rightarrow y(t) \text{ or } n(t) \rightarrow y(t), S(s): r(t) \rightarrow e(t) \text{ or } d(t) \rightarrow y(t)$

•
$$T(s) = \frac{\left(k_p + k_d s + \frac{k_i}{s}\right)G(s)}{1 + \left(k_p + k_d s + \frac{k_i}{s}\right)G(s)}, \ S(s) = \frac{1}{1 + \left(k_p + k_d s + \frac{k_i}{s}\right)G(s)}$$

Proportional Part:

•
$$T(s) = \frac{(k_p)G(s)}{1+(k_p)G(s)}, S(s) = \frac{1}{1+(k_p)G(s)}$$

- High $k_p: T(s) \to 1, S(s) \to 0$
 - Faster response
 - Lower steady state error
 - Higher sensitivity to noise

Integral Part

- General Formulation:
 - $u(t) = k_p e(t) + k_d \dot{e}(t) + k_i \int e(t) dt$
 - $U(s) = \left(k_p + k_d s + \frac{k_i}{s}\right)E(s) = C(s)E(s)$
- Proportional and Integrator Part:
 - As seen before integrator part reduces steady state error to 0
 - High k_i:
 - System starts to oscillate
 - Integrator fills up and needs to be emptied on the other side
 - Still sensitive to noise

Derivative Part

- General Formulation:
 - $u(t) = k_p e(t) + k_d \dot{e}(t) + k_i \int e(t) dt$
 - $U(s) = \left(k_p + k_d s + \frac{k_i}{s}\right)E(s) = C(s)E(s)$
- Proportional, Derivative and Integrator Part:
 - High k_d:
 - Steady state error not affected
 - Less oscillation (more damping)
 - Slows down the system
 - Sensitivity to noise increases
 - High frequency noise derivatives are large

Summary

- Proportional Part:
 - Faster response
 - Lower steady state error
 - Higher sensitivity to noise
 - Reduces stability margin -> can make system unstable
- Integrator Part:
 - Eliminates steady state error (step input)
 - Introduces oscillation
 - Reduces stability margin -> can make system unstable
- Derivative Part
 - Reduces Overshooting, Increases Damping
 - Improves stability margins
 - Very sensitive to noise
 - Not physically realizable (use approximation)

PID Design/PID Tuning

- Freestyle:
 - Start with k_p add a bit of k_d to dampen and add k_i to remove ss-error, see what works
- Root Locus in the lecture
 - Recursively changing the values of k_p, k_d, k_i
- Ziegler-Nichols: systematic approach
 - Increase \mathbf{k}_p until the system becomes marginally stable (start oscillating without decay)
 - Get k_p^* and $T^* = \frac{\omega^*}{2\pi}$
- Aström-Hägglund: systematic approach
 - Get k^{*}_p and T^{*} like Ziegler-Nichols
 - Get |P(0)| using measurements of a step response
- Optimal Design and Stability not guaranteed
 - Real world testing often needed

Regler	k_p	T_{i}	T_d
Р	$0.5 \cdot k_p^*$	$\infty \cdot T^*$	$0\cdot T^*$
PI	$0.45 \cdot k_p^*$	$0.85 \cdot T^*$	$0 \cdot T^*$
PD	$0.55 \cdot k_p^*$	$\infty \cdot T^*$	$0.15 \cdot T^*$
PID	$0.60 \cdot k^{*}$	$0.50 \cdot T^*$	$0.125 \cdot T^{*}$

$$\boxed{\kappa = \frac{1}{|P(0)| \cdot k_p^*}, \quad x = \alpha_{0,x} \cdot e^{\alpha_{1,x} \cdot \kappa + \alpha_{2,x} \cdot \kappa^2}}$$

	$\mu_{ m min}=0.7$			$\mu_{ m min}=0.5$		
x	$lpha_{0,x}$	$lpha_{1,x}$	$lpha_{2,x}$	$lpha_{0,x}$	$lpha_{1,x}$	$lpha_{2,x}$
$\frac{k_p}{k_p^*}$	0.053	2.90	-2.6	0.13	1.9	-1.30
$\frac{T_i^{\prime}}{T^*}$	0.900	-4.40	2.7	0.90	-4.4	2.70

	$\mu_{\min} = 0.7$			$\mu_{ m min}=0.5$		
x	$lpha_{0,x}$	$lpha_{1,x}$	$lpha_{2,x}$	$lpha_{0,x}$	$lpha_{1,x}$	$lpha_{2,x}$
$\frac{k_p}{k_p^*}$	0.33	-0.31	-1.00	0.72	-1.60	1.20
$rac{T_i}{T^*}$	0.76	-1.60	-0.36	0.59	-1.30	0.38
$\frac{T_d}{T^*}$	0.17	-0.46	-2.10	0.15	-1.40	0.56

Exercise 07

What to do?

- 1:
 - A) do
 - B) look at solution and think about the answer
 - C) look at solution and think about the answer
 - D) optional
 - E) play around a bit
- 2:
 - A) optional
 - B) do, need solution of A)
 - C) do, cumbersome but good practice
 - D) do
- 3:
 - A) do
 - B) do
 - C) optional