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Controllers and Feedback
Introduction

= Until now we only looked at the system: u(t) - y(t)
= Stability and Analysis until now only for this

= We can introduce a Controller (no feedback yet):
= Open Loop System: r(t) - y(t)
L(s) = C(s)G(s)

= We can Introduce Feedback:
= Closed Loop System: r(t) - y(t)

_ L(s) _ C(s)G(s)
T(s) = 1+L(s)  14+C(s)G(s) r(t)

u(t) &) y(t)
r(t) s u(t) &) y(t)
r(t) Ls) y(t)
T(s)
t
o C(s) Lo, G(s) vl

= Changes the system behaviour dynamically
Unstable —> stable
Stable -> “More” stable (quicker or less oscillation)
Stable -> unstable
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Root Locus

What?

r(t) e(t)
= Add proportional controller to the open loop system: *

ut)

L(s)

y()

. _ w _ kL(s) KN(s)
KL(s) = D(s) T(s) = 14+KL(s)  D(s)+kN(s)

. 1. (s=z1)(5-2Z)..(s—Zp)
KL(s) = k(s—pl)(s—pz)-..(s—pn)

= Root Locus = Graphical analysis of the closed loop system for different values of kor any other parameter

= Plot the position of the zeros and poles for all possible k

= Using only the open loop system to analyse the closed loop system!
= We only need to know L(s)!!!
= Get quick (qualitative) info about the system response
= Different extremes:
= k = 0: Poles of T(s) - Poles of L(s)
= k — oo: Poles of T(s) —» Zeros of L(s)
This also explains why we should avoid non-minimum phase zeros
Since degree of N(s) is smaller than D(s) the "excess” poles go to o
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Root Locus
Extracting Information

= Get Open Loop Transfer Function:
= Zeros are circles

= Poles are crosses
. _ (s=24)(s=%3)..(s—Zp)
L(S) = (52 ) 5=ps) (o=pm)

= Stability:
= Check for poles with positive real part
= Zeros with positive real part mean that the
system becomes unstable if k to large
= Damping and Oscillation (poles and zeros):
= |maginary parts -> Oscillation
= Negative real part -> Damping
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Outline

=  System Analysis
= What is there to check?
= Different Transfer Functions
= Sidenote on Total System Behaviour

= Time Response
= Steady State Error
= Example
= Step Response: 1 order system
= Step Response: 2 order system

=  PID Controller
= Proportional Part
= Integral Part

= Derivative Part
=  PID Tuning
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Conceptual Recap

Classical Control Approach

System Introduction of Controller Deployment on

System

Analysis Feedback Design System

Descripton

BIBO Stability
If Lyapunov Root Locus

q Test Different
. asymptoticaly Stable
x(t) = f(x,u,t) ymp i System Parameters

y(®) = gxu,t) H
Controllability and
Observability (CSII)

q

For convenience

Lyapunov Stability
System Modeling A <0V

PID Control
Effects of Poles and
Zeros

Linearizatrion Other Control Methods
x(t) = Ax(t) + Bu(t) (CSll and onwards)
y(t) = Cx(t) + Du(t)

For convenience
New Theory

Frequency Response Performance Limitations
Robustness (Uncertainty)

Transfer Function Time Delays

G(s) = [(s1 = A)BJU(S) | Time Domain
Y(s) = G(s)U(s) Response Nyquist Diagram
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System Analysis

What is there to check? r(t)

= Qualitative Analysis: (already seen)
= Stability Analysis: Lyapunov, BIBO, Root Locus

= Quantitative Analysis: (today)
= Steady State behaviour
Do we converge to the desired value?
= Speed of Convergence
How fast do we converge?
= Qvershoot
Do we have oscillation and if so, how big are these?

= How about robustness? (next week)
= Modelling errors
If the nominal system is stable is the real system also stable?
How big of an error can the system compensate for?
= Noise/Disturbance Rejection

e(t)

C(s)

u(t) -

G(s)

y(t)

If we have disturbances/noise how good can the closed loop system handle these?
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System Analysis

Different Transfer Functions

= We saw the Closed Loop System:

= Complementary Sensitivity: r(t) - y(t) or n(t) - y(t)

Y(s) _ Y(s)

C(s)G(s)

T(s) =

= There are more:

= Sensitivity: r(t) - e(t) or d(t) - y(t)

N(s) _ R(s) 1+4L(s) _ 14C(s)G(s)

1

__E(s) _Y(s) _ —
S(s) = R(s) D(s) 1+L(s) 1+C(s)G(s)

= We also see that S(s) + T(s) =1
= We can either track the reference perfect or reject noise perfect

r(t)

e(t)

C(s)

u(t)

G(s)

y(t)

v
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System Analysis

Sidenote on Total System Behaviour RG), cobl7e Yr(s) e p{Fe Err(s)_
= We can do this for all possible inputs to the system: - O?\WS)
T oNese o-[c) ﬁ)i B NN EEINFE fci)%(l

Yw(s) = 1—|—}};((;))C(s) Wis), Yols) =1 -I-P(ls)C(s) D)

= Linearity allows us to: Y(s) =Yr(s) + Yn(s) + Yw(s) + Yn(s)

L 1
= We thus get: T(s) = 1+is()s)' S(s) = L)

Y(s) = 5(s) - [D(s) + P(s) - W(s)| +T(s) - [R(s) + N(s)]
= Learnings:

IS stable

. . 1
= System is stable iff L)
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Time Response

Steady State Error

= Error: e(t) = r(t) — y(t) should ideally go to zero lim e(t) = 0

t—> oo

= Sensitivity describes the relation between r(t) — e(t): E(s) = S(s)R(s) = 1+i(s) R(s)

1
S 1+L(s)

= For a step input R(s) = = —> E(s) =

= Steady state behawour.

1 1
= 11m e(t) = 11m sE(s) = lm& 1+L(s) _ 1+L(0)

= How can we make sure we have no steady state error?
L(0) —» o — need a pole at s = 0 (integrator)
If the closed loop system is stable and we have an integrator we have O steady state error

= How do we get L(o)-;

L) = Ja GG s
i (—IS) +1)(T+1) ( pz_qﬂ)
= qis called type L(s) for q = 0 we get L(0) = kpq which is called the DC-gain

= q>0:L(0) >
ETH:irich
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Time Response

Steady State Error

1

= Steady State error for a step input R(s) = - —> E(s) =

s 1+L(s)
. = 11m e(t) = 11m sE(s) = 11r1(1) 1+i(s) 1+i(o)
=  What about ramps r(t) = —tq - R(s) = q+17
- = llm e(t) = hm SE(s) = hr%s_q 1+i(S)

= To have 0 ss-error we need at least one integrator more in our system

Ess q=0 g=1]|qg=2
Type 0 ! 00 00
yp 1+ kBode
1
Type 1 0 00
kBod
1
Type 2 0 0
kBod

= The same derivations go for disturbances!
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Time Response

Steady State Error - Example

s+3
s3+5s+3

= Given the system: G(s) = and a Controller C(s) = 3 + 6s

= What is the steady state error for a step input a linear ramp?

Step input:

Impulse input:

Propose a controller that we get a zero ss error:

ETH:irich

12



Time Response
Step Response: 2 order system
= First order system:
= () = —2x() +2u(D), y(©) =x(t)

= G(s) =—

Ts+1

= Time response to a step input:
t t
= y(t) =xpe t+k(l—e7)
=  What we can see:
= Xo determines the start value
= DC-gain/Steady State: y,c = k

= Evaluating the derivative at t = 0:
The tangent crossesy =katt=r1

" Large T Slow convergence 0 ]- 2
" Settling Time: Time it takes to be at d% of Yss (beware this is the opposite as in the lecture)
100 T
Ty = tln (—) > T = d
R in(223)

ETH:irich
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Time Response y
Step Response: 2 order system w"l |
| @
= Secon order system: Re
. 0 1 0 o -
= x(t) = —w? —206 ]x(t) + [002] u(t), y(t) = x(t)
n n n wn = VoIt w?
_ Wn _
" G = sZ+2lwp+w2 o] = Cwn
. ) @ = arctan —
= Time response to a step input (depends on {): (in Mechanics ) ¢ il D“’
= sin(|¢
= Underdamped (¢ < 1):
— _ ot Yy A 0=0.17
y(t) =1 os) ¢ cos(wt + @)
@ = arctan (%), 0=, ®=y0z—{w)?=wn/l-—7] \
= Overdamped (T > 1): We get cosh() and sinh() terms ‘17 ” *\ 7
(not relevant for you) CA
5=1
/ =2 iy 2L
0 , : >
1 2 t/To
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Time Response Y
S
Step Response: 2 order system or +;5% Yes
= Time response to a step input underdamped (¢ < 1):
E -1 ot y(t)=1- e’fcos(wt +¢), t>0
y(t) =1 oot € cos(wt + ) E cos
= (@ = arctan (%), 6=, 0=+y0:—{w)?=wy/l-—7 37 t
= What can we specify?
= Settling time: (on exponential envelope)
1, (100 ln(ﬁ) i B
— = Y — 1-d RN
Td a 0'ln (1—d) 0= Td MPI /'r\‘::_;_ _____ Ves
= Time to peak:
T A
Tp = ; /’/E :
= Overshoot: (low damping = high overshoot) y(t)=1— Coi(pe“ cos(wt + ), t>0.
2 L
on In(M )) o
M —efw — 2 p— ( p . 1 >
P ¢ T2 +(ln(Mp))2 T100% Tp t

= Rise Time;

TT
T _ ;—(P _ T
ETHz(irich 100 ™ o 7 2w,
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Time Response
Step Response: Higher Order Systems

= What about higher order systems?
= Approximate them with a 1 or 2 order system
= Apply the specifications to the approximation

= What poles to choose?
= No zeros: Chose the poles with the slowest decay time
= With zeros: Highest residuals

= In General:
= We want high real part (fast decay)
=  We want low imaginary part (smaller overshoot)

| $Im

Excessive overshoot

Good

= We can see this in the Imaginary Plane

ETH:irich

Settling time too long

Re
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Time Response

Step Response: Example
= We have a electrical system that can be described by:
= u(t) =RCy(t) +y(t),R=1
= We got the plot of a step input voltage:
= u(t) =a-h()
= What is the value of C?

= \What are the value of a?

= |[fwe choose R = 2 what does C need to be for an
identical system behaviour?

ETH:irich

O———— 1 O
R
u(t) = Uy(t) Cc—— vy®=U)
O O
Step Response
4
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3 /’/__—
o
25 -
® 2
©
=2
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=
<
0.5
0
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-1
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Time (seconds)
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PID Control

Proportional Part

= General Formulation:
= u(t) = kpe(t) + kge(d) + k; [ e(Ddt

= U(s) = (kp + kas + ) E(s) = C(S)E(S)
= We get: T(s): r(t) - y(t) orn(t) - y(t), S(s):r(t) — e(t) ord(t) — y(t)

. (kp +kds+§)G(s) 1
1+(kp+kds+%)G(s) ’ 1+(kp+kds+§)G(s)

= Proportional Part:

(kp)G(s) —
T = e SO = T

= Highkp: T(s) - 1,5(s) = 0
Faster response
Lower steady state error
Higher sensitivity to noise

ETH:irich
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PID Control

Integral Part

= General Formulation:
= u(t) = kpe(t) + kge(d) + k; [ e(Ddt

= U(s) = (kp + kas + ) E(s) = C(S)E(S)

= Proportional and Integrator Part:
= As seen before integrator part reduces steady state error to O
= High k;:
System starts to oscillate
» |ntegrator fills up and needs to be emptied on the other side
Still sensitive to noise

ETH:irich
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PID Control

Derivative Part

= General Formulation:
= u(t) = kpe(t) + kge(d) + k; [ e(Ddt

= U(s) = (kp + kas + ) E(s) = C(S)E(S)

= Proportional, Derivative and Integrator Part:
= High kq:
Steady state error not affected
Less oscillation (more damping)
» Slows down the system
Sensitivity to noise increases
= High frequency noise derivatives are large

ETH:irich
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PID Control

Summary

= Proportional Part:
= Faster response
= Lower steady state error
= Higher sensitivity to noise
= Reduces stability margin -> can make system unstable

= [ntegrator Part:
= Eliminates steady state error (step input)
= [ntroduces oscillation
= Reduces stability margin -> can make system unstable

= Derivative Part
= Reduces Overshooting, Increases Damping
= Improves stability margins
= Very sensitive to noise
= Not physically realizable (use approximation)

ETH:irich
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PID Control

PID Design/PID Tuning

Freestyle:

= Start with k,, add a bit of kg4 to dampen and add k; to
remove ss-error, see what works

. Regler k, T; Ty
= Root Locus in the lecture
_ _ P 0.5-k5 oo T* 0.T*
= Recursively changing the values of kp, kg, k; PI 0.45-k% 0.85-T* 0.T*
_ _ _ PD 0.55-k% oo-T* 0.15-T*
= Ziegler-Nichols: systematic approach PID  060-k; 0.50-7* 0.125-T*
= Increase k; until the system becomes marginally stable
(start oscillating without decay) 1 — qg .y 6Ol a2 5K
. |P(O)] - Ky "
Getk; and T =2
2m Pmin = 0.7 Mmin = 0.5
= Astrom-Hagglund: systematic approach T R Y | TR — |
= Getkp and T* like Ziegler-Nichols T | 0900 440 27 | 090 —44  2.70 ‘
= Get |P(0)| using measurements of a step response pmin = 0.7 fmin = 0.5
kw o,z X, &2 | o, ¢ ],z a2 g |
= Optimal Design and Stability not guaranteed § 0.33 -0.31 —-100 | 072 —-1.60  1.20
. = 0.76 —1.60 —0.36 0.59 —1.30 0.38
= Real world testing often needed f_ 0.17 —0468 —210 | 0.15 —140 056

ETH:irich
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Exercise 07

What to do?

= A)do
= B) look at solution and think about the answer
= () look at solution and think about the answer

= D) optional

= E) play around a bit
= 2

= A) optional

= B) do, need solution of A)
= () do, cumbersome but good practice

= D)do
= 3
= A)do
= B)do
= C) optional

ETH:irich
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