Zusammenfassung RT I

Micha Bosshart - bmicha@ethz.ch Version: 5. August 2021

ThB01

Definitionen

Systemklassifikation

SISO	MIMO	
Input/Output scalar	Input/Output vektoriell	
Linear	Nichtlinear	_
Änderung des Ausgangs ist	$\Sigma(\alpha \cdot u_1 + \beta \cdot u_2) \neq \alpha \cdot$	
proportional zur Änderung	$\Sigma(u_1) + \beta \cdot \Sigma(u_2)$	
des Eingangs.		
Kausal	Akausal	
Ein kausales System hängt	y(t) = u(t+5)	
nicht von Eingängen in der	$\int_{-\infty}^{t+1} u(t) dt$	
Zukunft ab.	ÜF: Zähler hat höhere Ord-	Bere
	nung als Nenner	
Statisch	Dynamisch	
Der Ausgang bei statischen	$DGL \rightarrow Dynamisch$	
Systemen zur Zeit t^* hängt	$u(t) = \int_{-\infty}^{t} u(t) dt$	
nur vom Eingang zur Zeit t^*	$y(\iota) = \int_0^{\cdot} u(\tau) d\tau$	
ab.	$y(t) = u(t - \tau) \forall \tau \neq 0$	Es fo
$y(t) = 3 \cdot u(t)$		
$y(t) = \sqrt{u(t)}$		
Zeitinvariant	Zeitvariant	
Zeitinvariante Sys geben bei	$y(t) = \sin(t) \cdot u(t)$	
gleichen Eingängen zu unter-	y(t) = u(t) + t	
schiedlichen Zeitpunkten und		Linea
gleicher Anfangsbedingung		
die gleichen Ausgänge.		
$y(t) = \frac{a}{dt}u(t)$		
$y(t) = 3 \cdot u(t)$		

Modellierung	ThB01
Drehimpulserhaltung	ThB01

$$\frac{d}{dt}(J_B\dot{\theta}) = \Sigma_i T_i$$

Die momentane Winkelbeschleunigung $\ddot{\theta}$ eines Körpers mit Trägheitsmoment J_B und Ruhepunkt B ist durch die Summe der momentan anliegenden Momente T_i bestimmt.

Normieren und Linearisieren	E
Zustandsgleichung erster Ordnung ThB02	

Umwandlung nichtlinearer DGL — Equation Of Motion

$$m \cdot \ddot{\xi}(t) = m \cdot g \cdot \sin(\alpha) - k_3 \cdot \xi(t)^3 - d(t) \cdot \dot{\xi}(t)$$

$$\dot{z} = f(z, v), \quad w = g(z, v)$$

wobei z(t) der Zustandsvektor, v(t) die Eingangsgrösse und w(t) die Ausgangsgrösse ist. Es folgt:

$$\dot{z} = \begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \end{bmatrix} = \begin{bmatrix} \dot{\xi} \\ \dot{\xi} \end{bmatrix}$$
$$= \begin{bmatrix} z_2(t) \\ g \cdot \sin(\alpha) - \frac{k_3}{m} \cdot z_1(t)^3 - \frac{1}{m} \cdot v(t) \cdot z_2(t) \end{bmatrix}$$

 $w(t) = z_1(t)$

Normierung ThB02
$$x_i(t) = \frac{z_i(t)}{z_{i,0}}, \quad u(t) = \frac{v(t)}{v_0}, \quad y(t) = \frac{w(t)}{w_0}$$

Durch Ersetzen von $z_1(t)$, $z_2(t)$, v(t) und w(t) im nichtlinearen Modell resultiert das normierte nichtlineare Modell. Es folgt:

$$\dot{x}(t) = f_0(x(t), u(t))$$

$$= \begin{bmatrix} \frac{\frac{z_{2,0}}{z_{1,0}} \cdot x_2(t)}{\frac{g}{z_{2,0}} \cdot \sin(\alpha) - \frac{k_3 \cdot z_{1,0}^3}{m \cdot z_{2,0}} \cdot x_1(t)^3 - \frac{v_0}{m} \cdot u(t) \cdot x_2(t) \end{bmatrix}$$

$$y(t) = g_0(x(t), u(t)) = \frac{z_{1,0}}{\omega_0} \cdot x_1(t)$$

Berechnen Ruhelage
$$\{x_e, u_e\}$$
$$\dot{x}(t) = \begin{bmatrix} \dot{x}_1\\ \vdots\\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} 0\\ \vdots\\ 0 \end{bmatrix} = f(x_e, u_e)$$
Es folgt:

$$u_e = \mathsf{beliebig}, \quad x_e = \begin{bmatrix} x_{1,e} \\ x_{2,e} \end{bmatrix} = \begin{bmatrix} \sqrt[3]{\frac{m \cdot g \cdot \sin(\alpha)}{k_3 \cdot z_{1,0}^3}} \\ 0 \end{bmatrix}$$

Linearisieren

$$A \stackrel{def}{=} \begin{bmatrix} \frac{\partial f_{0,1}}{\partial x_1} & \frac{\partial f_{0,1}}{\partial x_2} & \cdots & \frac{\partial f_{0,1}}{\partial x_n} \\ \frac{\partial f_{0,2}}{\partial x_1} & \frac{\partial f_{0,2}}{\partial x_2} & \cdots & \frac{\partial f_{0,2}}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{0,n}}{\partial x_1} & \frac{\partial f_{0,n}}{\partial x_2} & \cdots & \frac{\partial f_{0,n}}{\partial x_n} \end{bmatrix}_{x_e,u_e}$$

$$b \stackrel{def}{=} \begin{bmatrix} \frac{\partial f_{0,1}}{\partial u} \\ \vdots \\ \frac{\partial f_{0,n}}{\partial u} \end{bmatrix}_{x_e,u_e}$$

$$c \stackrel{def}{=} \begin{bmatrix} \frac{\partial g_0}{\partial x_1} & \cdots & \frac{\partial g_0}{\partial x_n} \end{bmatrix}_{x_e,u_e} \quad d \stackrel{def}{=} \begin{bmatrix} \frac{\partial g_0}{\partial u} \end{bmatrix}$$
Es folgt:

Allgemeine Lösung LZI System	
Lineares Zeitinvariantes System Th	303 De
$\dot{x}(t) = A \cdot x(t) + b \cdot u(t) \qquad A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n \times 1}$ $y(t) = c \cdot x(t) + d \cdot u(t) \qquad c \in \mathbb{R}^{1 \times n}, d \in \mathbb{R}$ $x(0) = x_0$	
Die allgemeine Lösung der Zustandsgrösse $x(t)$: $x(t) = e^{A \cdot t} \cdot x_0 + \int_0^t e^{A \cdot (t-\rho)} \cdot b \cdot u(\rho) d\rho$	De mi Di

$$y(t) = \underbrace{c \cdot e^{A \cdot t} \cdot x_0}_{\text{I}} + \underbrace{\int_0^t e^{A \cdot (t-\rho)} \cdot b \cdot u(\rho) d\rho}_{\text{II}} + \underbrace{d \cdot u(t)}_{\text{III}}$$

Die natürliche Antwort des Systems (I) ist unabhängig von u. Der Eingang u trägt einerseits zum Beitrag der Systemdynamik (II) bei und andererseits zum Feedthrough Term (III).

Systemantworten - 1.Ordnung System 1. Ordnung $\dot{x}(t) = -rac{1}{ au}\cdot x(t) + rac{k}{ au}\cdot u(t), \qquad y(t) = x(t)$

Mit Zeitkonstante τ und Eingangsstärke k. $\Sigma(s) = \frac{k}{\tau s+1}$

Impulsantwort
$$u(t) = \delta(t) = \begin{cases} +\infty, & t = 0\\ 0, & t \neq 0 \end{cases}$$
Es folgt die allgemeine Lösung:
$$y_{\delta}(t) = e^{\frac{-t}{\tau}} \cdot \left(x_0 + \frac{k}{\tau}\right)$$

Sprungantwort

ThB02

E

$$u(t) = h(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

$$y_h(t) = e^{\frac{-t}{\tau}} \cdot x_0 + k \cdot \left(1 - e^{\frac{-t}{\tau}}\right)$$

Systemantworten - Impuls / Sprung

Systeme 2. Ordnung

Allgemeine Form

$$s_{1,2} = \pi_{1,2} = \omega_0 \cdot \left(-\delta \pm \sqrt{\delta^2 - 1} \right)$$

Der Parameter δ wird als Dämpfungsparameter bezeichnet.

- Für $|\delta| < 1$ wird werden die Pole komplex. (Überschiessen)
- Für $|\delta| > 1$ wird werden die Pole reel.

Der Parameter $\omega_0=\frac{2\pi}{T_0}$ entspricht der natürlichen Frequenz, mit T_0 als natürliche Periode.

Die Zeitnormierte Sprungantwort für verschiedene δ sieht wie folgt aus:

Eigenschaften des Dämpfungsparameters δ :

$\delta \in (0,1)$	Unterkritisch gedämpft Komplexe Pole Überschiessen
$\delta = 1$	Kritisch gedämpft Schnellstmögliches Konvergieren Kein Überschiessen
$\delta > 1$	Überkritisch gedämpft Reelle Pole Kein Überschiessen

Nullstelleneinfluss

ThB03

ThB03

ThB03

ThB03

ThB06

Steu

• Je kleiner $|\zeta|$, desto stärker der Einfluss dieser Nullstelle. (\rightarrow Überschuss)

ThB06

- Nullstelle nahe an einem Pol schwächt Einfluss des Pols.
- Für ζ > 0 gibt es einen Undershoot. (Nicht-minimalphasig)
 → Durch Änderung der Messgrösse, kann eine nichtminimalphasige Nullstelle minimalphasig werden.

Systemanalyse - LZI

Ein vollständig steuerbar und vollständig beobachtbares System ist minimal.

Das System ist vollständig steuerbar/ erreichbar, wenn die Steuerbarkeitsmatrix \mathcal{R} vollen Rang hat.

Für LZI Systeme gilt steuerbar = erreichbar

$$\mathcal{R} = \begin{bmatrix} b, & A \cdot b, & A^2 \cdot b, & \dots & , A^{n-1} \cdot b \end{bmatrix}$$

Ein Punkt $x_c \in \mathbb{R}^n$ ist steuerbar, falls ein u(t) existiert, das den Zustandsvektor des Systems von $x(0) = x_c$ zum Zustand $x(\tau) = 0$ in endlicher Zeit τ bringt.

Falls alle Punkt in $\mathbb R$ steuerbar sind, heisst das System vollständig steuerbar.

Ein System ist **potentiell stabilisierbar**, falls alle nicht-steuerbaren Zustände asymptotisch stabil sind.

Ein Punkt $x_r \in \mathbb{R}^n$ ist erreichbar, falls ein u(t) existiert, das den Zustandsvektor des Systems vom Zustand x(0) = 0 zum Zustand $x(\tau) = x_r$ in endlicher Zeit τ bringt.

Falls alle Púnkte in \mathbb{R}^n erreichbar sind, heisst das System vollständig erreichbar.

Beobachtbarkeit

Das System ist vollständig beobachtbar, wenn die **Beobachtbarkeitsmatrix** \mathcal{O} (observability matrix) **vollen Rang** hat.

Das System ist **vollständig beobachtbar**, wenn man mit der Messung des Ausgangssignals $y(t), t \in [0, \tau], \tau > 0$ eindeutig auf **tisch s** den Anfangszustand x(0) des Systems schliessen kann.

System Darstellungen	
I/O Darstellung	ThB04

$$y^{(n)}(t) + \dots + a_2 \cdot y^{(2)}(t) + a_1 \cdot y^{(1)}(t) + a_0 \cdot y(t) =$$

$$m \cdot u^{(m)}(t) + \dots + b_2 \cdot u^{(2)}(t) + b_1 \cdot u^{(1)}(t) + b_0 \cdot u(t)$$

Die I/O Darstellung hat keine physikalische Koordinaten mehr, weshalb alle Anfangsbedingungen auf <u>Null</u> gesetzt werden:

 $y^{(n)} = 0, \forall n$

Umwandlung von I/O Darstellung zu Zustandsraumdarstellung mittels kanonischer Koordinaten.

Zustandsraum Normalform - Reglernormalform

$$\begin{bmatrix} A & | & b \\ \hline c & | & d \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & | & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 \\ \hline -a_0 & -a_1 & -a_2 & \dots & -a_{n-1} & 1 \\ \hline b_0 & b_1 & b_2 & \dots & \dots & d \end{bmatrix}$$

Übertragungsfunktion

Ergibt **minimale Darstellung** unseres System. Nicht minimale Zustände werden gekürzt.

$$\Sigma(s) = \frac{Y(s)}{U(s)} = c \cdot (sI - A)^{-1} \cdot b = \frac{c \cdot Adj(sI - A) \cdot b}{det(sI - A)}$$
$$= \frac{b_m \cdot s^m + \dots + b_1 \cdot s + b_0}{s^n + a_{n-1} \cdot s^{n-1} + \dots + a_1 \cdot s + a_0}$$
$$\boxed{\Sigma(s) = c \cdot (sI - A)^{-1} \cdot b}$$
$$adj \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Cramer's Rule

$$M^{-1} = \operatorname{Adj}(M) / \det(M)$$

$$[\operatorname{Adj}(M)]_{j,i} = (-1)^{i+j} \cdot \det(\hat{M}(i,j))$$

Harmonische Eingangsgrösse:

 $u(t) = \alpha \cdot \cos(\omega \cdot t + \phi)$

Amplitude $\alpha,$ Frequenz ω in $\frac{rad}{s},$ Phasenverschiebung ϕ Der Ausgang eines Systems $\Sigma(s):$

$$y(t) = y_{\mathrm{transient}}(t) + y_{\infty}(t)$$

Unter der Annahme, dass $\Sigma(s)$ linear, zeitinvariant und asymptotisch stabil ist, gilt:

$$\lim_{t \to \infty} y_{\text{transient}}(t) \to 0 \quad \Rightarrow \quad y(t) \to y_{\infty}$$

Es gilt:

ThB04

 $y_{\infty}(t) = m(\omega) \cdot \alpha \cdot \cos(\omega \cdot t + \phi + \varphi(\omega))$

Die Verstärkung $m(\omega)$ und die Phasenverschiebung $\varphi(\omega)$ sind systemabhängig:

Bode Diagramm 2.Ordnung:

Vorsicht! Die resonante Frequenz (maximale Verstärkung) ist nicht bei der natürlichen Frequenz $\omega/\omega_0 = 1$, sondern bei:

Ing zwischen dezimal und dezibel
$$\left|\Sigma(s)
ight|_{dB}=20\cdot\log_{10}\left|\Sigma(s)
ight|$$

Umrechni

ThB07

$$|\Sigma(s)| = 10^{\frac{|\Sigma(s)|_{dB}}{20}}$$

Dezimalskala	Dezibelskala
100	40
10	20
5	13.97
2	6.02
1	0
$1/\sqrt{2}$	-3.0103
0.1	-20
0.01	-40
0	-~

Nyquist Diagramme

Ein allgemeines System 1. Ordnung bei der Frequenz $s=j\omega$ hat folgende Magnitude und Phase:

Nyquist Diagramm 1.Ordnung

Nyquist Diagramm 2.Ordnung

Einfluss Pole und Nullstellen im Bode Diagramm ThB07

Pole/Zero Type	Magnitude	Phase
$Re(\pi_i) \leq 0 \rightarrow \text{stable pole}$	-20 dB/dec	-90°
$Re(\pi_i) > 0 \rightarrow \text{unstable pole}$	-20 dB/dec	$+90^{\circ}$
$Re(\zeta_i) \leq 0 \rightarrow \text{minphase zero}$	+20 dB/dec	$+90^{\circ}$
$Re(\zeta_i) > 0 \rightarrow $ non-minphase zero	+20 dB/dec	-90°
$e^{-s \cdot \tau} \rightarrow \text{Time delay}$	0 dB/dec	$-\omega\tau$
	,	
Bode's Law	,	ThB07
Bode's Law		ThB07
Bode's Law The gradient of the magnitude plot $(\kappa + \frac{\pi}{2})$	$2 \cdot 20 dB/dec)$ de	ThB07
Bode's Law The gradient of the magnitude plot $(\kappa + \frac{\pi}{2})$ Gilt für Systeme mit $\kappa > 2$	$z \cdot 20 dB/dec)$ de	ThB07

ThB07 Asymptotische Eigenschaften von Frequenzantworten ThB08

Struktur einer allgemeinen Übertragungsfunktion:

$$\Sigma(s) = \frac{b_m \cdot s^m + \dots + b_1 \cdot s + b_0}{s^k \cdot (s^{n-k} + a_{n-1-k} \cdot s^{n-1-k} + \dots + a_1 \cdot s + a_0)}$$

Systemtyp k

ThB07

Der Systemtyp k entspricht der Vielfachkeit offener Integratoren $\left(\frac{1}{s^k}\right)$ des Systems. Die Phase bei $\omega=0$ ist als folgende Funktion definiert:

$$\angle \Sigma(s) = \begin{cases} -k \cdot \frac{\pi}{2} &, \operatorname{sgn}\left(\frac{b_0}{a_0}\right) > 0\\ -\pi - k \cdot \frac{\pi}{2} &, \operatorname{sgn}\left(\frac{b_0}{a_0}\right) < 0 \end{cases}$$

Relativer Grad r = n - m — (Steigung für $w \to \infty$)

$$\boxed{\frac{\partial |\Sigma(j\omega)_{dB}|}{\partial \log(\omega)} = -r \cdot 20 dB/dec, \qquad w \to \infty}$$

Beispiel: System $\Sigma(s)$ mit k = 1, r = 2 - 0 = 2

Systemidentifikation

Systemmodelle

• White box model: Es existiert eine explizite Darstellung der Physik des Systems mit bekannten Parameterwerten.

ThB08

- Grey box model: Es existiert eine explizite Darstellung des Systems mit unbekannten Parameterwerten.
- Black box model: Es existiert <u>keine</u> explizite Darstellung der Physik des Systems.

Modellunsicherheit

Nichtparametrische Unsicherheit

Die wahre Übertragungsfunktion $\Sigma_t(s)$ liegt in der Menge S: $\mathcal{S} = \{ \Sigma(s) \cdot (1 + \Delta \cdot W_2(s)) \mid |\Delta| \le 1, \angle \Delta \in [-\pi, \pi] \}$

- $\Sigma(s)$: Nominelle ÜF, durch (imperfekte) Systemmodellierung gefunden.
- Δ: Unsicherheitsgenerator: Kreis in der komplexen Ebene.
- $W_2(s)$: ÜF der Unsicherheit; quantifiziert die frequenzabhängige Unsicherheit des Modells.

Analyse von Regelsystemen

Signale im Regelkreis:

$$Y_R(s) = \frac{P(s)C(s)}{1 + P(s)C(s)} \cdot R(s)$$
$$Y_N(s) = \frac{P(s)C(s)}{1 + P(s)C(s)} \cdot N(s)$$
$$Y_W(s) = \frac{P(s)}{1 + P(s)C(s)} \cdot W(s)$$
$$Y_D(s) = \frac{1}{1 + P(s)C(s)} \cdot D(s)$$

Die gesamte Ausgangsgrösse Y(s) ergibt sich somit aus:

$$Y(s) = Y_R(s) + Y_N(s) + Y_W(s) + Y_D(s)$$

Kreisverstärkung:

$$L(s) = P(s) \cdot C(s) \qquad (e \to y)$$

Sensitivität:

$$S(s) = \frac{1}{1 + L(s)} \qquad (d \to y, r \to e)$$

Komplementäre Sensitivität:

ThB08

ThB09

$$T(s) = \frac{L(s)}{1 + L(s)} \qquad (r \to y, n \to y)$$

Mit diesen kompakten Schreibweisen ergibt sich die folgende Beziehung:

$Y(s) = S(s) \cdot [D(s) + P(s)W(s)] + T(s) \cdot [R(s) + N(s)]$

Stabilität
Lyapunov Stabilität - $x(0) = x_0 \neq 0$

Lyapunov Stabilität bezieht sich auf das GGW der Zustände.

Stabilität nach Lyapunov erlaubt die Stabilitätsanalyse von Gleichgewichtspunkten (GGWP) von linearen und linearisierten Systemen. (A, b, c, d) Falls das System Asymptotisch stabil oder instabil ist, gilt dies auch für die Stabilität desselben GGWP im nichtlinearen System.

Wichtig: Falls ein GGWP eines linearisierten Systems einen EW = 0 besitzt, lässt sich keine Aussage über die Stabilität desselben GGWP im nichtlinearen System machen.

EW($A) \equiv \sigma_i + j\omega_i$
1. Asymptotisch stabil:	$\sigma_i < 0$, für alle EW(A)
2. Stabil:	$\sigma_i \leq 0$, min. ein EW(A) = 0
3. Instabil:	$\sigma_i > 0$, min. ein EW(A) $>$ 0

• Für $\omega_i \neq 0$ oszilliert das System.

• Asymptotisch stabil $\rightarrow \lim_{t\to\infty} ||x(t)|| \rightarrow 0$

BIBO Stabilität - x(0) = 0

BIBO Stabilität bezieht sich auf das I/O Verhalten von $\Sigma(s)$

Ein System ist BIBO stabil, falls für die Impulsantwort $\sigma(t)$ folgendes gilt:

$$\int_0^\infty |\sigma(t)| dt < \infty$$

Ein System mit Übertragungsfunktion $\Sigma(s)$ ist **BIBO stabil**, falls alle Pole π_i negativen Realteil haben.

Anmerkung: Die Pole von $\Sigma(s)$ entsprechen den EW von A falls das System vollständig steuerbar und beobachtbar, also minimal ist.

Stabilität des geschlossenen Systems:

Für geschlossene Regelkreise ist die Stabilität gegeben, falls alle **ÜF** asymptotisch stabil sind $(Re(\lambda_i) < 0, i = 1, ..., n)$. Die Beziehungen zwischen den Signalen sind gegeben durch:

	$\int S(s)$	$-S(s) \cdot C(s)$	$S(s) \cdot C(s)$		$\left[W(s)\right]$
=	$S(s) \cdot P(s)$	S(s)	T(s)	·	D(s)
	$-S(s) \cdot P(s)$	-S(s)	S(s)		$\lfloor R(s) \rfloor$

Falls P(s) und C(s) nur asymptotisch stabile Pole haben, genügt es, die asymptotische Stabilität von S(s) und T(s) zu prüfen um die interne Stabilität zu garantieren.

Stabilität geschlossener Regelkreis \rightarrow Pole von T(s) sollen negativen Realteil haben.

Nyquist Theorem Design von Regelungssystemen Definition ThB09 Frequenzbedingungen - Closed Loop

ThB09

Das Nyquist-Theorem kann die asymptotische Stabilität eines geschlossenen Regelkreissystems $T(s) = \frac{L(s)}{1+L(s)}$ durch Analyse seiner Kreisverstärkung L(s) (offener Regelkreis!) voraussagen. Voraussetzungen:

- Keine Modellunsicherheit $W_2(s)$
- Keine Kürzungen von instabilen • Polen/ nichtminimalphasigen Nullstellen in L(s)

$$n_c \stackrel{!}{=} \frac{n_0}{2} + n_+$$

- n_c : Anzahl Umrundungen von $L(j\omega)$ um den Punkt (-1 +j0), wenn ω zwischen $(-\infty,\infty)$ variiert wird. (GGUZ positiv)
- n_0 : Anzahl Pole von L(s) mit Realteil = 0
- n₊: Anzahl Pole von L(s) mit Realteil > 0

Phasen- und Verstärkungsreserve

ThB09

$$\int_0^\infty \ln |S(j\omega)| d\omega = \pi \cdot \sum_{i=1}^{n_+} \pi_i^+,$$

wobei n_+ die Anzahl der instabilen Pole π^+ von L(s) ist.

- $L(i\omega)$ • γ : Verstärkungsreserve zu (-1+0j) bei $\angle L(j\omega) = -180^{\circ}$
- ω : Phasenabstand zu -180° bei der Durchtrittsfrequenz ω_{c}
- $\begin{array}{l} \mu: \text{kleinste Distanz zwischen}(-1+0j) \text{ und } L(j\omega) \\ \mu = \min_{\omega} |1+L(j\omega)| = \frac{1}{\max_{\omega} |S(j\omega)|} \end{array}$
- **Robustes Nyquist Theorem**
- Die wahre Kreisverstärkung des Systems $L_t(s)$ liegt in der Menge $S_{\mathcal{L}}$:

 $\mathcal{S}_{\mathcal{L}} = \{ L(s) \cdot (1 + \Delta \cdot W_2(s)) \mid |\Delta| \le 1, \angle \Delta \in [-\pi, \pi] \}$

Es wird angenommen, dass L(s) und $L_t(s)$ dieselbe Anzahl instabile (n_{+}) und stabile (n_{0}) Pole haben.

Kriterium:

ThB09

 $|L(j\omega) \cdot W_2(j\omega)| < |1 + L(j\omega)|, \forall \omega \in [0, \infty)$

• Störungen normalerweise bei tiefen Frequenzen ($\omega < \omega_d$) Daraus folgt: Für niedrige Frequenzen:

$$|S(j\omega)| = \left|\frac{1}{1+L(jw)}\right| \stackrel{!}{<} 1 \quad \Rightarrow \quad |L(j\omega)| >> 1$$

ThB10

ge-

Für hohe Frequenzen:

ThB09
$$|1 + L(jw)|$$

Global betrachtet, über alle ω , muss $S(s)$ für alle stabilen schlossenen Regelkreise folgende Gleichung erfüllen:

Frequenzeigenschaften von Störungen und Rauschen

 $T(s) + S(s) = \frac{L(s)}{1 + L(s)} + \frac{1}{1 + L(s)} = 1$

Die Einflüsse des Rauschens (N für Noise) und der Störung (D

 $Y(s) = Y_D(s) + Y_N(s) = S(s) \cdot D(s) + T(s) \cdot N(s)$

• Rauschen normalerweise bei hohen Frequenzen ($\omega > \omega_n$)

Intrinsische Kopplung von T(s) und S(s):

für Disturbance) auf den Ausgang sind wie folgt:

$$\int_0^\infty \ln |S(j\omega)| d\omega = \pi \cdot \sum_{i=1}^{n_+} \pi_i^+,$$

Nomi

ThB03

Beschränkungen der Durchtrittsfrequenz ω_c

Durchtrittsfrequenz: Schnittpt. 0-Linie im Bode Diagramm

$$|L(j\omega_c)| = 0dB = 1$$

Bandbreite - Closed Loop: Mass für höchste Frequenz des Eingangssignals die Regelkreis verfolgen kann.

$$T(j\omega_b)| = -3dB \approx 0.7, \qquad \omega_b \approx \omega_c$$

• Beschränkung durch Modellunsicherheit:

Aus dem robustem Stabilitätskriterium folgt:

$$\begin{split} |L(j\omega) \cdot W_2(j\omega)| &< |1 + L(j\omega)|, \quad \forall \omega \in [0, \infty) \\ \Rightarrow \left| \frac{L(j\omega)}{1 + L(j\omega)} \right| &< \left| \frac{1}{W_s(j\omega)} \right| \\ \Rightarrow |T(j\omega)| &< \left| W_2^{-1}(j\omega) \right| \\ \boxed{\omega_c \stackrel{!}{<} \frac{1}{10} \cdot \omega_2} \qquad \boxed{|W_2(j\omega_2)| = 1} \end{split}$$

• Beschränkung durch Totzeit τ :

$$L_{\tau}(s) = C(s) \cdot P(s) \cdot e^{(-\tau_c + \tau_p) \cdot s} = C(s) \cdot P(s) \cdot e^{-\tau \cdot s}$$

$$\omega_c < \frac{1}{2} \cdot \omega_\tau = \frac{1}{2} \cdot \frac{1}{\tau}$$

Konservativer: 1

• Beschränkung durch nicht-minimalphasige (NMP) Nullstellen $\underline{\omega_{c+}}$:

$$\omega_c \stackrel{!}{<} \frac{1}{2} \cdot \omega_{\zeta} +$$

Konservativer: $\frac{1}{5}$

• Beschränkung durch instabile Pole π^+ :

$$\omega_c \stackrel{!}{>} 2 \cdot \omega_{\pi^+}$$

wobei $\omega_{\pi+}$ der schnellste instabile Pol von L(s) ist (Pol mit dem grössten positiven Realteil) Konservativer: 5

Zusätzlich für instabile Pole π_i^+ mit Modellunsicherheit $W_2(s)$

$$\left| W_2(\pi_i^+) \right| < 1, \quad \forall i$$

Zusammenfassend für alle Beschränkungen:

$$\max\left\{10 \cdot \omega_d, 2\omega_{\pi^+}\right\} < \omega_c$$
$$\omega_c < \min\left\{\frac{1}{10} \cdot \omega_n, \frac{1}{10} \cdot \omega_2, \frac{1}{2} \cdot \omega_{\tau}, \frac{1}{2} \cdot \omega_{\zeta^+}\right\}$$

Statischer Nachlauffehler für
$$r(t), d(t), n(t)$$

$$E(s) = S(s) \cdot (R(s) + N(s) - D(s) - P(s) \cdot W(s))$$

ThB11

her Nachlauffehler auf Sprungantwort:

$${}^{h}_{\infty} = \lim_{t \to \infty} e^{h}(t) = \lim_{s \to 0_{+}} s \cdot S(s) \cdot \frac{1}{s} = \lim_{s \to 0_{+}} S(s) = S(0)$$

$$e_{\infty}^{h} = S(0) = \frac{1}{1 + L(0)}$$

L(0) hängt vom Systemtyp k und der Kreisverstärkung L(s) ab: Frequenzbereich - Spezifikation

$$L(s) = \frac{b_m \cdot s^m + \dots + b_1 \cdot s + b_0}{s^k \cdot (s^{n-k} + a_{n-1-k} \cdot s^{n-1-k} + \dots + a_1 \cdot s + a_0)}$$

Es ergeben sich zwei Fälle für e_{∞}^{h}

ThB10

k = 0	$\Rightarrow L(0) \rightarrow \frac{b_0}{a_0} \Rightarrow e^h_{\infty}$	$a_0=rac{a_0}{a_0+b_0}$
k > 0	$\Rightarrow L(0) \to \infty \Rightarrow e^h_{\infty}$	$_{0} \rightarrow 0$

Statischer Nachlauffehler für
$$w(t)$$
ThB11Statischer Nachlauffehler auf Sprungantwort $(w(t) = h(t))$: $e_{\infty}^{h} = \lim_{t \to \infty} e^{h}(t) = \lim_{s \to 0} s \cdot E(s) = \lim_{s \to 0} -s \cdot S(s)P(s)W(s)$ $= \lim_{s \to 0} -s \cdot \frac{P(s)}{1 + P(s) \cdot C(s)} \cdot \frac{1}{s} = \boxed{\frac{-P(0)}{1 + P(0) \cdot C(0)}}$

$$\label{eq:Furthermodel} \begin{array}{cc} \mathsf{F\ddot{u}r} & e_\infty = 0 & \mathsf{folgt} & |C(0)| = \infty \end{array}$$

Spezifikationen - Syste

Es wird angenommen, nem System 2. Ordnun

$$T(s) = \frac{\omega_0^2}{s^2 + 2 \cdot \delta \cdot \omega_0 \cdot s + \omega_0^2} \qquad T(0) = 1$$

$$\omega_c = \omega_0 \cdot \sqrt{\sqrt{4 \cdot \delta(\hat{\epsilon})^4 + 1} - 2 \cdot \delta(\hat{\epsilon})^2}$$
$$\varphi = \frac{\pi}{2} - \arctan\left(\frac{\sqrt{\sqrt{4 \cdot \delta(\hat{\epsilon})^4 + 1} - 2 \cdot \delta(\hat{\epsilon})^2}}{2 \cdot \delta(\hat{\epsilon})}\right)$$

Die obigen Gleichungen können für $\delta \in (0.45, 1)$ folgendermassen vereinfacht werden:

$$\omega_c \approx \frac{1.7}{t_{90}}, \qquad \varphi \approx 71^\circ - 117^\circ \cdot \hat{\epsilon}$$

Jm die **Auswirkungen von Störungen und Rauschen** um die Durchtrittsfrequenz zu minimieren, beschränkt man
$$S(s)$$
 und $T(s)$ mit einem **Maximalwert**.

$$\|S\|_{\infty} < S_{max}, \quad \|T\|_{\infty} < T_{max}, \quad S_{max}, T_{max} > 1,$$

wobei per Definition $\|\Sigma\|_{\infty} = \max_{\omega} |\Sigma(j\omega)|$ Die Bedingungen werden in Anforderungen an die Kreisverstärkung L(s) umgewandelt:

$$\|S\|_{\infty} < S_{max} \Leftrightarrow L(j\omega) \notin \left\{ |1+z| \leq \frac{1}{S_{max}} \Big| z \in \mathbb{C} \right\}$$

$$T\|_{\infty} < T_{max} \Leftrightarrow$$

$$L(j\omega) \notin \left\{ \left| \frac{T_{max}^2}{T_{max}^2 - 1} + z \right| \le \frac{T_{max}}{T_{max}^2 - 1} \left| z \in \mathbb{Q} \right| \right\}$$

$$v_I(t) = rac{k_p}{T_i} \cdot \int_0^t e(au) d au, \qquad U_I(s) = rac{k_p}{T_i} \cdot rac{1}{s} \cdot E(t)$$

Der I-Term reagiert zum Zeitpunkt t proportional auf den kumu**lierten** Fehler, für $t \in [0, t]$.

Falls ein statischer Nachlauffehler vorhanden ist, wird dieser aufintegriert und der Reglerausgang wird immer grösser, bis kein Fehler mehr vorhanden ist.

Nachteil: Ausgang kann theoretisch beliebig gross werden.

Je grösser
$${\cal T}_i$$
, desto ${\rm langsamer}$ die Reaktion.

Derivatives Verhalten (D-Term) ThB12

ThB12

$$u_D(t) = k_p \cdot T_d \cdot \frac{d}{dt} e(t), \qquad U_D(s) = k_p \cdot T_d \cdot s \cdot E(s)$$

ngsrate des Feh-

chnelles Erhöhen

rösser

Bode Diagramm eines PID-Reglers mit roll-off Term ThB12

$$u_P(t) = k_p \cdot e(t), \qquad U_P(s) = k_p \cdot E(s)$$

Der P-Term reagiert auf den momentanen Wert des Fehlers e(t). Die Stärke der Reaktion ist proportional zur Grösse des momentanen Fehlers.

Kann nur Magnitude beeinflussen.

struktur im Zeitbereich:

$$\mathbf{P}_{PID}(t) = k_p \cdot \left(\underbrace{e(t)}_{\text{P-Term}} + \underbrace{\frac{1}{T_i} \cdot \int_0^t e(\tau) d\tau}_{\text{I-Term}} + \underbrace{\frac{1}{T_d} \cdot \frac{d}{dt} e(t)}_{\text{D-Term}} \right)$$

Transformation in den Frequenzbereich:

$$C_{PID}(s) = k_p \cdot \left(1 + \frac{1}{T_i \cdot s} + T_d \cdot s\right) = \frac{U(s)}{E(s)}$$

u(t) wird durch den D-Term sehr empfindlich auf Rauschen. Unterdrücken des Rauschens bei hohen Frequenzen mittels roll-off Term:

$$C_{PID}(s) = k_p \cdot \underbrace{\left(1 + \frac{1}{T_i \cdot s} + T_d \cdot s\right)}_{\text{akausal}} \cdot \underbrace{\frac{1}{(\tau \cdot s + 1)^2}}_{\text{rol-off}}$$

$$s) \downarrow U(s)$$

ThB12
$$20$$
 $1/\tau$ roll-of

$$\begin{array}{c} \overset{\text{H}}{=} & & & \\ & &$$

$$50$$

 50
 -50
 -100
 10^{-1}
 10^{0}
 10^{1}
 10^{2}
 ω

em 2. OrdnungI hB11Regledass der geschlossene Regelkreis
$$T(s)$$
 ei-
ig entspricht:PID-F $\frac{\omega_0^2}{2 \cdot \delta \cdot \omega_0 \cdot s + \omega_0^2}$ $T(0) = 1$

Z. OrdnungTHDTT
$$z_0$$
 escalarReglerauslegung s der geschlossene Regelkreis $T(s)$ ei-
mtspricht:PID-Regler $\overline{\omega_0^2}$
 $\overline{\delta \cdot \omega_0 \cdot s + \omega_0^2}$ $T(0) = 1$ $u_{PID}(t) = k_p$

ThB11 Integratives Verhalten (I-Term)

PID-Regler Parameter Tuning nach Ziegler Nichols ThB12	Lead-Lag Elemente 2. Ordnung ThB12	Laplace	
Annahmen:	Die Verwendung eines Elements erster Ordnung beeinflusst Fre-	Laplace - Cheatsheet Th	B05
Stabiles System	quenzen in einer grossen Umgebung von $\hat{\omega}$. Bei einem Element zweiter Ordnung ist der gewünschte Effekt an	Wichtige Eigenschaften	
• System <i>P</i> (<i>s</i>) ein System erster Ordnung mit zusätzlicher	einer bestimmten Frequenz besser isoliert.	Ähnlichkeit : $\mathcal{L}\left\{\frac{1}{a} \cdot x(\frac{t}{a})\right\} = X(s \cdot a)$	
$\frac{k}{T} = \frac{T}{2}$	$C(\epsilon) = b s^2 + 2 \cdot \kappa \cdot \epsilon \cdot (1 - \epsilon) \cdot \omega_0 \cdot s + (1 - \epsilon)^2 \cdot \omega_0^2$	Verschiebung : $\mathcal{L}{x(t-T)} = e^{-T \cdot s} \cdot X(s)$	
$P(s) \approx \frac{1}{\tau \cdot s + 1} \cdot e^{-\tau \cdot s}$, wober: $\frac{1}{T + \tau} < 0.3$	$\mathbb{C}(s) = \kappa \cdot \frac{1}{s^2 + 2 \cdot \kappa \cdot \epsilon \cdot (1 + \epsilon) \cdot \omega_0 \cdot s + (1 + \epsilon)^2 \cdot \omega_0^2}$	$D \ddot{a}mpfung \qquad : \mathcal{L}\{x(t) \cdot e^{a \cdot t}\} = X(s-a)$	
$T \stackrel{!}{<} 0.4 \cdot \tau$	Zusätzlich zur mittleren Frequenz $\hat{\omega}$ und der maximalen Pha-	Ableitung t : $\mathcal{L}\left\{\frac{\mathrm{d}}{\mathrm{d}t}x(t)\right\} = s\cdot X(s) - x(0)$	
Zur Bestimmung der Parameter startet man mit einem reinen	senverschiebung $\hat{\varphi}$ kann man nun die Breite des Frequenzbands durch den Parameter ϵ wählen:	$n\text{-te Abl. }t\qquad : \mathcal{L}\{\tfrac{\mathrm{d}^n x(t)}{\mathrm{d}t^n}\}=s^n\cdot X(s)$	
P-Regler und erhöht die Verstärkung k_p soweit, bis der geschlos-		Ableitung s : $\mathcal{L}\{t\cdot x(t)\}=-\frac{d}{ds}X(s)$	
serie regentreis greizstabil wird bei der verstarkung κ_p (role volt $T(s)$ auf der imaginären Achse).	$k = \frac{(1+\epsilon)^2}{(1-\epsilon)^2}, \kappa = \frac{\cot(\hat{\varphi}/2)}{\sqrt{1-2}}, \omega_0 = \frac{\hat{\omega}}{\sqrt{1-2}}$	Integration t : $\mathcal{L}\{\int_0^t x(\tau) \mathrm{d}\tau\} = \frac{1}{s} \cdot X(s)$	
Falls die Modellannahme ungefähr stimmt, oszilliert das grenz - stabile System bei k^* mit einer Periode von T^* .	$\begin{array}{c c} (1-\epsilon)^2 & \sqrt{1-\epsilon^2} & \sqrt{1-\epsilon^2} \\ \end{array}$	Integration s : $\mathcal{L}\{\frac{1}{t}\cdot x(t)\} = \int_s^\infty X(\sigma) \mathrm{d}\sigma$	
		Faltung t : $\mathcal{L}\{x_1(t) * x_2(t)\} = X_1(s) \cdot X_2(s)$	
Regler k_p T_i T_d	$5 + \begin{bmatrix} C_{\text{lead}} & \\ \\ \end{bmatrix}$	Faltung s : $\mathcal{L}\{x_1(t) \cdot x_2(t)\} = X_1(s) * X_2(s)$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Wichtige Signaltransformationen	
PD $0.55 \cdot k_p^{*} \propto T^* 0.15 \cdot T^*$		x(t) $X(s)$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ŵ	$\delta(t)$ 1	
$T^* = \frac{2\pi}{4}, \qquad k_n^* = \frac{1}{1(2\pi)^{1-1/2}}$	$60 \uparrow \cdots \dot{\varphi} = 0.05$	$\frac{h(t)}{h(t) \cdot t^n \cdot e^{\alpha \cdot t}} \qquad \frac{\frac{1}{s}}{n!}$	
$\omega^{*} = (P(j\omega^{*})) $	$\epsilon_1 = 0.00$ $\epsilon_2 = 0.16$	$\frac{h(t) \cdot t}{h(t) \cdot \sin(\omega \cdot t)} = \frac{\frac{(s-\alpha)^{n+1}}{2}}{\frac{\omega}{2}}$	
$L_{\mathcal{D}}(\mathcal{D}(z, *)) \stackrel{!}{=} 0 = \langle \mathcal{D}(z, *) \rangle$	$\sim \epsilon_3 = 0.25$	$h(t) \cdot \cos(\omega \cdot t) = \frac{s^2 + \omega^2}{s^2 + \omega^2}$	
$Im(F(j\omega)) = 0, \angle F(j\omega) = -\pi$	$0 \qquad 10^{-1} \qquad 10^{0} \qquad 10^{1} \qquad 10^{2}$	$h(t) \cdot \sinh(\omega \cdot t) = \frac{\omega}{s^2 - \omega^2}$	
$\angle(a+bj) = \arctan\left(\frac{b}{a}\right)$		$h(t) \cdot \cosh(\omega \cdot t) = \frac{s}{s^2 - \omega^2}$	
Iterative Loop Shaping	Inversion der Regelstrecke ThB12	Laplace Transformation Th	B05
Iterative Loop Shaping Ein System das mit einem PID-Regler ausgelegt wird, erfüllt unter	Inversion der Regelstrecke ThB12 • Regelstrecke P(s) mit relativem Grad r ist asymptotisch stabil. (keine instabile Pole)	Laplace Transformation Thi Anfangswert:	B05
Iterative Loop Shaping Ein System das mit einem PID-Regler ausgelegt wird, erfüllt unter Umständen nicht alle Designspezifikationen . Um bestimmte Frequenzbänder nach Wunsch abzuändern, kann	Inversion der Regelstrecke ThB12 • Regelstrecke P(s) mit relativem Grad r ist asymptotisch stabil. (keine instabile Pole) • Regelstrecke P(s) hat nur minimalphasige Nullstellen	Laplace TransformationTheAnfangswert: $\lim_{t \to 0_+} x(t) = \lim_{s \to \infty} s \cdot X(s)$	B05
Iterative Loop Shaping Ein System das mit einem PID-Regler ausgelegt wird, erfüllt unter Umständen nicht alle Designspezifikationen. Um bestimmte Frequenzbänder nach Wunsch abzuändern, kann man einen beliebigen Regler mit bestimmten Elementen erwei- tern, oder von Grund auf neu erstellen.	Inversion der Regelstrecke ThB12 • Regelstrecke P(s) mit relativem Grad r ist asymptotisch stabil. (keine instabile Pole) • Regelstrecke P(s) hat nur minimalphasige Nullstellen • Zu riskant, wenn das nominale P(s) und wahre Pt(s) nicht • Zu riskant, wenn das nominale P(s)	Laplace TransformationThiAnfangswert: $\lim_{t \to 0_+} x(t) = \lim_{s \to \infty} s \cdot X(s)$ Endwerttheorem: $\sum_{s \to \infty} x(s) = \sum_{s \to \infty} x(s)$	B05
Iterative Loop Shaping Ein System das mit einem PID-Regler ausgelegt wird, erfüllt unter Umständen nicht alle Designspezifikationen. Um bestimmte Frequenzbänder nach Wunsch abzuändern, kann man einen beliebigen Regler mit bestimmten Elementen erweitern, oder von Grund auf neu erstellen. Lead-Lag Elemente 1.Ordnung ThB12	Inversion der Regelstrecke ThB12 • Regelstrecke P(s) mit relativem Grad r ist asymptotisch stabil. (keine instabile Pole) • Regelstrecke P(s) hat nur minimalphasige Nullstellen • Zu riskant, wenn das nominale P(s) und wahre Pt(s) nicht die gleiche Anzahl instabiler Pole oder NMP Nullstellen haben. • NMP	Laplace TransformationThiAnfangswert:	B05
Iterative Loop Shaping Ein System das mit einem PID-Regler ausgelegt wird, erfüllt unter Umständen nicht alle Designspezifikationen. Um bestimmte Frequenzbänder nach Wunsch abzuändern, kann man einen beliebigen Regler mit bestimmten Elementen erweitern, oder von Grund auf neu erstellen. Lead-Lag Elemente 1.Ordnung ThB12	Inversion der Regelstrecke ThB12 • Regelstrecke P(s) mit relativem Grad r ist asymptotisch stabil. (keine instabile Pole) • Regelstrecke P(s) hat nur minimalphasige Nullstellen • Zu riskant, wenn das nominale P(s) und wahre Pt(s) nicht die gleiche Anzahl instabiler Pole oder NMP Nullstellen haben. • desired L(s)	Laplace TransformationTheAnfangswert:	B05
Iterative Loop Shaping Ein System das mit einem PID-Regler ausgelegt wird, erfüllt unter Umständen nicht alle Designspezifikationen. Um bestimmte Frequenzbänder nach Wunsch abzuändern, kann man einen beliebigen Regler mit bestimmten Elementen erwei- tern, oder von Grund auf neu erstellen. Lead-Lag Elemente 1.Ordnung ThB12	Inversion der RegelstreckeThB12• Regelstrecke $P(s)$ mit relativem Grad r ist asymptotisch stabil. (keine instabile Pole)• Regelstrecke $P(s)$ hat nur minimalphasige Nullstellen• Zu riskant, wenn das nominale $P(s)$ und wahre $P_t(s)$ nicht die gleiche Anzahl instabiler Pole oder NMP Nullstellen ha- ben. $L(s) = P(s) \cdot P(s)^{-1} \cdot \underbrace{\frac{1}{1} \cdot \frac{1}{1}}_{s}$	Laplace TransformationThiAnfangswert:	B05
Iterative Loop Shaping Ein System das mit einem PID-Regler ausgelegt wird, erfüllt unter Umständen nicht alle Designspezifikationen. Um bestimmte Frequenzbänder nach Wunsch abzuändern, kann man einen beliebigen Regler mit bestimmten Elementen erwei- tern, oder von Grund auf neu erstellen. Lead-Lag Elemente 1.Ordnung ThB12	Inversion der RegelstreckeThB12• Regelstrecke $P(s)$ mit relativem Grad r ist asymptotisch stabil. (keine instabile Pole)• Regelstrecke $P(s)$ hat nur minimalphasige Nullstellen• Zu riskant, wenn das nominale $P(s)$ und wahre $P_t(s)$ nicht die gleiche Anzahl instabiler Pole oder NMP Nullstellen ha- ben. $L(s) = P(s) \cdot P(s)^{-1} \cdot \underbrace{\frac{1}{T_i \cdot s} \cdot \frac{1}{(\tau \cdot s + 1)^{r-1}}}_{T_i \cdot s}$	Laplace TransformationThiAnfangswert: $t \to 0_+ x(t) = \lim_{s \to \infty} s \cdot X(s)$ Endwerttheorem: $\lim_{t \to \infty} x(t) = \lim_{s \to 0_+} s \cdot X(s)$ $f(t)$ $\mathcal{L}\{f(t)\} = F(s)$ $f(t)$ 1	B05
Iterative Loop Shaping Ein System das mit einem PID-Regler ausgelegt wird, erfüllt unter Umständen nicht alle Designspezifikationen. Um bestimmte Frequenzbänder nach Wunsch abzuändern, kann man einen beliebigen Regler mit bestimmten Elementen erwei- tern, oder von Grund auf neu erstellen. Lead-Lag Elemente 1.Ordnung ThB12	Inversion der RegelstreckeThB12• Regelstrecke $P(s)$ mit relativem Grad r ist asymptotisch stabil. (keine instabile Pole)• Regelstrecke $P(s)$ hat nur minimalphasige Nullstellen• Zu riskant, wenn das nominale $P(s)$ und wahre $P_t(s)$ nicht die gleiche Anzahl instabiler Pole oder NMP Nullstellen ha- ben. $L(s) = P(s) \cdot P(s)^{-1} \cdot \underbrace{\frac{1}{T_i \cdot s} \cdot \frac{1}{(\tau \cdot s + 1)^{r-1}}}_{C(s)}$ Der Regler invertiert die Dynamik der Regelstrecke. Es folgt:	Laplace TransformationTheAnfangswert:	B05
Iterative Loop Shaping Ein System das mit einem PID-Regler ausgelegt wird, erfüllt unter Umständen nicht alle Designspezifikationen. Um bestimmte Frequenzbänder nach Wunsch abzuändern, kann man einen beliebigen Regler mit bestimmten Elementen erwei- tern, oder von Grund auf neu erstellen. Lead-Lag Elemente 1.Ordnung ThB12	Inversion der RegelstreckeThB12• Regelstrecke $P(s)$ mit relativem Grad r ist asymptotisch stabil. (keine instabile Pole)• Regelstrecke $P(s)$ hat nur minimalphasige Nullstellen• Zu riskant, wenn das nominale $P(s)$ und wahre $P_t(s)$ nicht die gleiche Anzahl instabiler Pole oder NMP Nullstellen ha- ben. $L(s) = P(s) \cdot P(s)^{-1} \cdot \underbrace{\frac{1}{T_i \cdot s} \cdot \frac{1}{(\tau \cdot s + 1)^{r-1}}}_{C(s)}$ Der Regler invertiert die Dynamik der Regelstrecke. Es folgt:	Laplace TransformationThiAnfangswert:	B05
Iterative Loop Shaping Ein System das mit einem PID-Regler ausgelegt wird, erfüllt unter Umständen nicht alle Designspezifikationen. Um bestimmte Frequenzbänder nach Wunsch abzuändern, kann man einen beliebigen Regler mit bestimmten Elementen erwei- tern, oder von Grund auf neu erstellen. Lead-Lag Elemente 1.Ordnung ThB12 $\frac{25}{10} \frac{10}{10} \frac{10}{10$	Inversion der RegelstreckeThB12• Regelstrecke $P(s)$ mit relativem Grad r ist asymptotisch stabil. (keine instabile Pole)• Regelstrecke $P(s)$ hat nur minimalphasige Nullstellen• Zu riskant, wenn das nominale $P(s)$ und wahre $P_t(s)$ nicht die gleiche Anzahl instabiler Pole oder NMP Nullstellen ha- ben. $L(s) = P(s) \cdot P(s)^{-1} \cdot \underbrace{\frac{1}{T_i \cdot s} \cdot \frac{1}{(\tau \cdot s + 1)^{r-1}}}_{C(s)}$ Der Regler invertiert die Dynamik der Regelstrecke. Es folgt: $L(s) = \frac{1}{T_i \cdot s} \cdot \frac{1}{(\tau \cdot s + 1)^{r-1}}$	Laplace TransformationThiAnfangswert: $\hline t \rightarrow 0_{+} x(t) = \lim_{s \to \infty} s \cdot X(s)$ Endwerttheorem: $\hline lim_{t \rightarrow \infty} x(t) = \lim_{s \rightarrow 0_{+}} s \cdot X(s)$ $f(t)$ $\mathcal{L}\{f(t)\} = F(s)$ 1 $\frac{1}{s}$ $e^{at}f(t)$ $F(s-a)$ $(a-b)$ e^{-as}	B05
Iterative Loop Shaping Ein System das mit einem PID-Regler ausgelegt wird, erfüllt unter Umständen nicht alle Designspezifikationen. Um bestimmte Frequenzbänder nach Wunsch abzuändern, kann man einen beliebigen Regler mit bestimmten Elementen erwei- tern, oder von Grund auf neu erstellen. Lead-Lag Elemente 1.Ordnung ThB12 $\frac{29}{10} - \frac{10}{10} - \frac{10}{10$	Inversion der RegelstreckeThB12• Regelstrecke $P(s)$ mit relativem Grad r ist asymptotisch stabil. (keine instabile Pole)• Regelstrecke $P(s)$ hat nur minimalphasige Nullstellen• Zu riskant, wenn das nominale $P(s)$ und wahre $P_t(s)$ nicht die gleiche Anzahl instabiler Pole oder NMP Nullstellen haben. $L(s) = P(s) \cdot \underbrace{P(s)^{-1} \cdot \underbrace{\frac{1}{T_i \cdot s} \cdot \underbrace{1}_{C(s)}}_{C(s)}}_{C(s)}$ Der Regler invertiert die Dynamik der Regelstrecke. Es folgt: $L(s) = \frac{1}{T_i \cdot s} \cdot \frac{1}{(\tau \cdot s + 1)^{r-1}}$ Mit der Verstärkung $T_i = \omega_c^{-1}$ kann die gewünschte Durchtritts-	Laplace TransformationTheAnfangswert:	B05
Iterative Loop Shaping Ein System das mit einem PID-Regler ausgelegt wird, erfüllt unter Umständen nicht alle Designspezifikationen. Um bestimmte Frequenzbänder nach Wunsch abzuändern, kann man einen beliebigen Regler mit bestimmten Elementen erwei- tern, oder von Grund auf neu erstellen. Lead-Lag Elemente 1.Ordnung ThB12 $\frac{25}{10} - \frac{10}{10} - \frac{10}{10$	Inversion der RegelstreckeThB12• Regelstrecke $P(s)$ mit relativem Grad r ist asymptotisch stabil. (keine instabile Pole)• Regelstrecke $P(s)$ hat nur minimalphasige Nullstellen• Zu riskant, wenn das nominale $P(s)$ und wahre $P_t(s)$ nicht die gleiche Anzahl instabiler Pole oder NMP Nullstellen ha- ben. $L(s) = P(s) \cdot P(s)^{-1} \cdot \underbrace{\frac{1}{T_i \cdot s} \cdot \frac{1}{(\tau \cdot s + 1)^{r-1}}}_{C(s)}$ Der Regler invertiert die Dynamik der Regelstrecke. Es folgt: $L(s) = \frac{1}{T_i \cdot s} \cdot \frac{1}{(\tau \cdot s + 1)^{r-1}}$ Mit der Verstärkung $T_i = \omega_c^{-1}$ kann die gewünschte Durchtritts- frequenz ω_c eingestellt werden. Zusätzlich wählen wir $\tau < T_i$ und $\omega_c < \omega_2$	Laplace TransformationThisAnfangswert: $\hline t \to 0_{+} x(t) = \lim_{s \to \infty} s \cdot X(s)$ Endwerttheorem: $\hline t \to \infty x(t) = \lim_{s \to 0_{+}} s \cdot X(s)$ f(t) $\mathcal{L}{f(t)} = F(s)$ 1 $\frac{1}{s}$ $e^{at}f(t)$ $F(s-a)$ $u(t-a)$ $\frac{e^{-as}}{s}$ $f(t-a)u(t-a)$ $e^{-as}F(s)$	805
$ \begin{array}{l} \hline \label{eq:spectral_system} \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Inversion der RegelstreckeThB12• Regelstrecke $P(s)$ mit relativem Grad r ist asymptotisch stabil. (keine instabile Pole)• Regelstrecke $P(s)$ hat nur minimalphasige Nullstellen• Zu riskant, wenn das nominale $P(s)$ und wahre $P_t(s)$ nicht die gleiche Anzahl instabiler Pole oder NMP Nullstellen haben. $L(s) = P(s) \cdot P(s)^{-1} \cdot \underbrace{\frac{1}{T_i \cdot s} \cdot \underbrace{1}_{(\tau \cdot s + 1)^{r-1}}_{C(s)}}_{C(s)}$ Der Regler invertiert die Dynamik der Regelstrecke. Es folgt: $L(s) = \frac{1}{T_i \cdot s} \cdot \frac{1}{(\tau \cdot s + 1)^{r-1}}$ Mit der Verstärkung $T_i = \omega_c^{-1}$ kann die gewünschte Durchtritts- frequenz ω_c eingestellt werden. Zusätzlich wählen wir $\tau < T_i$ und $\omega_c < \omega_2$	Laplace TransformationThiAnfangswert: $\hline t \rightarrow 0_{+} x(t) = \lim_{s \to \infty} s \cdot X(s)$ Endwerttheorem: $\hline lim_{t \rightarrow \infty} x(t) = \lim_{s \rightarrow 0_{+}} s \cdot X(s)$ $f(t)$ $\mathcal{L}\{f(t)\} = F(s)$ 1 $\frac{1}{s}$ $e^{at}f(t)$ $F(s-a)$ $u(t-a)$ $\frac{e^{-as}}{s}$ $f(t-a)u(t-a)$ $e^{-as}F(s)$ $\delta(t)$ 1	B05
$ \begin{array}{l} \mbox{Iterative Loop Shaping} \\ \mbox{Ein System das mit einem PID-Regler ausgelegt wird, erfüllt unter Umständen nicht alle Designspezifikationen.} \\ \mbox{Um bestimmte Frequenzbänder nach Wunsch abzuändern, kann man einen beliebigen Regler mit bestimmten Elementen erweitern, oder von Grund auf neu erstellen.} \\ \mbox{Lead-Lag Elemente 1.Ordnung} \\ \mbox{ThB12} \\ \mbox{Th} \\ Iterative Blement met all und planet of the state of t$	Inversion der RegelstreckeThB12• Regelstrecke $P(s)$ mit relativem Grad r ist asymptotisch stabil. (keine instabile Pole)• Regelstrecke $P(s)$ hat nur minimalphasige Nullstellen• Zu riskant, wenn das nominale $P(s)$ und wahre $P_t(s)$ nicht die gleiche Anzahl instabiler Pole oder NMP Nullstellen haben. $L(s) = P(s) \cdot P(s)^{-1} \cdot \underbrace{\frac{1}{T_i \cdot s} \cdot \underbrace{1}_{(\tau \cdot s + 1)^{r-1}}_{C(s)}}_{C(s)}$ Der Regler invertiert die Dynamik der Regelstrecke. Es folgt: $L(s) = \frac{1}{T_i \cdot s} \cdot \frac{1}{(\tau \cdot s + 1)^{r-1}}$ Mit der Verstärkung $T_i = \omega_c^{-1}$ kann die gewünschte Durchtrittsfrequenz ω_c eingestellt werden.Zusätzlich wählen wir $\tau < T_i$ und $\omega_c < \omega_2$	Laplace TransformationThiAnfangswert: $\hline t \to 0_{+} x(t) = \lim_{s \to \infty} s \cdot X(s)$ Endwerttheorem: $\hline t \to \infty x(t) = \lim_{s \to 0_{+}} s \cdot X(s)$ f(t) $\mathcal{L}{f(t)} = F(s)$ 1 $\frac{1}{s}$ $e^{at}f(t)$ $F(s-a)$ $u(t-a)$ $\frac{e^{-as}}{s}$ $f(t-a)u(t-a)$ $e^{-as}F(s)$ $\delta(t)$ 1 $\delta(t-t_0)$ e^{-st_0}	805
Iterative Loop Shaping Ein System das mit einem PID-Regler ausgelegt wird, erfüllt unter Umständen nicht alle Designspezifikationen. Um bestimmte Frequenzbänder nach Wunsch abzuändern, kann man einen beliebigen Regler mit bestimmten Elementen erwei- tern, oder von Grund auf neu erstellen. Lead-Lag Elemente 1.Ordnung ThB12 $\int_{10}^{20} \int_{10}^{40} \int_{10}^$	Inversion der RegelstreckeThB12• Regelstrecke $P(s)$ mit relativem Grad r ist asymptotisch stabil. (keine instabile Pole)• Regelstrecke $P(s)$ hat nur minimalphasige Nullstellen• Zu riskant, wenn das nominale $P(s)$ und wahre $P_t(s)$ nicht die gleiche Anzahl instabiler Pole oder NMP Nullstellen ha- ben. $L(s) = P(s) \cdot P(s)^{-1} \cdot \underbrace{\frac{1}{T_i \cdot s} \cdot \underbrace{1}_{(\tau \cdot s + 1)^{r-1}}_{C(s)}}_{C(s)}$ Der Regler invertiert die Dynamik der Regelstrecke. Es folgt: $L(s) = \frac{1}{T_i \cdot s} \cdot \frac{1}{(\tau \cdot s + 1)^{r-1}}$ Mit der Verstärkung $T_i = \omega_c^{-1}$ kann die gewünschte Durchtritts- frequenz ω_c eingestellt werden. Zusätzlich wählen wir $\tau < T_i$ und $\omega_c < \omega_2$	Laplace TransformationTheAnfangswert: $\hline t \rightarrow 0_{+} x(t) = \lim_{s \to \infty} s \cdot X(s)$ Endwerttheorem: $\hline t \rightarrow \infty x(t) = \lim_{s \rightarrow 0_{+}} s \cdot X(s)$ f(t) $\mathcal{L}\{f(t)\} = F(s)$ 1 $\frac{1}{s}$ $e^{at}f(t)$ $F(s-a)$ $u(t-a)$ $\frac{e^{-as}}{s}$ $f(t-a)u(t-a)$ $e^{-as}F(s)$ $\delta(t)$ 1 $\delta(t-t_0)$ e^{-st_0}	805
$ \begin{array}{l} \hline \label{eq:spectral_system} \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Inversion der RegelstreckeThB12• Regelstrecke $P(s)$ mit relativem Grad r ist asymptotisch stabil. (keine instabile Pole)• Regelstrecke $P(s)$ hat nur minimalphasige Nullstellen• Zu riskant, wenn das nominale $P(s)$ und wahre $P_t(s)$ nicht die gleiche Anzahl instabiler Pole oder NMP Nullstellen haben. $L(s) = P(s) \cdot P(s)^{-1} \cdot \underbrace{\frac{1}{T_i \cdot s} \cdot \frac{1}{(\tau \cdot s + 1)^{r-1}}}_{C(s)}$ Der Regler invertiert die Dynamik der Regelstrecke. Es folgt: $L(s) = \frac{1}{T_i \cdot s} \cdot \frac{1}{(\tau \cdot s + 1)^{r-1}}$ Mit der Verstärkung $T_i = \omega_c^{-1}$ kann die gewünschte Durchtrittsfrequenz ω_c eingestellt werden.Zusätzlich wählen wir $\tau < T_i$ und $\omega_c < \omega_2$	$\begin{tabular}{ c c c c } \hline \mbox{Laplace Transformation} & \end{tabular} tabu$	805
$\begin{array}{l} \hline \label{eq:constraint} \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Inversion der RegelstreckeThB12• Regelstrecke $P(s)$ mit relativem Grad r ist asymptotisch stabil. (keine instabile Pole)• Regelstrecke $P(s)$ hat nur minimalphasige Nullstellen• Zu riskant, wenn das nominale $P(s)$ und wahre $P_t(s)$ nicht die gleiche Anzahl instabiler Pole oder NMP Nullstellen haben. $L(s) = P(s) \cdot P(s)^{-1} \cdot \underbrace{\frac{1}{T_i \cdot s} \cdot \underbrace{1}_{(\tau \cdot s + 1)^{r-1}}_{C(s)}}_{C(s)}$ Der Regler invertiert die Dynamik der Regelstrecke. Es folgt: $L(s) = \frac{1}{T_i \cdot s} \cdot \frac{1}{(\tau \cdot s + 1)^{r-1}}$ Mit der Verstärkung $T_i = \omega_c^{-1}$ kann die gewünschte Durchtrittsfrequenz ω_c eingestellt werden.Zusätzlich wählen wir $\tau < T_i$ und $\omega_c < \omega_2$	Laplace TransformationTheAnfangswert: $\hline t \to 0_{+} x(t) = \lim_{s \to \infty} s \cdot X(s)$ Endwerttheorem: $\hline t \to \infty x(t) = \lim_{s \to 0_{+}} s \cdot X(s)$ f(t) $\mathcal{L}{f(t)} = F(s)$ 1 $\frac{1}{s}$ $e^{at}f(t)$ $F(s - a)$ $u(t - a)$ $\frac{e^{-as}}{s}$ $f(t - a)u(t - a)$ $e^{-as}F(s)$ $\delta(t)$ 1 $\delta(t - t_0)$ e^{-st_0} $t^n f(t)$ $(-1)^n \frac{d^n}{ds^n} F(s)$ $f'(t)$ $sF(s) - f(0)$	805

 $\hat{\varphi}$.

 $\frac{\Gamma(x+1)}{s^{x+1}}$ $t^x \ (x \ge -1 \in \mathbb{R})$ $\frac{k}{s^2+k^2}$ $\frac{2k^2}{s(s^2+4k^2)}$ $\frac{s}{s^2+k^2}$ $\frac{s^2 + 2k^2}{s(s^2 + 4k^2)}$ $\frac{1}{s-a}$ $\frac{k}{s^2 - k^2}$ $\frac{s}{s^2 - k^2}$ $\frac{1}{(s-a)(s-b)}$ $\frac{ae^{at} - be^{bt}}{a - b}$ $\frac{s}{(s-a)(s-b)}$ $\frac{1}{(s-a)^2}$ $\frac{n!}{(s-a)^{n+1}}$ $\frac{k}{(s-a)^2 + k^2}$ $\frac{s-a}{(s-a)^2+k^2}$ $\frac{k}{(s-a)^2 - k^2}$ $\frac{s-a}{(s-a)^2 - k^2}$ $\frac{2ks}{(s^2+k^2)^2}$ $\frac{s^2 - k^2}{(s^2 + k^2)^2}$ $\frac{2ks}{(s^2-k^2)^2}$ $\frac{s^2 - k^2}{(s^2 - k^2)^2}$ $\arctan \frac{a}{s} = \operatorname{arccot} \frac{s}{a}$

 $\sin kt$

 $\sin^2 kt$

 $\cos kt$

 $\cos^2 kt$

 $\sinh kt$

 $\cosh kt$

 $\frac{e^{at}-e^{bt}}{a-b}$

 te^{at}

 $t^n e^{at}$

 $e^{at}\sin kt$

 $e^{at}\cos kt$

 $e^{at}\sinh kt$

 $e^{at} \cosh kt$

 $t\sin kt$

 $t\cos kt$

 $t\sinh kt$

 $t\cosh kt$

 $\sin at$

t

 $\frac{n!}{s^{n+1}}$

 $t^n \ (n=0,1,2,\dots)$

 e^{at}