

Control Systems I

Recitation 09

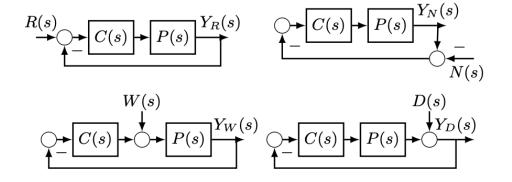
https://n.ethz.ch/~jgeurts/ jgeurts@ethz.ch

Last Week

System Analysis - Different Transfer Functions

Transfer Functions for different Input-Output pairs

$$Y_R(s) = \frac{P(s)C(s)}{1 + P(s)C(s)} \cdot R(s), \quad Y_N(s) = \frac{P(s)C(s)}{1 + P(s)C(s)} \cdot N(s)$$
$$Y_W(s) = \frac{P(s)}{1 + P(s)C(s)} \cdot W(s), \quad Y_D(s) = \frac{1}{1 + P(s)C(s)} \cdot D(s)$$



• Complementary Sensitivity: $T(s) = \frac{Y(s)}{N(s)} = \frac{Y(s)}{R(s)} = \frac{L(s)}{1+L(s)} = \frac{C(s)G(s)}{1+C(s)G(s)}$

• Sensitivity:
$$S(s) = \frac{E(s)}{R(s)} = \frac{Y(s)}{D(s)} = \frac{1}{1+L(s)} = \frac{1}{1+C(s)G(s)}$$

- Linearity allows us to: $Y(s) = Y_R(s) + Y_N(s) + Y_W(s) + Y_D(s)$ $Y(s) = S(s) \cdot [D(s) + P(s) \cdot W(s)] + T(s) \cdot [R(s) + N(s)]$
- Learnings:
 - System is stable iff $\frac{1}{1+L(s)}$ is stable
 - Conflicting Goals: S(s) + T(s) = 1

ETHzürich

Last Week

System Analysis - Steady State Error

- Sensitivity describes the relation between $r(t) \rightarrow e(t)$: $E(s) = S(s)R(s) = \frac{1}{1+L(s)}R(s)$, ideally $e(t) \rightarrow 0$
- Steady State error for a step input $R(s) = \frac{1}{s} \rightarrow E(s) = \frac{1}{s} \frac{1}{1+L(s)}$
 - $e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{1}{1 + L(s)} = \frac{1}{1 + L(0)}$
- Steady State error for ramps $r(t) = \frac{1}{q!}t^q \rightarrow R(s) = \frac{1}{s^{q+1}}$
 - $e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{1}{s^q} \frac{1}{1 + L(s)}$
 - To have 0 ss-error we need at least one integrator more in our system

•
$$L(s) = \frac{k_{bd}}{s^q} \frac{\left(\frac{s}{-z_1}+1\right)\left(\frac{s}{-z_2}+1\right)...\left(\frac{s}{-z_1}+1\right)}{\left(\frac{s}{-p_1}+1\right)\left(\frac{s}{-p_2}+1\right)...\left(\frac{s}{-p_n-q}+1\right)} \xrightarrow{s \to 0} L(0) \to \frac{k_{bd}}{s^q}$$

- q is called type L(s) for q = 0 we get $L(0) = k_{bd}$ which is called the DC-gain
- $q > 0: L(0) \rightarrow \infty$
- The same derivations go for disturbances!

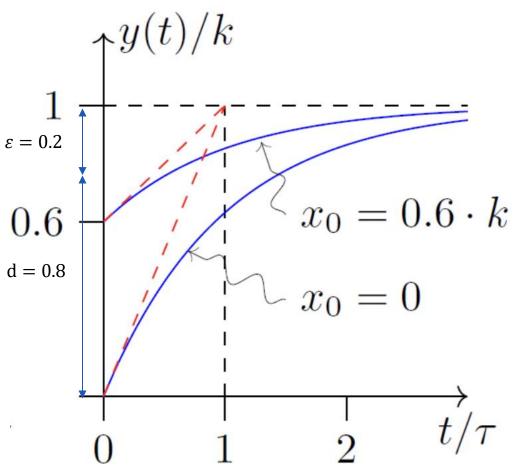
e _{ss}	q = 0	q = 1	<i>q</i> = 2
Type 0	$\frac{1}{1+k_{Bode}}$	∞	∞
Type 1	0	$rac{1}{k_{ m Bode}}$	∞
Type 2	0	0	$rac{1}{k_{Bode}}$

Step Response: 1 order system

- First order system:
 - $\dot{x}(t) = -\frac{1}{\tau}x(t) + \frac{k}{\tau}u(t), \ y(t) = x(t) \to G(s) = \frac{k}{\tau s + 1}$
- Time response to a step input:
 - $y(t) = x_0 e^{-\frac{t}{\tau}} + k(1 e^{-\frac{t}{\tau}})$
- What we can see:
 - x₀ determines the start value
 - DC-gain/Steady State: $y_{ss} = k$
 - Evaluating the derivative at t = 0:
 - The tangent crosses y = k at $t = \tau$
 - Large τ slow convergence
 - Settling Time: Time it takes to be at d of y_{ss} (beware this is the opposite as in the lecture)

•
$$T_d = \tau \ln\left(\frac{1}{1-d}\right) \to \tau = \frac{T_d}{\ln\left(\frac{1}{1-d}\right)}, \ T_d = \tau \ln\left(\frac{1}{\varepsilon}\right) \to \tau = \frac{T_d}{\ln\left(\frac{1}{\varepsilon}\right)}$$

• $\tau = f(controller parameters)$ tune them to reach desired performance



Step Response: 2 order system

• Secon order system:

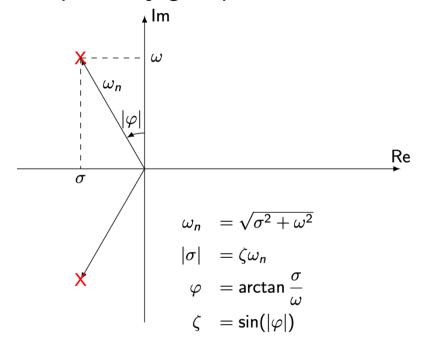
•
$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & 1 \\ -\omega_n^2 & -2\zeta\omega_n \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ \omega_n^2 \end{bmatrix} \mathbf{u}(t), \ \mathbf{y}(t) = \mathbf{x}(t)$$

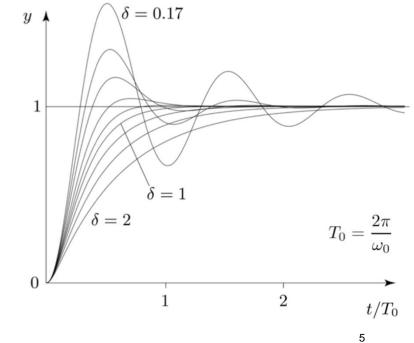
• $\mathbf{G}(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n + \omega_n^2}$

- Time response to a step input (depends on ζ): (in Mechanics III)
 - Underdamped ($\zeta < 1$):

•
$$y(t) = 1 - \frac{1}{\cos(\phi)} e^{\sigma t} \cos(\omega t + \phi)$$

•
$$\varphi = \arctan\left(\frac{\zeta}{\omega}\right)$$
, $\sigma = \zeta \omega_n$, $\omega = \sqrt{\omega_n^2 - (\zeta \omega_n)^2} = \omega_n \sqrt{1 - \zeta^2}$





Step Response: 2 order system

- Time response to a step input underdamped ($\zeta < 1$):
 - $y(t) = 1 \frac{1}{\cos(\phi)} e^{\sigma t} \cos(\omega t + \phi)$
 - $\phi = \arctan\left(\frac{\zeta}{\omega}\right)$, $\sigma = \zeta \omega_n$, $\omega = \sqrt{\omega_n^2 (\zeta \omega_n)^2} = \omega_n \sqrt{1 \zeta^2}$
- What can we specify?
 - Settling time: (on exponential envelope)

•
$$T_d = \frac{1}{\sigma} \ln\left(\frac{1}{1-d}\right) \rightarrow \sigma = \frac{\ln\left(\frac{1}{1-d}\right)}{T_d}$$

• Time to peak:

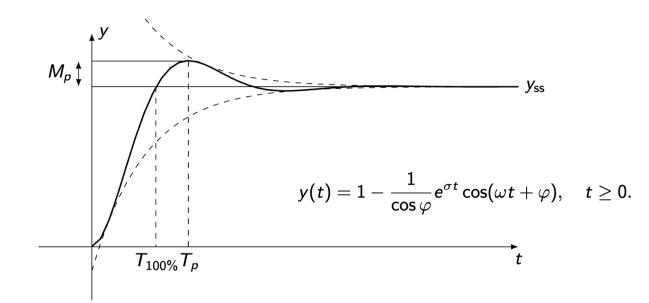
$$T_p = \frac{\pi}{\omega}$$

Overshoot: (low damping = high overshoot)

•
$$M_p = e^{\frac{\sigma \pi}{\omega}} \rightarrow \zeta^2 = \frac{\left(\ln(M_p)\right)^2}{\pi^2 + \left(\ln(M_p)\right)^2}$$

• Rise Time:

$$T_{100} = \frac{\frac{\pi}{2} - \phi}{\omega} \approx \frac{\pi}{2\omega_n}$$



 3τ

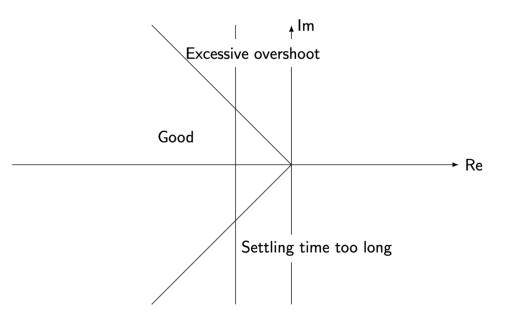
 $\overline{\pm}5\%$

 $y_{\rm ss}$

 $y(t) = 1 - rac{1}{\cos arphi} e^{\sigma t} \cos(\omega t + arphi), \quad t \geq 0.$

Step Response: Higher Order Systems

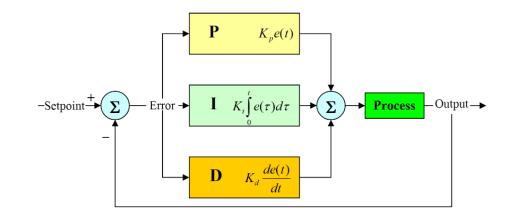
- What about higher order systems?
 - Approximate them with a 1 or 2 order system
 - Apply the specifications to the approximation
- What poles to choose?
 - No zeros: Chose the poles with the slowest decay time
 - With zeros: Highest residuals
- In General:
 - We want high real part (fast decay)
 - We want low imaginary part (smaller overshoot)
 - We can see this in the Imaginary Plane



PID Control

Proportional Part

- General Formulation:
 - $u(t) = k_p e(t) + k_d \dot{e}(t) + k_i \int e(t) dt$
 - $U(s) = \left(k_p + k_d s + \frac{k_i}{s}\right)E(s) = C(s)E(s)$
- Proportional Part:
 - Faster response, Lower steady state error
 - Higher sensitivity to noise, Reduces stability margin -> can make system unstable
- Integrator Part:
 - Eliminates steady state error (step input)
 - Introduces oscillation, Reduces stability margin -> can make system unstable
- Derivative Part
 - Reduces Overshooting, Increases Damping, Improves stability margins
 - Very sensitive to noise
 - Not physically realizable (use approximation)



PID Control

PID Design/PID Tuning

- Freestyle:
 - Start with k_p add a bit of k_d to dampen and add k_i to remove ss-error, see what works
- Root Locus in the lecture
 - Recursively changing the values of k_p, k_d, k_i
- Ziegler-Nichols: systematic approach
 - Increase k_p until the system becomes marginally stable (start oscillating without decay)
 - Get k_p^* and $T^* = \frac{\omega^*}{2\pi}$
- Aström-Hägglund: systematic approach
 - Get k^{*}_p and T^{*} like Ziegler-Nichols
 - Get |P(0)| using measurements of a step response
- Optimal Design and Stability not guaranteed
 - Real world testing often needed

Regler	k_p	T_i	T_d
Р	$0.5 \cdot k_p^*$	$\infty \cdot T^*$	$0\cdot T^*$
PI	$0.45 \cdot k_p^*$	$0.85 \cdot T^*$	$0 \cdot T^*$
PD	$0.55 \cdot k_p^*$	$\infty \cdot T^*$	$0.15 \cdot T^*$
PID	$0.60\cdot k_p^*$	$0.50\cdot T^*$	$0.125 \cdot T^*$

$$\boxed{\kappa = \frac{1}{|P(0)| \cdot k_p^*}, \quad x = \alpha_{0,x} \cdot e^{\alpha_{1,x} \cdot \kappa + \alpha_{2,x} \cdot \kappa^2}}$$

	$\mu_{ m min}=0.7$			$\mu_{ m min}=0.7$ $\mu_{ m min}=0.5$		
x	$\alpha_{0,x}$	$lpha_{1,x}$	$lpha_{2,x}$	$lpha_{0,x}$	$lpha_{1,x}$	$lpha_{2,x}$
$\frac{k_p}{k_p^*}$	0.053	2.90	-2.6	0.13	1.9	-1.30
$\frac{T_i^{\mathcal{P}}}{T^*}$	0.900	-4.40	2.7	0.90	-4.4	2.70

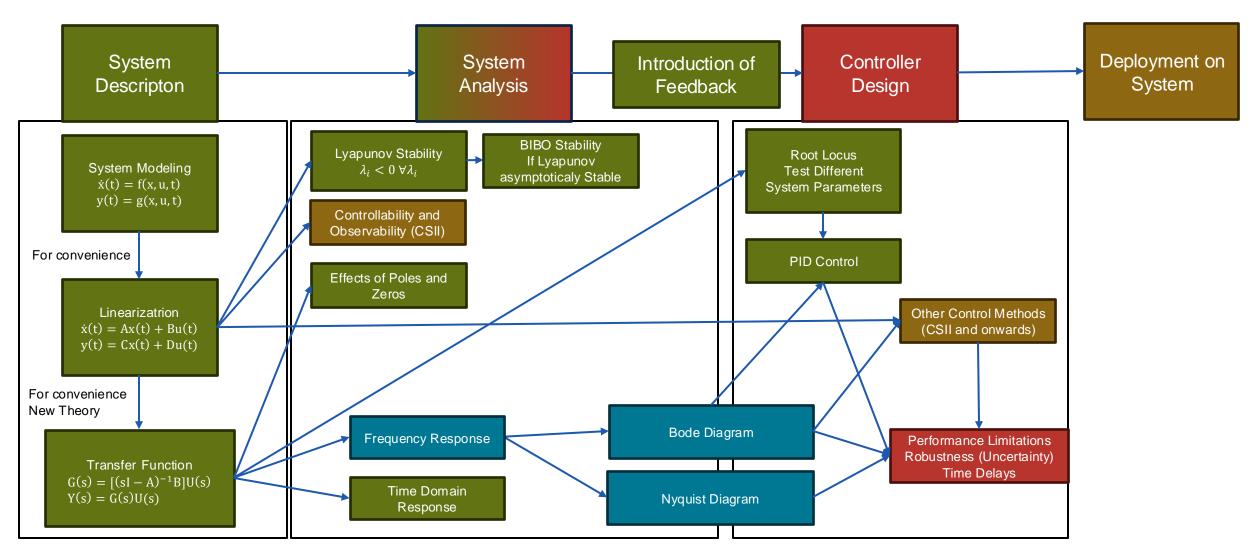
		$\mu_{\min} = 0.7$			$\mu_{ m min}=0.5$		
x	$\alpha_{0,x}$	$lpha_{1,x}$	$lpha_{2,x}$	$lpha_{0,x}$	$lpha_{1,x}$	$lpha_{2,x}$	
$\frac{k_p}{k_p^*}$	0.33	-0.31	-1.00	0.72	-1.60	1.20	
$\frac{T_i^{P}}{T^*}$	0.76	-1.60	-0.36	0.59	-1.30	0.38	
$\frac{T_d}{T^*}$	0.17	-0.46	-2.10	0.15	-1.40	0.56	

Outline

- Frequency Response
 - What?
 - Why?
- Bode Plot
 - What?
 - Example Reading of a Bode Plot
 - Drawing a Bode Plot
 - Example Drawing a Bode Plot
 - Bodes Law
- Polar Plot / Nyquist Plot
 - What?
 - Example Drawing a Nyquist Plot

Conceptual Recap

Classical Control Approach



Frequency Response

What?

- We want to find the response to a Harmonic Input:
 - $u(t) = \alpha \cdot \cos(\omega \cdot t + \phi)$, $\phi = 0$ in most cases
- Reminder General System Response:
 - $y(t) = c \cdot e^{A \cdot t} \cdot x(0) + \int_0^t c \cdot e^{A(t-\rho)} \cdot b \cdot u(\rho) \cdot d\rho + d \cdot u(t) = y_{transient}(t) + y_{\infty}(t)$
- If the system is asymptotically stable: (again if not the following math can still be done)
 - $\lim_{t \to \infty} y_{\text{transient}}(t) \to 0 \quad \Rightarrow \quad y(t) \to y_{\infty}(t)$
- For a Harmonic Input we get: (see Derivation in my old Script)
 - $y(t) = m(\omega) \cdot \alpha \cdot \cos(\omega \cdot t + \phi + \phi(\omega))$
 - $m(\omega) = |G(j\omega)|$ $\phi(\omega) = \angle G(j\omega)$
- Resulting Response:

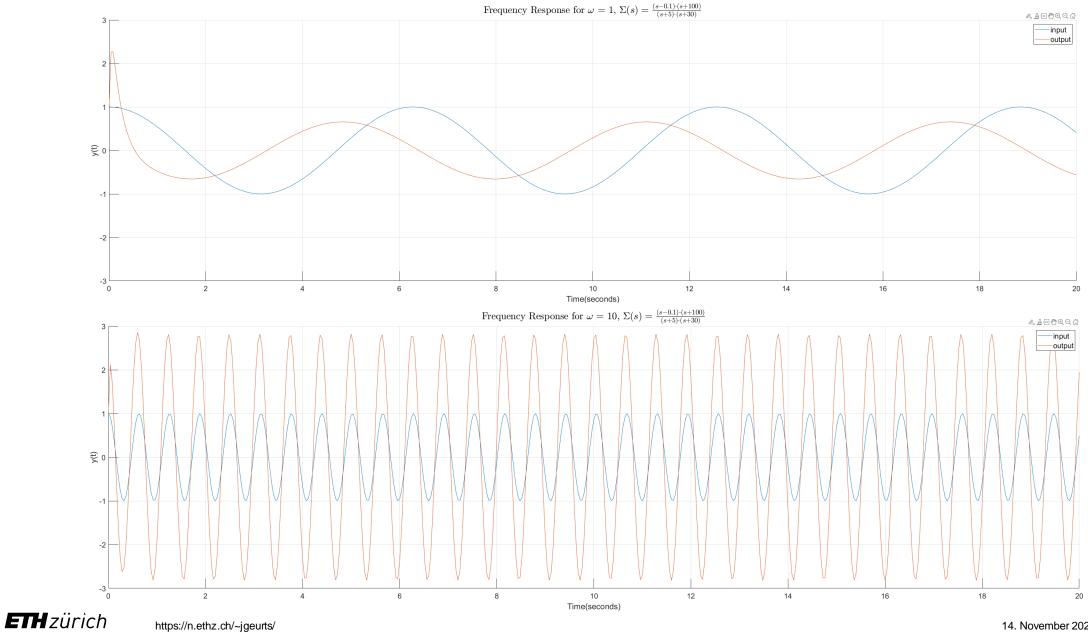
•
$$y(t) = |G(j\omega)| \cdot \alpha \cdot \cos(\omega \cdot t + \phi + \angle G(j\omega))$$

Frequency Response

Why?

- System Response
 - $y(t) = |G(j\omega)| \cdot \alpha \cdot \cos(\omega \cdot t + \phi + \angle G(j\omega))$
- What do we see?
 - The system oscillates with the same frequency
 - The amplitude is **frequency dependant**
 - The phase shift is **frequency dependant**
- We can measure this response on a physical system (if stable)
- We can analyse the system behaviour and robustness using this response
- We can in general combine infinite harmonic inputs to model any input
 - Fourier/Laplace Transform
- How can we plot $|G(j\omega)|$ and $\angle G(j\omega)$?
 - Bode Plot
 - Polar / Nyquist Plot

Frequency Response



What?

- Two separate frequency **ex**plicit plots for both $|G(j\omega)|$ and $\angle G(j\omega)$
- Magnitude Plot |G(jω)|:
 - Logarithmic ω axis and dB(decibel) |G(jω)|
 - Decibel:
 - $|G(j\omega)|_{dB} = 20 \cdot \log_{10}|G(j\omega)|$

•
$$|G(j\omega)| = 10^{\frac{|\Sigma(j\omega)|_{dB}}{20}}$$

Caution when reading of a plot (convert if necessary)

•
$$|G(j\omega)| = \sqrt{\operatorname{Re}(G(j\omega))^2 + \operatorname{Im}(G(j\omega))^2}$$

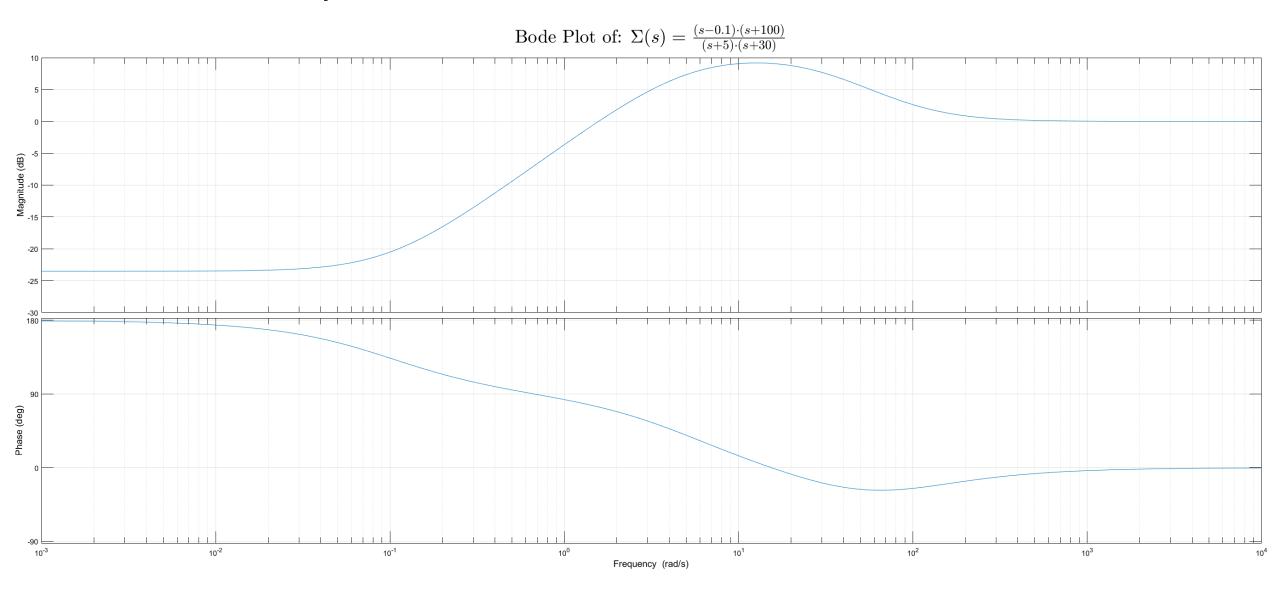
- Phase Plot $\angle G(j\omega)$:
 - Logarithmic ω axis and linear $\angle G(j\omega)$ (in degrees)

•
$$\angle G(j\omega) = \arctan 2 \left(\frac{\operatorname{Im}(G(j\omega))}{\operatorname{Re}(G(j\omega))} \right)$$

Dezimalskala	Dezibelskala
100	40
10	20
5	13.97
2	6.02
1	0
$1/\sqrt{2}$	-3.0103
0.1	-20
0.01	-40
0	-Inf

$$(\operatorname{es}) egin{array}{l} \operatorname{arctan}ig(rac{y}{x}ig) & ext{if } x>0, \ rac{\pi}{2}-\operatorname{arctan}ig(rac{x}{y}ig) & ext{if } y>0, \ -rac{\pi}{2}-\operatorname{arctan}ig(rac{x}{y}ig) & ext{if } y>0, \ -rac{\pi}{2}-\operatorname{arctan}ig(rac{x}{y}ig) & ext{if } y<0, \ \operatorname{arctan}ig(rac{y}{x}ig)\pm\pi & ext{if } x<0, \ \operatorname{undefined} & ext{if } x=0 ext{ and } y=0. \end{array}$$

Bode Plot of a system



Example

Read off the values from the bode plot on the previous slide

Frequency $\omega\left[\frac{rad}{s}\right]$	$0\left[\frac{rad}{s}\right]$	$1\left[\frac{rad}{s}\right]$	$4\left[\frac{rad}{s}\right]$	$10\left[\frac{rad}{s}\right]$	$60\left[\frac{rad}{s}\right]$
Magnitude $ G(j\omega) _{dB}$					
Magnitude $ G(j\omega) $					
Phase $\angle G(j\omega)$					

Drawing a Bode Plot

- Using Logarithms is very convenient, we can combine different systems
 - Total System: $G(s) = G_1(s) \cdot G_2(s) \cdot ... \cdot G_n(s)$
 - Amplitude in decibel: $|\Sigma(s)|_{dB} = |\Sigma_1(s)|_{dB} + |\Sigma_2(s)|_{dB}$
 - Phase: $\angle \Sigma(s) = \angle \Sigma_1(s) + \angle \Sigma_2(s)$
- When drawing combine the effects of poles and zeros of the sub-systems (addition)
 - The effect is at the position of the pole/zero
 - At the pole/zero the phase shift is approx 50% done
 - For multiplicity k > 1, the change is multiplied by k

Туре	Magnitude Change	Phase Change
Stable Pole	-20 dB/dec	-90°
Unstable Pole	-20 dB/dec	$+90^{\circ}$
Minimumphase zero	+20 dB/dec	$+90^{\circ}$
Non-minimumphase zero	+20 dB/dec	-90°
Time Delay	0 dB/dec	$-\omega \cdot T$

Standard Elements – there are a bunch

A.1 Integrator Element

 $\begin{array}{ll} \mbox{Element Acronym:} & \boxed{\mathbf{I}} \\ \mbox{Transfer Function:} & \boldsymbol{\Sigma}(s) = \frac{1}{T \cdot s} \\ \mbox{Poles/Zeros:} & \pi_1 = 0, \, \zeta_1 = \infty \\ \mbox{Internal Description:} & \frac{\mathrm{d}}{\mathrm{d}t} x(t) = \frac{1}{T} \cdot u(t) \\ & y(t) = x(t) \end{array}$

A.2 Differentiator Element

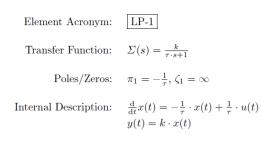
Element Acronym: D

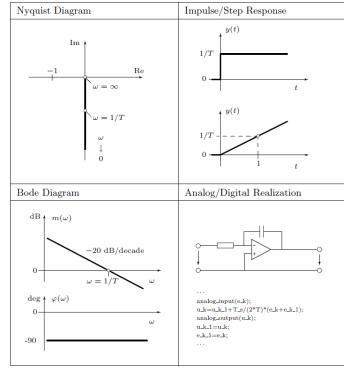
Transfer Function: $\Sigma(s) = T \cdot s$

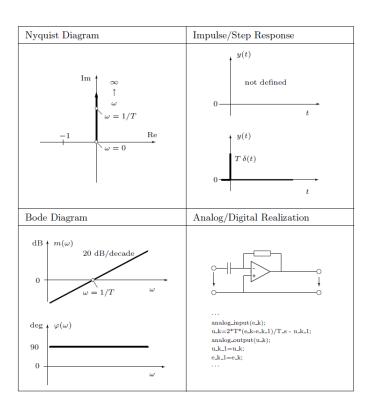
Poles/Zeros: $\pi_1 = \infty, \zeta_1 = 0$

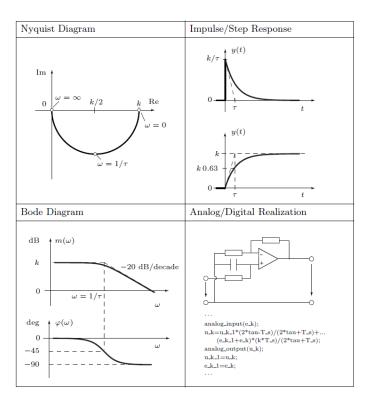
Internal Description: $y(t) = T \cdot \frac{\mathrm{d}}{\mathrm{d}t} u(t)$

A.3 First-Order Element





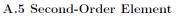




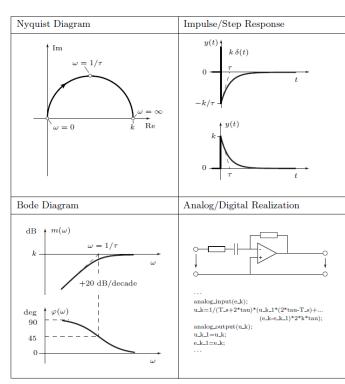
Standard Elements – there are a bunch

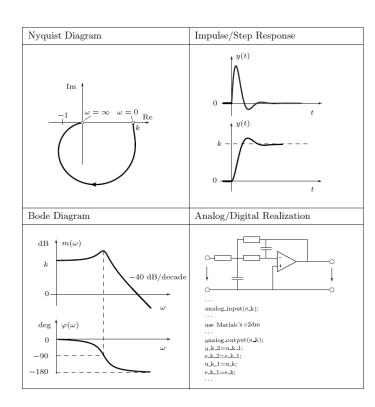
A.4 Realizable Derivative Element

Element Acronym: HP-1 Transfer Function: $\Sigma(s) = k \cdot \frac{\tau \cdot s}{\tau \cdot s + 1} = k \cdot \left(1 - \frac{1}{\tau \cdot s + 1}\right)$ Poles/Zeros: $\pi_1 = -\frac{1}{\tau}, \zeta_1 = 0$ Internal Description: $\frac{d}{dt}x(t) = -\frac{1}{\tau} \cdot x(t) + \frac{1}{\tau} \cdot u(t)$ $u(t) = -k \cdot x(t) + k \cdot u(t)$



- Element Acronym: LP-2 Transfer Function: $\Sigma(s) = k \cdot \frac{\omega_0^2}{s^2 + 2 \cdot \delta \cdot \omega_0 \cdot s + \omega_0^2}$ Poles/Zeros: $\pi_{1,2} = -w_0 \cdot \delta \pm w_0 \sqrt{\delta^2 - 1}, \zeta_{1,2} = \infty$
- Internal Description: $\begin{aligned} & \frac{\mathrm{d}}{\mathrm{d}t}x_1(t) = x_2(t), \\ & \frac{\mathrm{d}}{\mathrm{d}t}x_2(t) = -\omega_0^2 \cdot x_1(t) - 2 \cdot \delta \cdot \omega_0 \cdot x_2(t) + \omega_0^2 \cdot u(t) \\ & y(t) = k \cdot x_1(t) \end{aligned}$





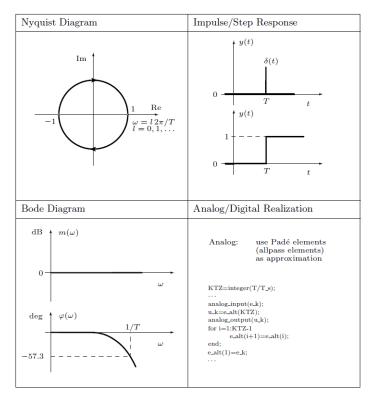
A.10 Delay Element

Element Acronym: -

Transfer Function: $\Sigma(s) = e^{-s \cdot T}$

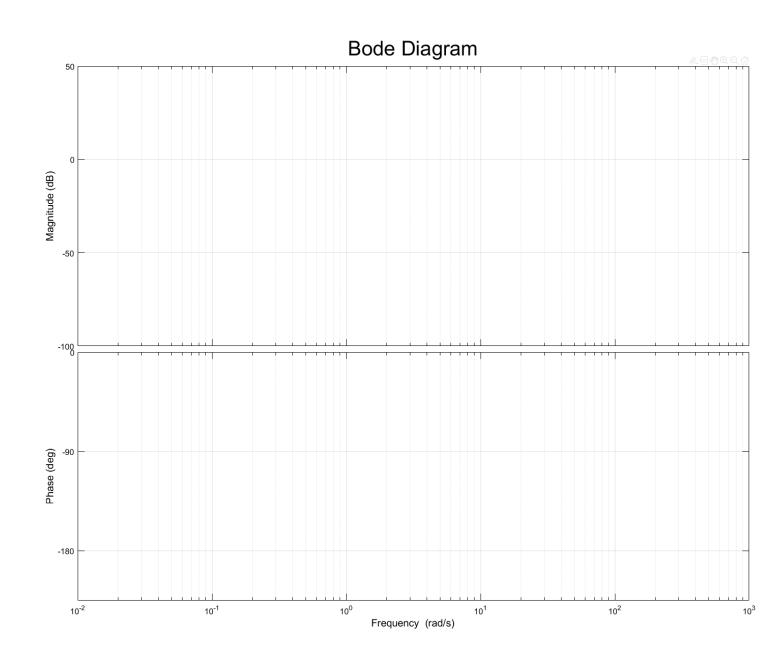
Poles/Zeros: not a real-rational element

Internal Description: y(t) = u(t - T)



Example - Drawing

- System 1:
 - $G_1(s) = \frac{1}{s \cdot (s+1)}$
- Pole 1: $\omega_{\pi_1} = 0$
- Pole 2: $\omega_{\pi_2} = 1$
- No zeros

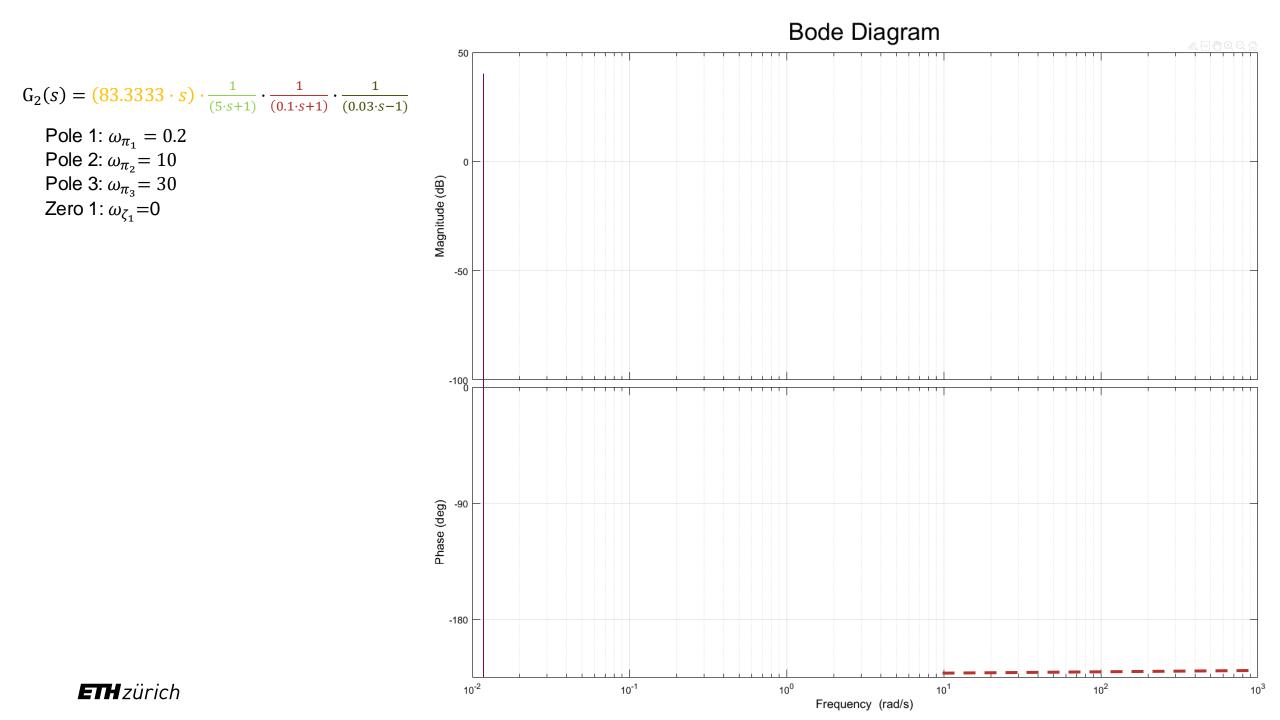


Example 2

• System 2:

•
$$G_2(s) = \frac{5000 \cdot s}{(s+0.2) \cdot (s+10) \cdot (s-30)} = (83.3333 \cdot s) \cdot \frac{1}{(5 \cdot s+1)} \cdot \frac{1}{(0.1 \cdot s+1)} \cdot \frac{1}{(0.03 \cdot s-1)}$$

- Pole 1: $\omega_{\pi_1} = 0.2$
- Pole 2: $\omega_{\pi_2} = 10$
- Pole 3: $\omega_{\pi_3} = 30$
- Zero 1: $\omega_{\zeta_1}=0$
- Non-stable zero Phase shifts from -180° to -90°



Bodes - Law

• Phase and Amplitude are not independent

•
$$|G(j\omega)|_{dB} = 20 \frac{dB}{dec} \cdot \kappa \quad \Rightarrow \quad \angle G(j\omega) \approx \kappa \cdot \frac{\pi}{2}$$

• System:
$$\Sigma(s) = \frac{b_m \cdot s^m + ... + b_1 \cdot s + b_0}{s^q \cdot (s^{n-q} + a_{n-k-1} \cdot s^{n-k-1} + ... + a_1 \cdot s + a_0)}$$

- Relative degree: r = n m
- System Type: q = number of integrators
- We further have:

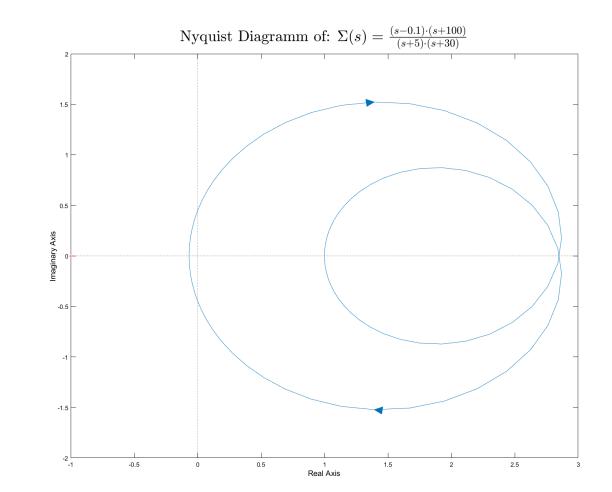
• For
$$\omega \to \infty$$
: $\frac{\partial |G(j\omega)|_{dB}}{\partial \log_{10}(\omega)} = -r \cdot 20 \text{ dB}$, with $r = n - m$ being the relative degree

• For
$$\omega \to 0$$
: $\angle G(j\omega = 0) = \begin{cases} -q \cdot \frac{\pi}{2}, \text{ for sign}\left(\frac{b_0}{a_0}\right) > 0\\ -\pi - q \cdot \frac{\pi}{2}, \text{ for sign}\left(\frac{b_0}{a_0}\right) < 0 \end{cases}$

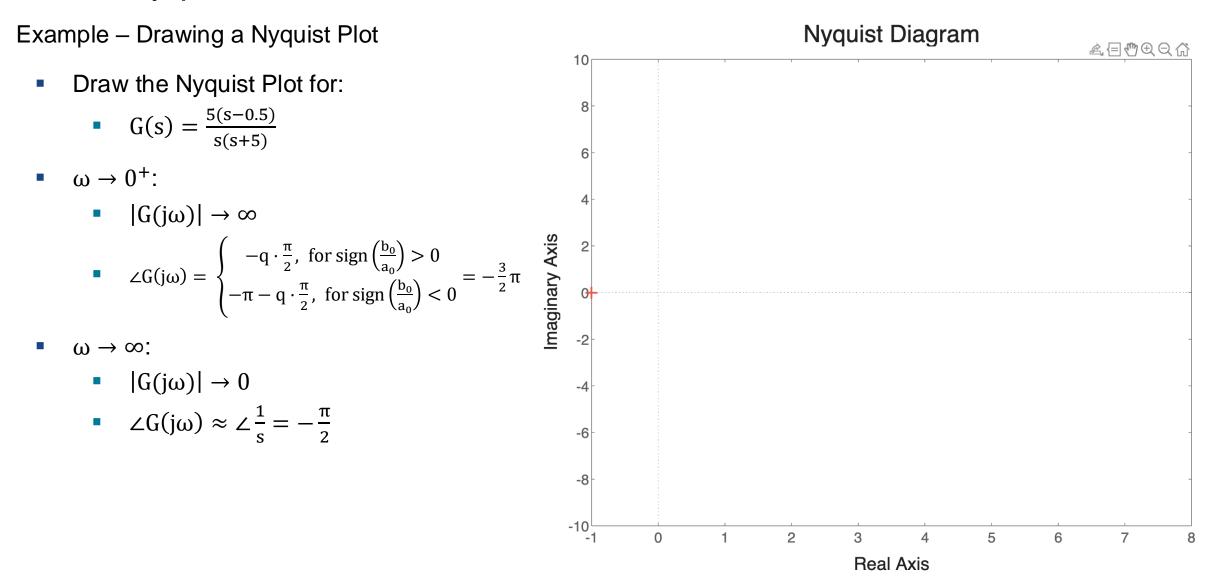
Polar / Nyquist Plot

What?

- |G(s)| and $\angle G(s)$ drawn in the complex plane.
 - From $-\infty < \omega < \infty$
- The values are now frequency **implicit**
- Drawing usually using Python or Matlab
- Sketching
 - Look at the extremes $\omega \to 0, \omega \to \infty$
 - Read values of Bode plot
 - Needs to be qualitatively correct
- We mostly want to know where
 - $|G(j\omega)| = 1$, and $\angle G(j\omega) = -180^{\circ}$
 - System stable iff $\frac{1}{1+L(s)}$ is stable
 - L(s) = -1 not allowed!!!

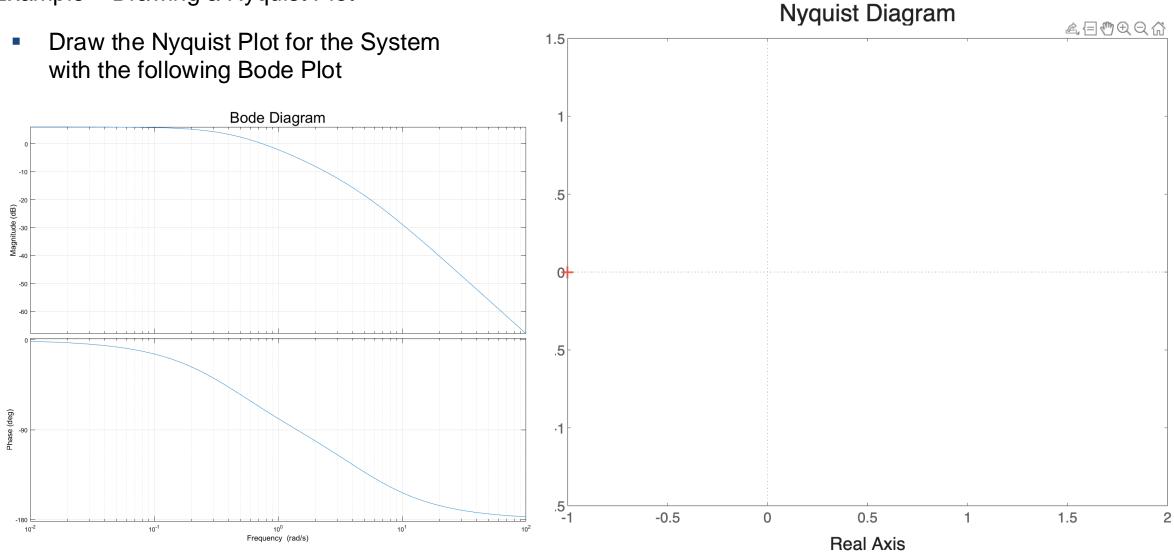


Polar / Nyquist Plot



Polar / Nyquist Plot

Example – Drawing a Nyquist Plot



Bode and Nyquist Plots

Summary

- Graphical representation of |G(s)| and $\angle G(s)$
- Bode Plot:
 - frequency explicit
 - Logarithmic, decibel and linear axis scale
 - Quantitive analysis
- Nyquist Plot:
 - frequency implicit
 - Linear axis scale
 - Qualitative analysis
- Why though?
 - Determine system properties from plots (stability, DC-gain,...)
 - Analyse system with controller
 - Determine robustness of the system

Exercise 08

What to do?

- **1**:
 - Do two
- 2:
 - Do all
- 3:
 - Not nessecary
- **4**:
 - Not nessecary
- **5**:
 - Do two distinct once