

Controllers and Feedback

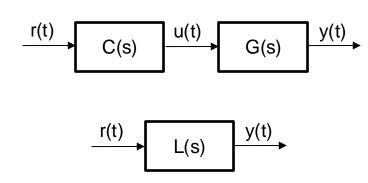
Introduction

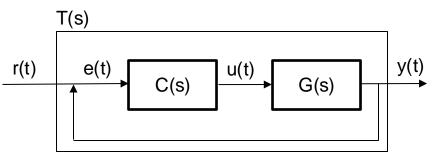
- Until now we only looked at the system: $u(t) \rightarrow y(t)$
 - Stability and Analysis until now only for this

- We can introduce a Controller (no feedback yet):
 - Open Loop System: $r(t) \rightarrow y(t)$
 - L(s) = C(s)G(s)
- We can Introduce Feedback:
 - Closed Loop System: $r(t) \rightarrow y(t)$

•
$$T(s) = \frac{L(s)}{1+L(s)} = \frac{C(s)G(s)}{1+C(s)G(s)}$$

- Changes the system behaviour dynamically
 - Unstable -> stable
 - Stable -> "More" stable (quicker or less oscillation)
 - Stable -> unstable





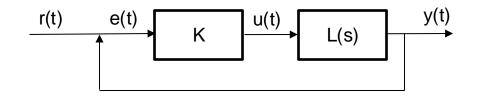
Root Locus

What?

• Add proportional controller to the open loop system:

•
$$kL(s) = k\frac{N(s)}{D(s)} \rightarrow T(s) = \frac{kL(s)}{1+kL(s)} = \frac{kN(s)}{D(s)+kN(s)}$$

•
$$kL(s) = k \frac{(s-z_1)(s-z_2)...(s-z_m)}{(s-p_1)(s-p_2)...(s-p_n)}$$



- Root Locus = Graphical analysis of the closed loop system for different values of kor any other parameter
 - Plot the position of the zeros and poles for all possible k
- Using only the open loop system to analyse the closed loop system!
 - We only need to know L(s)!!!
 - Get quick (qualitative) info about the system response
- Different extremes:
 - k = 0: Poles of $T(s) \rightarrow Poles$ of L(s)
 - $k \to \infty$: Poles of $T(s) \to Zeros$ of L(s)
 - This also explains why we should avoid non-minimum phase zeros
 - Since degree of N(s) is smaller than D(s) the "excess" poles go to ∞

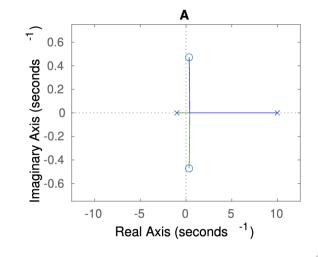
Root Locus

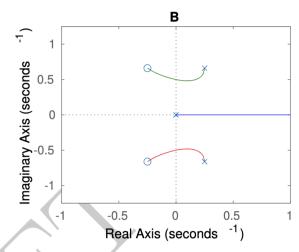
Extracting Information

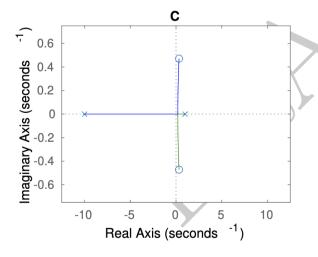
- Get Open Loop Transfer Function:
 - Zeros are circles
 - Poles are crosses

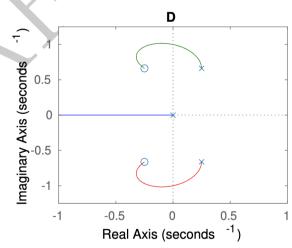
L(s) =
$$\frac{(s-z_1)(s-z_2)...(s-z_m)}{(s-p_1)(s-p_2)...(s-p_n)}$$

- Stability:
 - Check for poles with positive real part
 - Zeros with positive real part mean that the system becomes unstable if k to large
- Damping and Oscillation (poles and zeros):
 - Imaginary parts -> Oscillation
 - Negative real part -> Damping







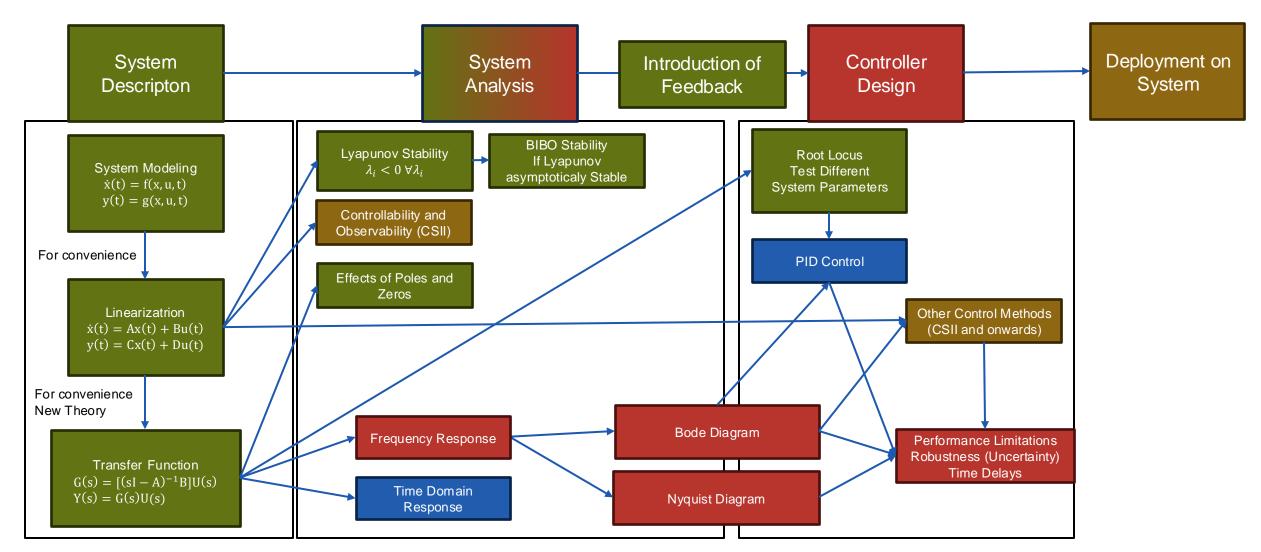


Outline

- System Analysis
 - What is there to check?
 - Different Transfer Functions
 - Sidenote on Total System Behaviour
- Time Response
 - Steady State Error
 - Example
 - Step Response: 1 order system
 - Step Response: 2 order system
- PID Controller
 - Proportional Part
 - Integral Part
 - Derivative Part
 - PID Tuning

Conceptual Recap

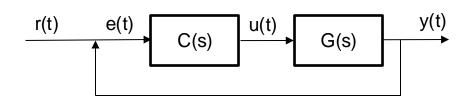
Classical Control Approach



System Analysis

What is there to check?

- Qualitative Analysis: (already seen)
 - Stability Analysis: Lyapunov, BIBO, Root Locus
- Quantitative Analysis: (today)
 - Steady State behaviour
 - Do we converge to the desired value?
 - Speed of Convergence
 - How fast do we converge?
 - Overshoot
 - Do we have oscillation and if so, how big are these?
- How about robustness? (next week)
 - Modelling errors
 - If the nominal system is stable is the real system also stable?
 - How big of an error can the system compensate for?
 - Noise/Disturbance Rejection
 - If we have disturbances/noise how good can the closed loop system handle these?



System Analysis

Different Transfer Functions

- We saw the Closed Loop System:
 - Complementary Sensitivity: $r(t) \rightarrow y(t)$ or $n(t) \rightarrow y(t)$

T(s) =
$$\frac{Y(s)}{N(s)} = \frac{Y(s)}{R(s)} = \frac{L(s)}{1+L(s)} = \frac{C(s)G(s)}{1+C(s)G(s)}$$

- There are more:
 - Sensitivity: $r(t) \rightarrow e(t)$ or $d(t) \rightarrow y(t)$

$$S(s) = \frac{E(s)}{R(s)} = \frac{Y(s)}{D(s)} = \frac{1}{1 + L(s)} = \frac{1}{1 + C(s)G(s)}$$

- We also see that S(s) + T(s) = 1
 - We can either track the reference perfect or reject noise perfect

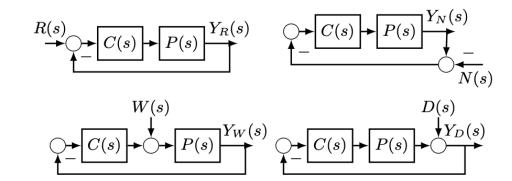


System Analysis

Sidenote on Total System Behaviour

- We can do this for all possible inputs to the system:
- We get:

$$Y_R(s) = rac{P(s)C(s)}{1 + P(s)C(s)} \cdot R(s), \quad Y_N(s) = rac{P(s)C(s)}{1 + P(s)C(s)} \cdot N(s)$$
 $Y_W(s) = rac{P(s)}{1 + P(s)C(s)} \cdot W(s), \quad Y_D(s) = rac{1}{1 + P(s)C(s)} \cdot D(s)$



- Linearity allows us to: $Y(s) = Y_R(s) + Y_N(s) + Y_W(s) + Y_D(s)$
 - We thus get: $T(s) = \frac{L(s)}{1+L(s)}$, $S(s) = \frac{1}{1+L(s)} \rightarrow$

$$Y(s) = S(s) \cdot [D(s) + P(s) \cdot W(s)] + T(s) \cdot [R(s) + N(s)]$$

- Learnings:
 - System is stable iff $\frac{1}{1+L(s)}$ is stable

Steady State Error

- Error: e(t) = r(t) y(t) should ideally go to zero $\lim_{t\to\infty} e(t) = 0$
- Sensitivity describes the relation between $r(t) \rightarrow e(t)$: $E(s) = S(s)R(s) = \frac{1}{1+L(s)}R(s)$
- For a step input $R(s) = \frac{1}{s} \rightarrow E(s) = \frac{1}{s} \frac{1}{1 + L(s)}$
 - Steady state behaviour:

•
$$e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{1}{1 + L(s)} = \frac{1}{1 + L(0)}$$

- How can we make sure we have no steady state error?
 - L(0) → ∞ → need a pole at s = 0 (integrator)
 - If the closed loop system is stable and we have an integrator we have 0 steady state error
- How do we get L(0)?

$$L(s) = \frac{k_{bd}}{s^q} \frac{\left(\frac{s}{-z_1} + 1\right)\left(\frac{s}{-z_2} + 1\right) ...\left(\frac{s}{-z_1} + 1\right)}{\left(\frac{s}{-p_1} + 1\right)\left(\frac{s}{-p_2} + 1\right) ...\left(\frac{s}{-p_{n-q}} + 1\right)} \xrightarrow{s \to 0} L(0) \to \frac{k_{bd}}{s^q}$$

- q is called type L(s) for q = 0 we get $L(0) = k_{bd}$ which is called the DC-gain
- $q > 0: L(0) \rightarrow \infty$

Steady State Error

• Steady State error for a step input $R(s) = \frac{1}{s} \rightarrow E(s) = \frac{1}{s} \frac{1}{1 + L(s)}$

•
$$e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{1}{1 + L(s)} = \frac{1}{1 + L(0)}$$

- What about ramps $r(t) = \frac{1}{q!}t^q \to R(s) = \frac{1}{s^{q+1}}$?
 - $e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{1}{s^q} \frac{1}{1 + L(s)}$
 - To have 0 ss-error we need at least one integrator more in our system

e_{ss}	q = 0	q=1	q=2
Type 0	$rac{1}{1+\mathit{k}_{Bode}}$	∞	∞
Type 1	0	$\frac{1}{k_{Bode}}$	∞
Type 2	0	0	$\frac{1}{k_{Bode}}$

The same derivations go for disturbances!

Steady State Error - Example

- Given the system: $G(s) = \frac{s+3}{s^3+5s+3}$ and a Controller C(s) = 3+6s
- What is the steady state error for a step input a linear ramp?

 - Step input:
 - Impulse input:
 - Propose a controller that we get a zero ss error:

Step Response: 2 order system

First order system:

•
$$\dot{x}(t) = -\frac{1}{\tau}x(t) + \frac{k}{\tau}u(t), \ y(t) = x(t)$$

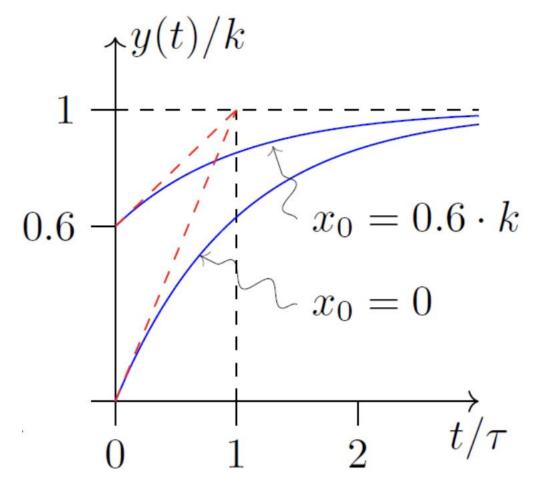
•
$$G(s) = \frac{k}{\tau s + 1}$$

Time response to a step input:

•
$$y(t) = x_0 e^{-\frac{t}{\tau}} + k(1 - e^{-\frac{t}{\tau}})$$

- What we can see:
 - x₀ determines the start value
 - DC-gain/Steady State: $y_{ss} = k$
 - Evaluating the derivative at t = 0:
 - The tangent crosses y = k at $t = \tau$
 - Large τ slow convergence
 - Settling Time: Time it takes to be at d% of y_{ss} (beware this is the opposite as in the lecture)

$$T_d = \tau \ln \left(\frac{100}{1-d}\right) \rightarrow \tau = \frac{T_d}{\ln \left(\frac{100}{1-d}\right)}$$



Step Response: 2 order system

Secon order system:

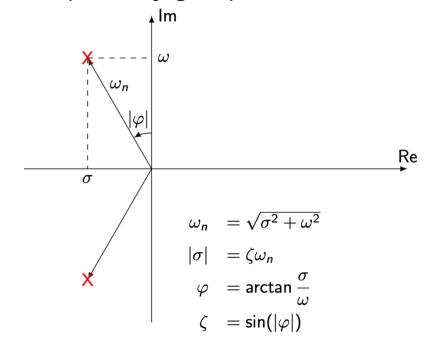
•
$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & 1 \\ -\omega_n^2 & -2\zeta\omega_n \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ \omega_n^2 \end{bmatrix} \mathbf{u}(t), \ \mathbf{y}(t) = \mathbf{x}(t)$$

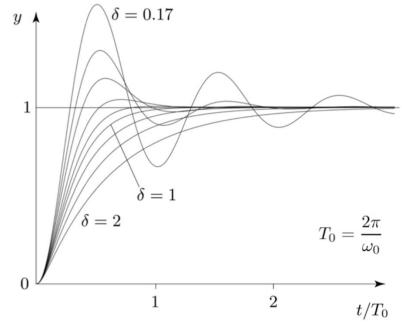
•
$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n + \omega_n^2}$$

- Time response to a step input (depends on ζ): (in Mechanics III)
 - Underdamped (ζ < 1):

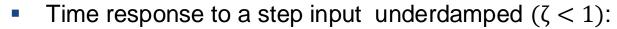
$$y(t) = 1 - \frac{1}{\cos(\varphi)} e^{\sigma t} \cos(\omega t + \varphi)$$

 Overdamped (ζ > 1): We get cosh() and sinh() terms (not relevant for you)

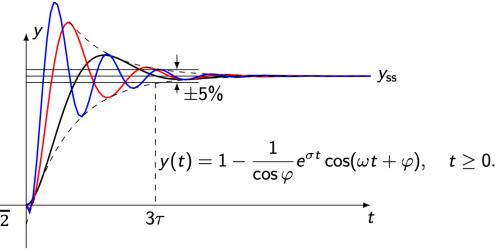




Step Response: 2 order system



•
$$y(t) = 1 - \frac{1}{\cos(\varphi)} e^{\sigma t} \cos(\omega t + \varphi)$$



What can we specify?

$$T_{d} = \frac{1}{\sigma} \ln \left(\frac{100}{1-d} \right) \rightarrow \sigma = \frac{\ln \left(\frac{100}{1-d} \right)}{T_{d}}$$

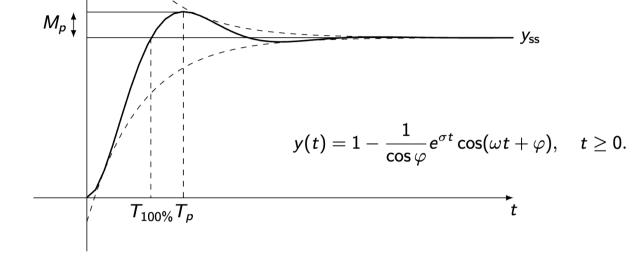
Time to peak:

$$T_p = \frac{\pi}{\omega}$$

Overshoot: (low damping = high overshoot)

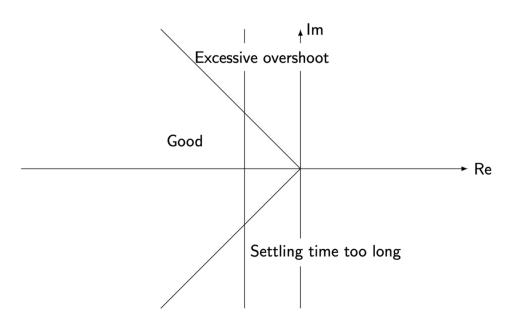
$$M_p = e^{\frac{\sigma\pi}{\omega}} \to \zeta^2 = \frac{\left(\ln(M_p)\right)^2}{\pi^2 + \left(\ln(M_p)\right)^2}$$

Rise Time:



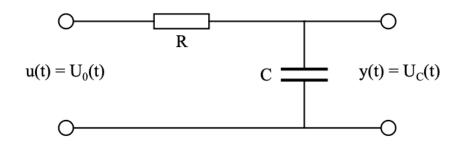
Step Response: Higher Order Systems

- What about higher order systems?
 - Approximate them with a 1 or 2 order system
 - Apply the specifications to the approximation
- What poles to choose?
 - No zeros: Chose the poles with the slowest decay time
 - With zeros: Highest residuals
- In General:
 - We want high real part (fast decay)
 - We want low imaginary part (smaller overshoot)
 - We can see this in the Imaginary Plane

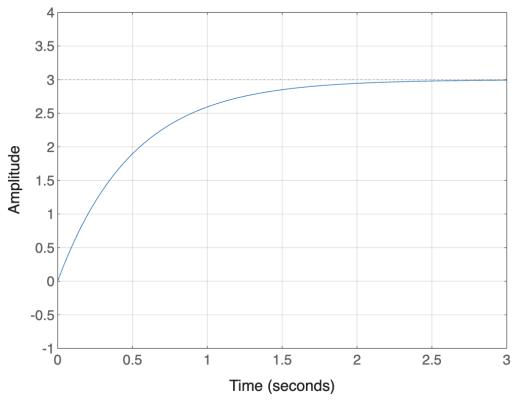


Step Response: Example

- We have a electrical system that can be described by:
 - $u(t) = RC\dot{y}(t) + y(t), R = 1$
- We got the plot of a step input voltage:
 - $u(t) = a \cdot h(t)$
- What is the value of C?
- What are the value of a?
- If we choose R = 2 what does C need to be for an identical system behaviour?



Step Response



Proportional Part

- General Formulation:
 - $u(t) = k_p e(t) + k_d \dot{e}(t) + k_i \int e(t) dt$
 - $U(s) = \left(k_p + k_d s + \frac{k_i}{s}\right) E(s) = C(s) E(s)$
- We get: T(s): $r(t) \rightarrow y(t)$ or $n(t) \rightarrow y(t)$, S(s): $r(t) \rightarrow e(t)$ or $d(t) \rightarrow y(t)$

$$T(s) = \frac{\left(k_p + k_d s + \frac{k_i}{s}\right) G(s)}{1 + \left(k_p + k_d s + \frac{k_i}{s}\right) G(s)}, \quad S(s) = \frac{1}{1 + \left(k_p + k_d s + \frac{k_i}{s}\right) G(s)}$$

- Proportional Part:
 - $T(s) = \frac{(k_p)G(s)}{1+(k_p)G(s)}$, $S(s) = \frac{1}{1+(k_p)G(s)}$
 - High k_p : $T(s) \rightarrow 1$, $S(s) \rightarrow 0$
 - Faster response
 - Lower steady state error
 - Higher sensitivity to noise

Integral Part

- General Formulation:
 - $u(t) = k_p e(t) + k_d \dot{e}(t) + k_i \int e(t) dt$
 - $U(s) = \left(k_p + k_d s + \frac{k_i}{s}\right) E(s) = C(s) E(s)$
- Proportional and Integrator Part:
 - As seen before integrator part reduces steady state error to 0
 - High k_i:
 - System starts to oscillate
 - Integrator fills up and needs to be emptied on the other side
 - Still sensitive to noise

Derivative Part

- General Formulation:
 - $u(t) = k_p e(t) + k_d \dot{e}(t) + k_i \int e(t) dt$
 - $U(s) = \left(k_p + k_d s + \frac{k_i}{s}\right) E(s) = C(s) E(s)$
- Proportional, Derivative and Integrator Part:
 - High k_d:
 - Steady state error not affected
 - Less oscillation (more damping)
 - Slows down the system
 - Sensitivity to noise increases
 - High frequency noise derivatives are large

Summary

- Proportional Part:
 - Faster response
 - Lower steady state error
 - Higher sensitivity to noise
 - Reduces stability margin -> can make system unstable
- Integrator Part:
 - Eliminates steady state error (step input)
 - Introduces oscillation
 - Reduces stability margin -> can make system unstable
- Derivative Part
 - Reduces Overshooting, Increases Damping
 - Improves stability margins
 - Very sensitive to noise
 - Not physically realizable (use approximation)

PID Design/PID Tuning

- Freestyle:
 - Start with k_p add a bit of k_d to dampen and add k_i to remove ss-error, see what works
- Root Locus in the lecture
 - Recursively changing the values of k_p, k_d, k_i
- Ziegler-Nichols: systematic approach
 - Increase k_p until the system becomes marginally stable (start oscillating without decay)
 - Get k_p^* and $T^* = \frac{\omega^*}{2\pi}$
- Aström-Hägglund: systematic approach
 - Get k_p* and T* like Ziegler-Nichols
 - Get |P(0)| using measurements of a step response
- Optimal Design and Stability not guaranteed
 - Real world testing often needed

Regler	k_p	T_{i}	T_d
P	$0.5 \cdot k_p^*$	$\infty \cdot T^*$	$0 \cdot T^*$
PI	$0.45 \cdot k_p^*$	$0.85 \cdot T^*$	$0 \cdot T^*$
PD	$0.55 \cdot k_p^*$	$\infty \cdot T^*$	$0.15 \cdot T^*$
PID	$0.60 \cdot k_p^*$	$0.50 \cdot T^*$	$0.125 \cdot T^*$

$$\kappa = \frac{1}{|P(0)| \cdot k_p^*}, \quad x = \alpha_{0,x} \cdot e^{\alpha_{1,x} \cdot \kappa + \alpha_{2,x} \cdot \kappa^2}$$

Exercise 07

What to do?

- 1:
 - A) do
 - B) look at solution and think about the answer
 - C) look at solution and think about the answer
 - D) optional
 - E) play around a bit
- **2**:
 - A) optional
 - B) do, need solution of A)
 - C) do, cumbersome but good practice
 - D) do
- **3**:
 - A) do
 - B) do
 - C) optional

