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▪ Transfer Functions for different Input-Output pairs

▪ Complementary Sensitivity: T s =
Y s

N s
=

Y(s)

R(s)
=

L s

1+L(s)
=

C s G(s)

1+C s G(s)

▪ Sensitivity: S s =
E(s)

R(s)
=

Y(s)

D(s)
=

1

1+L(s)
=

1

1+C s G(s)

▪ Linearity allows us to:

▪ Learnings:

▪ System is stable iff
1

1+L(s)
is stable

▪ Conflicting Goals: S s + T s = 1

Last Week

2

System Analysis - Different Transfer Functions



▪ Sensitivity describes the relation between r t → e t : E s = S s R s =
1

1+L s
R s , ideally e t → 0

▪ Steady State error for a step input R s =
1

s
→ E s =

1

s

1

1+L(s)

▪ ess = lim
t→∞

e t = lim
s→0

sE s = lim
s→0

1

1+L(s)
=

1

1+L(0)

▪ Steady State error for ramps r t =
1

q!
tq → R s =

1

sq+1

▪ ess = lim
t→∞

e t = lim
s→0

sE s = lim
s→0

1

sq
1

1+L(s)

▪ To have 0 ss-error we need at least one integrator more in our system

▪ L s =
kbd
sq

s

−z1
+1

s

−z2
+1 …

s

−z1
+1

s

−p1
+1

s

−p2
+1 …

s

−pn−q
+1

s→0
L 0 →

kbd
sq

▪ q is called type L s for q = 0 we get L 0 = kbd which is called the DC-gain

▪ q > 0: L 0 → ∞

▪ The same derivations go for disturbances!

Last Week
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System Analysis - Steady State Error



▪ First order system:

▪ ሶx t = −
1

τ
x t +

k

τ
u t , y t = x t → G s =

k

τs+1

▪ Time response to a step input:

▪ y t = x0e
−
t

τ + k(1 − e−
t

τ )

▪ What we can see:

▪ x0 determines the start value

▪ DC-gain/Steady State: yss = k

▪ Evaluating the derivative at t = 0:

▪ The tangent crosses y = k at t = τ

▪ Large τ slow convergence

▪ Settling Time: Time it takes to be at d of yss (beware this is the opposite as in the lecture)

▪ Td = τ ln
1

1−d
→ τ =

Td

ln
1

1−d

, Td = τ ln
1

𝜀
→ τ =

Td

ln
1

𝜀

▪ τ = f(controller parameters) tune them to reach desired performance

Time Response
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Step Response: 1 order system

d = 0.8

𝜀 = 0.2



▪ Secon order system:

▪ ሶx t =
0 1

−ωn
2 −2ζωn

x t +
0
ωn
2 u t , y(t) = x(t)

▪ G s =
ωn
2

s2+2ζωn+ωn
2

▪ Time response to a step input (depends on ζ): (in Mechanics III)

▪ Underdamped (ζ < 1):

▪ y t = 1 −
1

cos φ
eσt cos ωt + φ

▪ φ = arctan
ζ

ω
, σ = ζωn, ω = ωn

2 − ζωn
2 = ωn 1 − ζ2

Time Response
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Step Response: 2 order system



▪ Time response to a step input  underdamped (ζ < 1):

▪ y t = 1 −
1

cos φ
eσt cos ωt + φ

▪ φ = arctan
ζ

ω
, σ = ζωn, ω = ωn

2 − ζωn
2 = ωn 1 − ζ2

▪ What can we specify?

▪ Settling time: (on exponential envelope)

▪ Td =
1

σ
ln

1

1−d
→ σ =

ln
1

1−d

Td

▪ Time to peak:

▪ Tp =
π

ω

▪ Overshoot: (low damping = high overshoot)

▪ Mp = e
σπ

ω → ζ2 =
ln Mp

2

π2+ ln Mp

2

▪ Rise Time:

▪ T100 =
π

2
−φ

ω
≈

π

2ωn

Time Response
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Step Response: 2 order system



▪ What about higher order systems?

▪ Approximate them with a 1 or 2 order system

▪ Apply the specifications to the approximation

▪ What poles to choose?

▪ No zeros: Chose the poles with the slowest decay time

▪ With zeros: Highest residuals

▪ In General:

▪ We want high real part (fast decay)

▪ We want low imaginary part (smaller overshoot)

▪ We can see this in the Imaginary Plane

Time Response
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Step Response: Higher Order Systems



▪ General Formulation:

▪ u t = kpe t + kd ሶe t + ki∫ e t dt

▪ U s = kp + kds +
ki
s

E s = C s E(s)

▪ Proportional Part:

▪ Faster response, Lower steady state error

▪ Higher sensitivity to noise, Reduces stability margin -> can make system unstable

▪ Integrator Part:

▪ Eliminates steady state error (step input)

▪ Introduces oscillation, Reduces stability margin -> can make system unstable

▪ Derivative Part

▪ Reduces Overshooting, Increases Damping, Improves stability margins

▪ Very sensitive to noise

▪ Not physically realizable (use approximation)

PID Control
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Proportional Part



▪ Freestyle:

▪ Start with kp add a bit of kd to dampen and add ki to 

remove ss-error, see what works

▪ Root Locus in the lecture

▪ Recursively changing the values of kp, kd, ki

▪ Ziegler-Nichols: systematic approach

▪ Increase kp until the system becomes marginally stable 

(start oscillating without decay)

▪ Get kp
∗ and T∗ =

ω∗

2π

▪ Aström-Hägglund: systematic approach

▪ Get kp
∗ and T∗ like Ziegler-Nichols

▪ Get P(0) using measurements of a step response

▪ Optimal Design and Stability not guaranteed

▪ Real world testing often needed

PID Control

9

PID Design/PID Tuning



Outline
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▪ Frequency Response

▪ What?

▪ Why?

▪ Bode Plot

▪ What?

▪ Example – Reading of a Bode Plot

▪ Drawing a Bode Plot

▪ Example – Drawing a Bode Plot

▪ Bodes Law

▪ Polar Plot / Nyquist Plot

▪ What?

▪ Example – Drawing a Nyquist Plot



Conceptual Recap
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Classical Control Approach

System 

Descripton

System 

Analysis

Controller 

Design

Deployment on 

System

System Modeling

ሶx t = f x, u, t
y t = g(x, u, t)

Transfer Function

G s = [ sI − A −1B]U s
Y s = G s U(s)

Linearizatrion

ሶx t = Ax t + Bu t
y t = Cx t + Du(t)

For convenience

For convenience

New Theory

Lyapunov Stability

𝜆𝑖 < 0 ∀𝜆𝑖

BIBO Stability

If Lyapunov 

asymptoticaly Stable

Controllability and 

Observability (CSII)

Root Locus 

Test Different

System Parameters

Bode Diagram

Nyquist Diagram

Effects of Poles and 

Zeros

Time Domain 

Response

Frequency Response

PID Control

Performance Limitations

Robustness (Uncertainty)

Time Delays

Other Control Methods 

(CSII and onwards)

Introduction of 

Feedback



Frequency Response
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What?

▪ We want to find the response to a Harmonic Input:

▪ u t = α ⋅ cos(ω ⋅ t + ϕ) , ϕ = 0 in most cases

▪ Reminder General System Response:

▪ y t = c ⋅ eA⋅t ⋅ x 0 + ∫0
t
c ⋅ eA t−ρ ⋅ b ⋅ u ρ ⋅ dρ + d ⋅ u t = ytransient t + y∞(t)

▪ If the system is asymptotically stable: (again if not the following math can still be done)

▪ lim
t→∞

ytransient t → 0 ⇒ y t → y∞(t)

▪ For a Harmonic Input we get: (see Derivation in my old Script)

▪ y t = m ω ⋅ α ⋅ cos(ω ⋅ t + ϕ + φ ω )

▪ m ω = G jω φ ω = ∠G(jω)

▪ Resulting Response:

▪ y t = |G jω | ⋅ α ⋅ cos ω ⋅ t + ϕ + ∠G jω



Frequency Response
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Why?

▪ System Response

▪ y t = G jω ⋅ α ⋅ cos ω ⋅ t + ϕ + ∠G jω

▪ What do we see?

▪ The system oscillates with the same frequency

▪ The amplitude is frequency dependant

▪ The phase shift is frequency dependant

▪ We can measure this response on a physical system (if stable)

▪ We can analyse the system behaviour and robustness using this response

▪ We can in general combine infinite harmonic inputs to model any input

▪ Fourier/Laplace Transform

▪ How can we plot G jω and ∠G jω ?

▪ Bode Plot

▪ Polar / Nyquist Plot



Frequency Response

14. November 2024https://n.ethz.ch/~jgeurts/ 14



▪ Two separate frequency explicit plots for both G jω and ∠G jω

▪ Magnitude Plot G jω :

▪ Logarithmic ω axis and dB(decibel) G jω

▪ Decibel:

▪ G jω dB = 20 ⋅ log10 G jω

▪ G jω = 10
Σ jω dB

20

▪ Caution when reading of a plot (convert if necessary)

▪ G jω = Re G jω
2
+ Im G jω

2

▪ Phase Plot ∠G jω :

▪ Logarithmic ω axis and linear ∠G jω (in degrees)

▪ ∠G jω = arctan2
Im G jω

Re G jω

Bode Plot
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What?
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Bode Plot of a system



▪ Read off the values from the bode plot on the previous slide

Bode Plot
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Example

Frequency 𝜔
𝑟𝑎𝑑

𝑠
0

𝑟𝑎𝑑

𝑠
1

𝑟𝑎𝑑

𝑠
4

𝑟𝑎𝑑

𝑠
10

𝑟𝑎𝑑

𝑠
60

𝑟𝑎𝑑

𝑠

Magnitude G 𝑗𝜔 𝑑𝐵 ≈ −23.5 ≈ −3.7 ≈ 6.3 ≈ 9 ≈ 4.7

Magnitude |𝐺 𝑗𝜔 | ≈ 0.06 ≈ 0.65 ≈ 2.063 ≈ 2.84 ≈ 1.73

Phase ∠G(𝑗𝜔) ≈ 180° ≈ 83° ≈ 47° ≈ 14° ≈ −28°



▪ Using Logarithms is very convenient, we can combine different systems

▪ Total System: G s = G1 s ⋅ G2 s ⋅ … ⋅ Gn(s)

▪ Amplitude in decibel: Σ s dB = Σ1 s dB + Σ2 s dB

▪ Phase: ∠Σ s = ∠Σ1 s + ∠Σ2 s

▪ When drawing combine the effects of poles and zeros of the sub-systems (addition)

▪ The effect is at the position of the pole/zero

▪ At the pole/zero the phase shift is approx 50% done

▪ For multiplicity k > 1, the change is multiplied by k

Bode Plot
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Drawing a Bode Plot



Bode Plots
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Standard Elements – there are a bunch



Bode Plots
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Standard Elements – there are a bunch



Bode Plot
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Example - Drawing

▪ System 1:

▪ G1 𝑠 =
1

𝑠⋅(𝑠+1)

▪ Pole 1: 𝜔𝜋1 = 0

▪ Pole 2: 𝜔𝜋2= 1

▪ No zeros



Bode Plot
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Example - Drawing

▪ System 1:

▪ G1 𝑠 =
1

𝑠⋅(𝑠+1)

▪ Pole 1: 𝜔𝜋1 = 0

▪ Pole 2: 𝜔𝜋2= 1

▪ No zeros



Bode Plot
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Example 2

▪ System 2:

▪ G2 𝑠 =
5000⋅𝑠

(𝑠+0.2)⋅ 𝑠+10 ⋅(𝑠−30)
= 83.3333 ⋅ 𝑠 ⋅

1

(5⋅𝑠+1)
⋅

1

0.1⋅𝑠+1
⋅

1

(0.03⋅𝑠−1)

▪ Pole 1: 𝜔𝜋1 = 0.2

▪ Pole 2: 𝜔𝜋2= 10

▪ Pole 3: 𝜔𝜋3= 30

▪ Zero 1: 𝜔𝜁1=0

▪ Non-stable zero Phase shifts from -180° to -90°
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Pole 1: 𝜔𝜋1 = 0.2

Pole 2:𝜔𝜋2= 10

Pole 3:𝜔𝜋3= 30

Zero 1:𝜔𝜁1=0

G2 𝑠 = 83.3333 ⋅ 𝑠 ⋅
1

(5⋅𝑠+1)
⋅

1

0.1⋅𝑠+1
⋅

1

(0.03⋅𝑠−1)
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Pole 1: 𝜔𝜋1 = 0.2

Pole 2:𝜔𝜋2= 10

Pole 3:𝜔𝜋3= 30

Zero 1:𝜔𝜁1=0

G2 𝑠 = 83.3333 ⋅ 𝑠 ⋅
1

(5⋅𝑠+1)
⋅

1

0.1⋅𝑠+1
⋅

1

(0.03⋅𝑠−1)



Bode Plot
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Bodes - Law

▪ Phase and Amplitude are not independent

▪ G jω dB = 20
dB

dec
⋅ κ ⇒ ∠G jω ≈ κ ⋅

π

2

▪ System: Σ s =
bm⋅sm+…+b1⋅s+b0

sq⋅(sn−q+an−k−1⋅s
n−k−1+…+a1⋅s+a0)

▪ Relative degree: r = n − m

▪ System Type: q = number of integrators

▪ We further have:

▪ For ω → ∞ :    
𝜕 G jω dB

𝜕 log10(ω)
= −r ⋅ 20 dB, with r = n − m being the relative degree

▪ For ω → 0: ∠G jω = 0 = ൞
−q ⋅

π

2
, for sign

b0

a0
> 0

−π − q ⋅
π

2
, for sign

b0

a0
< 0



Polar / Nyquist Plot

27

What?

▪ G s and ∠G(s) drawn in the complex plane.

▪ From −∞ < 𝜔 < ∞

▪ The values are now frequency implicit

▪ Drawing usually using Python or Matlab

▪ Sketching

▪ Look at the extremes ω → 0,ω → ∞

▪ Read values of Bode plot

▪ Needs to be qualitatively correct

▪ We mostly want to know where 

▪ G jω = 1, and ∠G jω = −180°

▪ System stable iff
1

1+L(s)
is stable

▪ L s = −1 not allowed!!!



Polar / Nyquist Plot
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Example – Drawing a Nyquist Plot

▪ Draw the Nyquist Plot for:

▪ G s =
5(s−0.5)

s(s+5)

▪ ω → 0+: 

▪ G(jω) → ∞

▪ ∠G jω = ൞
−q ⋅

π

2
, for sign

b0

a0
> 0

−π− q ⋅
π

2
, for sign

b0

a0
< 0

= −
3

2
π

▪ ω → ∞: 

▪ G(jω) → 0

▪ ∠G jω ≈ ∠
1

s
= −

π

2



Polar / Nyquist Plot
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Example – Drawing a Nyquist Plot

▪ Draw the Nyquist Plot for the System 
with the following Bode Plot



▪ Graphical representation of G s and ∠G(s)

▪ Bode Plot: 

▪ frequency explicit

▪ Logarithmic, decibel and linear axis scale

▪ Quantitive analysis 

▪ Nyquist Plot: 

▪ frequency implicit

▪ Linear axis scale

▪ Qualitative analysis 

▪ Why though?

▪ Determine system properties from plots (stability, DC-gain,…)

▪ Analyse system with controller

▪ Determine robustness of the system

Bode and Nyquist Plots
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Summary



▪ 1:

▪ Do two

▪ 2:

▪ Do all

▪ 3:

▪ Not nessecary

▪ 4:

▪ Not nessecary

▪ 5:

▪ Do two distinct once

Exercise 08
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What to do?
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