
DPOC Summary
Jorit Geurts, jgeurts@ethz.ch

Version: 25. Januar 2024

1 Mathematics

1.1 Linear Algebra

(Semi) Posivite Definite Matrix iff all eigenvalues (≥ 0) > 0

Matrix Inverse 2x2: A−1 = 1
det(A)

[
A22 −A12
−A21 A11

]
1.2 Calculus

Del-Operator (Gradient):∇xf(x) =
[

∂
∂x1

f(x) · · · ∂
∂xn

f(x)
]⊤

Hessian

∂2f

∂x2
=

∂2f

∂x2
1

· · · ∂2f
∂x1∂xn

· · · · · · · · ·
∂2f

∂xn∂x1
· · · ∂2f

∂x2
n

Nonhomogeneous DGL Solution:

ẋ(t) + cx(t) = f(t)→ x(t) = xh(t) + xp(t)

xh(t)→ f(t) = 0, xp(t) using Ansatz solution

1. order inhomogeneous DE

ṗ(t) + ap(t) = be
ct

+ d

p(t) =
b

a− c
e
ct

+
d

a
+ Ke

−at

Vareous

x =
−b±

√
b2 − 4ac

2a
,

∞∑
0

q
k

=
1

1− q

2 Probability Theory

2.1 Random Variables

2.1.1 Discrete Random Variables
Random Variable defined by px,X
• X ⊂ Z of all possible outcomes

• px(x̄) ≥ 0 and
∑

x̄∈X px(x̄) = 1 bzw.
∑

x̄∈X px|y(x̄|ȳ) = 1

Margin. / Sum Rule p(x̄) =
∑

ȳ∈Y pxy(x̄, ȳ)

Cond. / Product Rule px|y(x̄|ȳ) :=
pxy(x̄,ȳ)

py(ȳ)

Total Prob. Theorem px(x̄) :=
∑

ȳ∈Y px|y(x̄|ȳ)py(ȳ)

2.1.2 Conditional PDF

Conditional PDF

Margin. / Sum Rule p(x̄|z̄) =
∑

ȳ∈Y pxy|z(x̄, ȳ|z̄)

Cond. / Product Rule px|yz(x̄|ȳ, z̄) :=
pxy|z(x̄,ȳ|z̄)

py|z(ȳ|z̄)

Independence
p(x|y) = p(x) ⇔ p(y|x) = p(y) ⇔ p(x, y) = p(x)p(y)

p(x, y, z) = p(x, y|z)p(z)→ x,y indp. p(x, y|z) = p(z|x, y)
Conditional Independence
The knowledge of z makes x and y independent:

p(x|y, z) = p(x|z) ⇔ p(x, y|z) = p(x|z)p(y|z)
Caution!!! in general we still have: p(x, y) ̸= p(x)p(y)
Caution!!! Independence ⇏ Conditional Independence
2.2 Expectation and Variance

2.2.1 Expectation
Definition: Integral for CRV!

Ex[x] =
∑

x̄∈X x̄px(x̄)

Linearity Exy [a+ bx+ cy] = a+ b Ex[x] + c Ey [y]

Multi Variable Exy [g(x, y)] =
∑

ȳ

∑
x̄ g(x̄, ȳ)pxy(x̄, ȳ)

Independence Exy [xy] = Ex [x] Ey [y]

Law of Unconcious Statistician for y = g(x)

Ey [y] =
∑

ȳ∈Y ȳpy(ȳ) =
∑

x̄∈X g(x̄)px(x̄)

2.2.2 Variance (generally a matrix)

Var
x

[x] = E
x

[
(x−Ex[x])(x−Ex[x])⊤

]
= E

x

[
x
2
]
−E

x
[x]

2
= σ

2

Linearity

Varx[a + bX + cY] = b2 VarX [x] + c2 VarY [y] + 2bcCov[X,Y]

Covariance: Cov(X, Y) = E[(X − E[X])(Y − E[Y])]
ind.
= 0

3 Dynamic Programming

• Open Loop can never give better performance than Closed Loop
• Open loop is a special case of closed loop
• Without disturbances, theoretically the same

• Open Loop: NN
u

• Closed Loop: Nu(NNx
u)N−1 = N

Nx(N−1)+1
u

3.1 DP-Setup

Stage: k, with k = 0, 1, . . . , N − 1
Dynamics
DP uses a Markov Chain, i.e. next state is fully determined by current state
and action, i.e. states are conditionally independent from previous states.
wk : disturbance vector, independent of the previous states and actions.

xk+1 = fk(xk, uk, wk)

with xk ∈ Sk, uk ∈ Uk, wk ∼ pwk|xk,uk

pwk|xk,uk,∗ = pwk|xk,uk
∀ ∗ ∈ {xl, ul, wl|l < k}

Policy
controll inputs uk are generated by an admissible policy π ∈ Π such that.

uk = µk(xk) ∀ k ∈ {0, 1, . . . , N − 1}
Cost

JN (xN) = E
X1,W0|x0=x

gN (xN) +

N−1∑
k=0

gk(xk, uk, wk)

with gk(xk, uk, wk) stage cost, gN (xN) terminal cost

and X1 := {x1, . . . , xN}, W0 := {w0, . . . , wN−1}

Objective

π
∗

= arg min
π∈Π

Jπ(xN)

3.2 Principle of Optimality

Let π∗ be an optimal policy. For the truncated problem starting at xi:

E
Xi+1,Wi|xi=x

N−1∑
k=i

gk(xk, uk, wk) + gN (xN)

the policy π∗ = (µ∗

i (·), µ
∗
i+1(·), . . . , µ

∗
N−1(·)) is also optimal.

3.3 DP-Algorithm
Initialization

JN (x) := gN (x) ∀ x ∈ SN
Recursion

Jk(x) = min
uk∈Uk(x)

E
∗
[
gk(xk, uk, wk) + Jk+1(fk(xk, uk, wk))

]
∗ = wk|xk = x, uk = u

for maximization problems, replace min by max.
There occurs a minimization in u for each each state at each time step.
This results in: Nu + NuNx(N − 1) minimizations.

Different Cost Functions
Exponential:

JN (x) = E
wk

exp
(
gN (xN) +

∑N−1
k=0

gk(xk, uk, wk)
)

DP-Algorithm:

JN (xN) = exp (gN (xN))

Jk(xk) = min
uk∈U

E
w

[
Jk+1(fk(xk, uk, wk)) exp(gk(xk, uk, wk))

]
3.3.1 Converting to Standard from

Time Lags

Dynamics with a time delay i.e.:

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

Define y = xk−1 and s = uk−1 ⇒ x̃k = (xk, yk, sk)
New Dynamics in standard form:

x̃k+1 =

[
xk+1
yk
sk

]
=

[
fk(xk, yk, sk, uk, wk)

xk
uk

]
:= f̃k(x̃k, uk, wk)

can be done repeatedly for multiple time lags.
Correlated Disturbances
wk correlated over time (colored noise) can be modeled as:

wk = Ckyk+1, yk+1 = Akyk + ξk

Ak and Ck are given and ξk are independent random Variables
Augmented state is x̃k = (xk, yk), yk must be observed/estimated.
Dynamics of augmented state:

x̃k+1 =

[
xk+1
yk+1

]
=

[
fk(xk, yk, uk, wk)

Akyk + ξk

]
:= f̃k(x̃k, uk, wk)

Forecasts
If we get a forcast which reveals the probability distribution of wk (it is ass-
umed that wk is independent of xk and uk).
We get the forecast yk that wk will attain a probability distribution out of a
finite collection {pwk|yk

(·|1), . . . , pwk|yk
(·|m)}. In particular we get

the forecast yk = i and thus wk ∼ pwk|yk
(·|i).

yk is also distributed according to yk+1 = ξk where ξk are independent

variables with values i ∈ {1, . . . ,m} and probabilities pξk
(i).

We augment the state with yk and get x̃k = (xk, yk).
The new disturbance is now:

p(w̃k|x̃k, uk) = p(wkξk|xk, yk, uk) = p(w̃k|yk)p(ξk)

New dynamics:

x̃k+1 =

[
xk+1
yk+1

]
=

[
fk(xk, yk, uk, wk)

ξk

]
:= f̃k(x̃k, uk, wk)

New DP-Algorithm:
Initialization:

JN (x̃) = J(x, y) = gN (x) ∀ x ∈ SN , y ∈ {1, . . . ,m}
Update: Have to do case distinction for each y resp. i.

Jk(x̃) = Jk(x, y)

= min
uk∈Uk

E
∗

[
gk(xk, uk, wk)+

m∑
i=1

pξk
(i)Jk+1(fk(xk, uk, wk), i)

]
∗ = (wk|yk = y)

Jk+1 is not always a function of ξk → thus just deterministic/the mean is
equal to the actual cost.
4 Infinite Horizon Problems

4.1 Setup
Standard DP setup, with N →∞.
Dynamics (becomes time invariant)

xk+1 = f(xk, uk, wk), xk ∈ S, uk ∈ U, wk ∼ pw|x,u

Policy
Controll inputs uk are generated by policy π ∈ Π (timeinvariant)

uk = µ(xk) ∀ k ≥ 0

Cost (no terminal cost and stationary)

J(x) = E
X1,W0|x0=x

 ∞∑
k=0

g(xk, uk, wk)

4.2 Bellman Equation

J(x) = min
u∈U

E
w

[g(x, u, w) + J(f(x, u, w))]

Solving the BE is hard. (Has to be done for all x ∈ X simultaneously)
4.3 Stochastic Shortest Path Problem
Dynamics

xk+1 = wk, xk ∈ S

Pr(wk = j|xk = i, uk = u) = Pij(u), u ∈ U

Assumption 4.1:
There exists a cost-free termination state, which we designate as state 0. In
particular there are n + 1 states with S = {0, 1, . . . , n} where.

P00(u) = 1 and g(0, u, 0) = 0 ∀u ∈ U(0)
Assumption 4.2:
There exists at least one proper policy π ∈ Π. Furthermore for every impro-
per policy µ′ and at least one state i ∈ S, the corresponding cost funtion
is Jµ′ = +∞.

Proper Policy:
A policy is proper if there exists a integer m such that

Pr(xm = 0|x0 = i) > 0 ∀ i ∈ S
There is a path to the goal for every state.
4.3.1 Solution to the SSP
If Assumption 4.1 and 4.2 hold, then:
1. Given a initial condition V0(1), . . . , V0(n), the sequence Vl(i) gene-

rated by the iteration

Vl+i(i) = min
u∈U

g(i, u) +

n∑
j=1

Pij(u)Vl(j)

 ∀ i ∈ S+

where S+ := S⧹{0} and q(i, u) = E
w
[g(x, u, w)]

converges to the optimal cost J∗(i) for all i ∈ S+.
2. The optimal cost satisfies the Bellman Equation:

J
∗
(i) = min

u∈U

q(i, u) +
n∑

j=1

Pij(u)J
∗
(j)

 ∀ i ∈ S+

3. The solution is unique
4. The minimizing u for each i ∈ S+ of the BE gives an optimal policy

which is proper

4.4 Solving the Bellman Equation

4.4.1 Value Iteration

Simply iterate the BE until convergence (arbitrary initialization).

Vl+i(i) = min
u∈U

g(i, u) +
n∑

j=1

Pij(u)Vl(j)

 ∀ i ∈ S+

Need infinite iterations in theory.
4.4.2 Policy Iteration
Iterate over policies until convergence (terminal state must be exclueded):

Initialization Initialize with a proper policy µ0 ∈ Π

Stage 1: Policy Evaluation Given a policy µh solve for Jh
µ :

J
µh (i) = q(i, µ

h
(i)) +

n∑
j=1

Pij(µ
h
(i))J

µh (j) ∀ i ∈ S+

Can be represented as solving a linear system J = G + PJ . A solution
exists if and only if (I −P) is invertible (is the case for proper policies).

Stage 2: Policy Improvement Obtain a new policy µh+1 by:

µ
h+1

(i) = arg min
u∈U

q(i, u) +

n∑
j=1

Pij(u)Jµh (j)

 ∀ i ∈ S+

Stage 3: Termination Iterate until J
µh+1 (i) = J

µh (i) ∀ i ∈ S+

• Under Assumptions 4.1 and 4.2, policy iterations always converges to an
optimal policy in finite time.

• The policy evaluation (Step 1) always has a unique solution.
• Since PI is initialized with a proper policy, the policy improvement (Step

2) always results in a proper policy.
• Policy Improvement always means: J

µh+1 (i) ≤ J
µh (i) (not the case

for VI)

4.5 VI vs. PI

• Stage 1 of PI is the same as running VI infinitely many times

• PI has time complexity of O(n2(n + p)) per iteration

• VI has time complexity of O(n2p) per iteration
• VI faster per iteration but in theory needs infinite iterations where as PI

terminates in the worst case after pn iterations (in practice much faster).
• The cost of PI and VI is always the same.
• The policy can be different.

4.5.1 Variant of PI and VI

Gauss-Seidel Update
In practice VI updates V for all states (Calculate V̄ (i) for all i with the old
values of V (i) and store the V̄ (i), then update all V (i) with V̄ (i)). We
can do it iteratively in place:

V (i)← min
u∈U

q(i, u) +
n∑

j=1

Pij(u)V (j)

Asynchronous PI
Under mild conditions all combinations of the following will converge:
• Any number of value updates between policy updates
• Any number of states updated at each value update
• Any number of states updated at each policy update

4.5.2 Linear Programming

It can be shown that Vl+1(i) ≥ Vl(i) ∀ i ∈ S+, ∀ l.
We can thus formulate the BE as a optimization problem:

max
V

∑
i∈S+

V (i)

s.t. V (i) ≤ q(i, u) +

n∑
j=1

Pij(u)V (j) ∀ i ∈ S+
, ∀u ∈ U

This is a Linear Program and can be solved using commercial solvers.
Be careful for maximization the equality sign has to be flipped and the
optimization becomes a minimization. For discounted problem insert α in
front of the sum.

1

4.6 Discounted Problems
Dynamics: Same as for infinite horizon problems

xk+1 = wk, xk ∈ S

Pr(wk = j|xk = i, uk = u) = Pij(u), u ∈ U(xk)

but without a termination state.
Policy
Controll inputs uk are generated by policy π ∈ Π

uk = µk(xk) ∀ k ≥ 0

Cost (no terminal cost)

J(x) = E
X1,W0|x0=x

 ∞∑
k=0

α
k
g̃k(xk, uk, wk)

α ∈ (0, 1) is the discount factor. For initialization only an admissible poli-
cy is needed and not a proper one since the discount factor makes sure the
problem stays finite.
4.6.1 Conversion to SSP
Introduce a virtual termination state 0 with command U(0) = {stay}.
The transition probabilities are (P̃ij(u) is the original probability):

pw|x,u(j|i, u) = Pij(u) = αP̃ij(u) ∀u ∈ U(i), ∀ i, j ∈ S+

p0|x,u(0|i, u) = Pi0(u) = 1− α ∀u ∈ U(i), ∀ i ∈ S+

pw|x,u(j|0, u) = P0j(u) = 0 ∀u = stay, ∀ j ∈ S+

pw|x,u(0|0, u) = P00(u) = 1 ∀u = stay

g(xk, uk, wk) = α
−1

g̃(xk, uk, wk)

Following the derivation the BE looks as follows:

J
∗
(i) = min

u∈U

q(i, u) + α

n∑
j=1

P̃ij(u)J
∗
(j)

 ∀ i ∈ S+

q(i, u) =

n∑
j=1

Pij(u)g(i, u, j) =
n∑

j=1

P̃ij(u)g̃(i, u, j)

As above the system can be written as J = G+αP̃J . If (I−αP̃) is inver-
tible, then the solution exists. It can be shown that this is the case. There is a
mapping between the original discounted problem and the auxiliary problem.
PI and VI work the same but with the α in front of the sum.
5 Deterministic Systems

5.1 Deterministic Finite State (DFS) Problem
Dynamics
Same setup as normal DP system but without a disturbance:

xk+1 = fk(xk, uk)

with xk ∈ Sk, uk ∈ Uk
Policy
controll inputs uk are generated by an admissible policy π ∈ Π such that.

uk = µk(xk) ∀ k ∈ {0, 1, . . . , N − 1}
Cost

JN (xN) = gN (xN) +

N−1∑
k=0

gk(xk, uk)

with gk(xk, uk) stage cost, gN (xN) terminal cost

and X1 := {x1, . . . , xN}

Objective (since deterministic no feedback needed)

π
∗

= arg min
π∈Π

Jπ(xN)

5.2 Shortest Path Problem (SP)

Graph is defined by a finite vertex space V (all vertices including start and
end) and a weighted edge space:

C :=
{
(i, j, ci,j) ∈ V × V × R ∪ {∞}|i, j ∈ V

}
ci,j is the cost of the edge from i to j, if no connection exists ci,j =∞.

Path is a ordered list of nodes Q := (i1, i2, . . . , iq). The set of all paths
from some node s ∈ V to some node t ∈ V is denoted by Qs,t.
Path Length is the sum of the arc lenghts/costs:

JQ :=

q−1∑
k=1

cik,ik+1

Objective find Q∗ ∈ Qs,t that has the smallest length:

Q
∗

= arg min
Q∈Qs,t

JQ

Assumption 7.1:
For the Problem to make sense it must hold:
For all i ∈ V and for all Q ∈ Qi,i, JQ ≥ 0.

5.3 Equivalence of SP and DFS
5.3.1 DFS to SP

We have:

V :=

 N⋃
k=1

Vk

 ∪ {⊤}, Vk := {(k, i)|i ∈ Sk}

the cost is given by

c(k,i),(k+1,j) = min
uk

gk(i, uk, j), ∀ i ∈ Sk, ∀ j ∈ Sk+1

5.3.2 SP to DFS
The optimal path needs at most |V| steps, thus we can formulate the SP as
a DFS of length N := |V| − 1:
- State space: Sk = V⧹{t} for k = 1, . . . , N − 1 and SN = {t} and
S0 = {s}
- Control space: Uk = V⧹{t} for k = 0, . . . , N − 2 and UN−1 = {t}
- Dynamics: xk+1 = uk, uk ∈ Uk, k = 0, . . . , N − 1

- Stage Cost: gk(xk, uk) = cxk,uk
, k = 0, . . . , N−1, gN (t) = 0

The solution can be found using DPA:

JN (t) = 0

JN−1(i) = ci,t, ∀ i ∈ V⧹{t}

Jk(i) = min
j∈V⧹{t}

[
ci,j + Jk+1(j)

]
k = N − 2, . . . , 0

We can terminate if Jk(i) = Jk+1(i) for all i ∈ V⧹{t}.
Forward DP Algorithm
The SP is symmetric, so we can reverse the problem and J can be interpreted
as the cost to go. This also means the path can be build sequentially.
5.4 Shortest Path Algorithms
5.4.1 Lable Correcting Algorithm
Can only be used if assume ci,j ≥ 0
The steps of a general LCA are:
0. Place node s in OPEN, set ds = 0 and dj =∞, ∀ j ∈ V⧹{s}
1. Remove a node i from open and execute step 2 for all children j of i (for

all nodes j ∈ V with ci,j <∞)
2. If (di + ci,j) < dj and (di + ci,j) < dt then set dj = di + ci,j

and set i as parent of j. If j ̸= t then place j in OPEN.
3. If OPEN is empty then stop, otherwise go to step 1.

Theorem 8.1
If at least one finite cost path from s to t exists, then the LCA terminates
with dt = JQ∗ . Otherwise the LCA terminates with dt =∞.

Different Methods
The LCA Algorithms only differ from how to remove the nodes from OPEN:
• Depth-First Search: “last in, first out”, a node is removed from the top

of OPEN and new nodes are placed on top.
• Breadth-First Search: “first in, first out” a node is removed from the

bottom of OPEN and new nodes are placed on top.
• Best-First Search (Dijkstra’s Algorithm): “priority queue” a node is re-

moved from OPEN with the smallest di and new nodes are placed in
OPEN according to their dj .

A* Algorithm
Adding a heuristic function h(i) which is an estimate/lower bound of the
cost from node i to t. The new cost function thus becomes:

dj = di + ci,j + h(j) < dt

Only used to check if added to the OPEN list, not used for the actual cost.
Nice to know
Could also work with negative costs if there are no negative cycles (Assump-
tion 7.1). But then the terminal cost check must be omitted.

5.5 Hidden Markov Models

Dynamics

xk+1 = wk, xk ∈ S, Pij := pwk=j|xk=i(j|i), i, j ∈ S

x0 is not known but its distribution px0
is known.

Measurement Model When the state transition occur the states before and
after are unkwnon to us, but we obtain an observation that relates the two
states.

Mij(z) = pz|w,w(z|i, j), ∀ z ∈ Z

pz|w,w(z|i, j) is time-invariant and known to us (likelihood function).

Objective Given a measurement sequence Z1 = (z1, . . . , zN), find the
most likely sequence of states X0 = (x0, . . . , xN) that generated the
measurements:

X̂0 = argmax
X0

pX|Z(X0|Z1)

Using the conditioning rule and the fact that p(Z1) is fixed and non-
negative, maximization of pX|Z(X0|Z1) is equivalent to maximization of

p(X0, Z1). This can be rewritten as:

p(X0, Z1) = p(x0)Π
N
k=1Pxk−1xk

Mxk−1xk
(zk)

This results in the minimazation of the negative log-likelihood:

min
X0

cs,(0,x0) +
N∑

k=1

c(k1,xk−1),(k,xk)

where:

This is now a SP problem which can be solved using DPA.

6 Deterministic Continuous Optimal Control

Dynamics

ẋ(t) = f(x(t), u(t)), x(t) ∈ S := Rn
, u(t) ∈ U ⊆ Rm

, t ∈ [0, T]

Feedback Control Law

u(t) = µ(t, x(t)), µ(x, t) ∈ U, ∀ t ∈ [0, T], ∀ x ∈ S
Cost

Jµ(t, x) := h(x(T)) +

∫ T

t
g(x(τ), u(τ))dτ

Objective Construct an optimal feedback control law µ∗(t, x) such that

Jµ∗ (0, x) ≤ Jµ(0, x), ∀µ ∈ Π, ∀ x ∈ S

Assumption 9.1
For any admissible control law µ, initial time t ∈ [0, T] and intial condition
x(t) ∈ S, there exists a unique trajectory x(τ) that safitsfies:

ẋ(τ) = f(x(τ), µ(τ)), t ≤ τ ≤ T

Assumption 9.1 is needed for the problem to be well defined.

6.1 Hamilton-Jacobi-Bellman (HJB) Equation

HJB is a sufficient condition for optimality, i.e. if a trajectory satisfies HJB
it is optimal. If candiadte is differentiable→ must satisfy HJB for optimality
As a result we get: (∀ t ∈ [0, T], ∀ x ∈ S)

0 = min
u∈U

{
g(x, u) +

∂J∗(t, x)

∂t
+

∂J∗(t, x)

∂x
f(x, u)

}
Theorem 9.1
Suppose V (t, x) is continuously differentiable in t and x and solves the HJB:

0 = min
u∈U

{
g(x, u) +

∂V (t, x)

∂t
+

∂V (t, x)

∂x
f(x, u)

}
s.t.V (T, x) = h(x), ∀ x ∈ S

If Assumption 9.1 holds, then V (t, x) is equal to the optimal cost-to-go
function:

V (t, x) = J
∗
(t, x), ∀ t ∈ [0, T], ∀ x ∈ S

The mapping µ∗(t, x) minimizing the HJB is an optimal feedback law.

6.2 Pontryagin’s Minimum Principle

This is a nessecary condition for optimality, i.e. if a trajectory is optimal it
satisfies the PMH.

Setup
Dynamics, Control Law and Cost are the same as for DCOC
Objective
Given an initial condition x(0) = x ∈ S, find an optimal control trajectory
u∗(t) such that the Cost is minimized.

Theorem 10.1
For a given initial condition x(0) = x ∈ S, let u(t) be an optimal control
trajectory with associated state trajectory x(t) for the system. Then there
exists a trajectory p(t) such that:

ṗ(t) = −
∂H(x, u, p)

∂x

∣∣∣∣⊤x(t)
u(t)
p(t)

, p(T) =
∂h(x)

∂x

∣∣∣∣⊤
x(T)

u(t) = arg min
u∈U

H(x(t), u, p(t))

H(x(t), u(t), p(t)) = constant ∀ t ∈ [0, T]

where H(x, u, p) := g(x, u) + p⊤f(x, u) is the Hamiltonian.

6.2.1 Fixed Terminal State
Remove boundary condition on p(T).

ẋ(t) = f(x(t), u(t)), x(0) = x0, x(T) = xT

If only a subset of the states is fixed i.e. xi(T) = xT,i, ∀ i ∈ I we get
the partial boundary conditions:

pj(T) =
∂h(x)

∂xj

∣∣∣∣∣
⊤

x(T)

, ∀ j /∈ I

6.2.2 Free Initial State
If the initial state is also free and we add a cost term l(x(0)) we get:

p(T) =
∂h(x)

∂x

∣∣∣∣⊤
x(T)

, p(0) = −
∂l(x)

∂x

∣∣∣∣⊤
x(0)

If only some parts of the initial state are free we can proceed similar to the
fixed terminal state case.
6.2.3 Free Terminal Time
If the terminal time T is also subject to optimization we get:

H(x(t), u(t), p(t)) = 0, ∀ t ∈ [0, T]

6.2.4 Time Varying Systems
Dynamics: ẋ(t) = f(x(t), u(t), t)

Cost: J(u) = h(x(T)) +
∫ T
0 g(x(τ), u(τ), τ)dτ

Convert the system to a time invariant system by introducing a new state
y(t) representing time:

ẏ(t) = 1, y(0) = 0⇒ y(t) = t

The augmented system z(t) = (x(t), y(t)) is now time invariant. When
applying the conditions with an augmented H̄(z, u, p̄) = H(x, u, p, y)+q
we get:

ṗ(t) = −
∂H(x, u, p, t)

∂x

∣∣∣∣⊤x(t)
u(t)
p(t)

, p(T) =
∂h(x)

∂x

∣∣∣∣⊤
x(T)

u(t) = arg min
u∈U

H(x(t), u, p(t), t)

i.e. the Hamiltonian must not be constant along a trajectory.
6.2.5 Singular Problems

• If the Hamiltonian is linear in u the optimal control is bang-bang.

Sometimes the condition u(t) = argminu∈U H(x(t), u, p(t)) is in-
sufficient to determine u(t), if the values of x(t) and p(t) are such that
H(x(t), u, p(t)) is independent of u over a nontrivial interval of time. This
results in a singular problem, where the solution consists over regular arcs
where u can be determined using the Hamiltonian and singular arcs which
can be determined from the condition that the Hamiltonian is independent
of u.
7 Usefull stuff

(a + b + c)
2

= a
2
+ b

2
+ c

2
+ 2ab + 2ac + 2bc

2

