DPOC Summary	3 Dynami
lorit Courts incourts@othz.ch	 Open Loop Open loop
Version: 25. Januar 2024	Without d
1 Mathematics	 Open Loop
1.1 Linear Algebra	Closed Loc
(Semi) Posivite Definite Matrix iff all eigenvalues $(\geq 0) > 0$	3.1 DP-Se
Matrix Inverse 2x2: $A^{-1} = \frac{1}{\det(A)} \begin{vmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{vmatrix}$	Dynamics
1.2 Calculus	and action, i.e
Del-Operator (Gradient): $\nabla_x f(x) = \begin{bmatrix} \frac{\partial}{\partial x_1} f(x) & \cdots & \frac{\partial}{\partial x_n} f(x) \end{bmatrix}^\top$	w _k : disturban
Hessian	
$\frac{\partial^2 f}{\partial x_1^2} \qquad \cdots \qquad \frac{\partial^2 f}{\partial x_1 \partial x_n}$	
$\frac{\partial f}{\partial r^2} = \begin{bmatrix} \partial x_1 & & & & \\ & \ddots & & & & \\ & \ddots & & & & & \\ & & & &$	$p_{w_k x}$
$\frac{\partial^2 f}{\partial x_n \partial x_1} \cdots \frac{\partial^2 f}{\partial x^2}$	Policy
Nonhomogeneous DGL Solution:	
$\dot{x}(t) + cx(t) = f(t) \rightarrow x(t) = x_h(t) + x_p(t)$	Cost
$x_h(t) ightarrow f(t) = 0, x_p(t) \text{ using Ansatz solution}$	
1. order inhomogeneous DE	$J_N(x_N)$
$\dot{p}(t) + ap(t) = be^{ct} + d$	with a
$p(t) = \frac{b}{dt} e^{ct} + \frac{d}{dt} + K e^{-at}$	and 3
a-c a	Objective
Vareous $-b \pm \sqrt{b^2 - 4ac}$ ∞ , 1	objective
$x = \frac{0}{2a} + \frac{1}{2a} + \frac{1}{2a}, \sum_{k=1}^{n} q^{k} = \frac{1}{1-a}$	
2 Probability Theory	3.2 Princip
2.1 Random Variables	Let π be an
2.1.1 Discrete Random Variables	
Random Variable defined by p_x , \mathcal{X} • $\mathcal{X} \subset \mathbb{Z}$ of all possible outcomes	X _i +
• $p_x(\bar{x}) > 0$ and $\sum_{\bar{x} \in \mathcal{X}} p_x(\bar{x}) = 1$ bzw. $\sum_{\bar{x} \in \mathcal{X}} p_{x y}(\bar{x} \bar{y}) = 1$	the policy π^*
Margin, / Sum Rule $p(\bar{x}) = \sum_{x \in \mathcal{X}} p_{mx}(\bar{x}, \bar{y})$	3.3 DP-AI Initialization
$\frac{p(x) - \sum y \in \mathcal{Y} \operatorname{Prev}(x, y)}{p(x) - \sum y \in \mathcal{Y} \operatorname{Prev}(x, y)}$	
Cond. / Product Rule $p_{x y}(\bar{x} \bar{y}) := \frac{p_{xy}(x,y)}{p_{y}(\bar{y})}$	Recursion
Total Prob. Theorem $p_x(\bar{x}) := \sum_{\bar{y} \in \mathcal{Y}} p_x _y(\bar{x} \bar{y})p_y(\bar{y})$	$J_k(x) = u_k$
2.1.2 Conditional PDF	* = u
Conditional PDF	for maximizati
Margin. / Sum Rule $p(\bar{x} \bar{z}) = \sum_{\bar{y} \in \mathcal{Y}} p_{xy z}(\bar{x}, \bar{y} \bar{z})$	There occurs a This results in
$\label{eq:cond_cond_cond} \text{Cond. / Product Rule} \qquad \qquad p_{x yz}(\bar{x} \bar{y},\bar{z}) := \frac{p_{xy z}(\bar{x},\bar{y} \bar{z})}{p_{y z}(\bar{y} \bar{z})}$	Different Cos Exponential:
Independence $p(x y) = p(x)$ \Leftrightarrow $p(y x) = p(y)$ \Leftrightarrow $p(x,y) = p(x)p(y)$	$J_N(x)$
$p(x y) = p(x) \Leftrightarrow p(y x) = p(y) \Leftrightarrow p(x,y) = p(x)p(y)$ $p(x,y) = p(x)p(y)$	
Conditional Independence	DP-Algorithm
The knowledge of z makes x and y independent:	$J_N(x_N) = 0$
$p(x y,z) = p(x z) \iff p(x,y z) = p(x z)p(y z)$ Caution!!! in general we still have: $p(x,y) \neq p(x)p(y)$	$O_k(x_k) =$
Caution!!! Independence \Rightarrow Conditional Independence	3.3.1 Con
2.2.1 Expectation	Time Lags
Definition: Integral for CRV!	Dynamics with
$\mathbb{E}_{x}[x] = \sum_{\bar{x} \in \mathcal{X}} \bar{x} p_{x}(\bar{x})$	Define $u = x$
Linearity $ \mathbb{E}_{xy}[a + bx + cy] = a + b \mathbb{E}_x[x] + c \mathbb{E}_y[y]$	New Dynamic
Multi Variable $ \mathbb{E}_{xy}[g(x,y)] = \sum_{\bar{y}} \sum_{\bar{x}} g(\bar{x},\bar{y}) p_{xy}(\bar{x},\bar{y})$	\simeq $\begin{bmatrix} x_i \\ x_j \end{bmatrix}$
Independence $ \mathbb{E}_{xy}[xy] = \mathbb{E}_x[x]\mathbb{E}_y[y]$	$x_{k+1} = \begin{bmatrix} x_{k+1} \end{bmatrix}$
Law of Unconcious Statistician for $y = q(x)$	can be done r
$\mathbb{E}_{u}\left[y\right] = \sum_{z \in \mathcal{D}} \bar{y} p_{u}(\bar{y}) = \sum_{z \in \mathcal{D}} g(\bar{x}) p_{w}(\bar{x})$	Correlated Di wk correlated
$ \sum_{y \in \mathcal{Y}} \sum_{y \in \mathcal{Y}} \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{Y}} \sum_{y \in \mathcal{Y}} \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{Y}} \sum_{y \in \mathcal{Y}} \sum_$	
$\operatorname{Var}_{x}[x] = \operatorname{E}_{x}\left[(x - \operatorname{E}_{x}[x])(x - \operatorname{E}_{x}[x])^{\top}\right] = \operatorname{E}_{x}\left[x^{2}\right] - \operatorname{E}_{x}[x]^{2} = \sigma^{2}$	A_k and C_k a Augmented st
Linearity	Uynamics of a
$\operatorname{Var}_{x}[a+bX+cY] = b^{2} \operatorname{Var}_{Y}[x] + c^{2} \operatorname{Var}_{Y}[u] + 2bc \operatorname{Cov}[X,Y]$	$\tilde{x}_{k+1} =$
= (X + Y) = [(X + [Y])(X + [Y])] ind	'

Forecasts p can never give better performance than Closed Loop is a special case of closed loop isturbances, theoretically the same p: N^N op: $N_u (N_u^{N_x})^{N-1} = N_u^{N_x (N-1)+1}$ $h k = 0, 1, \dots, N - 1$ arkov Chain, i.e. next state is fully determined by current state e. states are conditionally independent from previous states. nce vector, independent of the previous states and actions. New dynamics: $x_{k+1} = f_k(x_k, u_k, w_k)$ with $x_k \in \mathcal{S}_k, u_k \in \mathcal{U}_k, w_k \sim p_{w_k \mid x_k, u_k}$ ${}_{k}, {}^{u}{}_{k}, {}^{*} = p_{w_{k}} | {}^{x}{}_{k}, {}^{u}{}_{k} \quad \forall * \in \{ x_{l}, u_{l}, w_{l} | l < k \}$ New DP-Algorithr Initializatio u_k are generated by an admissible policy $\pi \in \Pi$ such that. $u_k = \mu_k(x_k) \quad \forall k \in \{0, 1, \dots, N-1\}$ $J_{k}(\tilde{x}) = J_{k}(x, y)$ $= \mathop{\mathbb{E}}_{X_1,W_0|x_0=x} \left[g_N(x_N) + \sum_{\substack{k=-c}}^{N-1} g_k(x_k,u_k,w_k) \right]$ $* = (w_k | y_k = y)$ $q_k(x_k, u_k, w_k)$ stage cost, $q_N(x_N)$ terminal cost $X_1 := \{x_1, \dots, x_N\}, \ W_0 := \{w_0, \dots, w_{N-1}\}$ equal to the actual cost. $\pi^* = \arg\min_{\pi \in \Pi} J_{\pi}(x_N)$ 4.1 Setur optimal policy. For the truncated problem starting at x_i : Policy $\mathbb{E}_{i-1,W_i|x_i=x}\left[\sum_{k=i}^{N-1} g_k(x_k, u_k, w_k) + g_N(x_N)\right]$ $= (\mu_i^*(\cdot), \mu_{i+1}^*(\cdot), \dots, \mu_{N-1}^*(\cdot))$ is also optimal $J_N(x) := g_N(x) \quad \forall x \in \mathcal{S}_N$ 4.2 Bellman $\min_{e \in \mathcal{U}_k(x)} \mathbb{E} \left[g_k(x_k, u_k, w_k) + J_{k+1}(f_k(x_k, u_k, w_k)) \right]$ $v_k | x_k = x, u_k = u$ 4.3 ion problems, replace \min by \max . Dynamics a minimization in u for each each state at each time step $N_u + N_u N_x (N-1)$ minimizations. t Functions Assumption 4.1: $= \mathop{\mathbb{E}}_{w_k} \exp\left(g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k, w_k)\right)$ Assumption 4.2: $\exp\left(g_N(x_N)\right)$ $\min_{u_k \in \mathcal{U}} \mathop{\mathbb{E}}_{w} \left[J_{k+1}(f_k(x_k, u_k, w_k)) \exp(g_k(x_k, u_k)) \right]$ verting to Standard from h a time delay i.e.: $x_{k+1} = f_k(x_k, x_{k-1}, u_k, u_{k-1}, w_k)$ x_{k-1} and $s = u_{k-1} \Rightarrow \tilde{x}_k = (x_k, y_k, s_k)$ s in standard form: $= \begin{bmatrix} f_k(x_k, y_k, s_k, u_k, w_k) \\ x_k \\ u_k \end{bmatrix} := \tilde{f}_k(\tilde{x}_k, u_k, w_k)$ $y_k \\ s_k$ epeatedly for multiple time lags. sturbances l over time (colored noise) can be modeled as $w_k = C_k y_{k+1}, \quad y_{k+1} = A_k y_k + \xi_k$ are given and ξ_k are independent random Variables rate is $\tilde{x}_k = (x_k, y_k)$, y_k must be observed/estimated. ugmented state: x_{k+1} y_{k+1} $A_k y_k + \xi_k$ The solution is unique

If we get a forcast which reveals the probability distribution of w_k (it is assumed that w_k is independent of x_k and u_k). We get the forecast y_k that w_k will attain a probability distribution out of a finite collection $\{p_{w_k|y_k}(\cdot|1), \ldots, p_{w_k|y_k}(\cdot|m)\}$. In particular we get the forecast $y_k = i$ and thus $w_k \sim p_{w_k \mid y_k}(\cdot \mid i)$. y_k is also distributed according to $y_{k+1} = \xi_k$ where ξ_k are independent variables with values $i \in \{1, \ldots, m\}$ and probabilities $p_{\xi_{l_i}}(i)$. We augment the state with y_k and get $\tilde{x}_k = (x_k, y_k)$. The new disturbance is now: $p(\tilde{w}_{k}|\tilde{x}_{k}, u_{k}) = p(w_{k}\xi_{k}|x_{k}, y_{k}, u_{k}) = p(\tilde{w}_{k}|y_{k})p_{\ell}(\xi_{k})$ $\tilde{x}_{k+1} = \begin{bmatrix} x_{k+1} \\ y_{k+1} \end{bmatrix} = \begin{bmatrix} f_k(x_k, y_k, u_k, w_k) \\ \mathcal{E}_L \end{bmatrix} := \tilde{f}_k(\tilde{x}_k, u_k, w_k)$ $J_N(\tilde{x}) = J(x, y) = g_N(x) \quad \forall x \in \mathcal{S}_N, y \in \{1, \dots, m\}$ Update: Have to do case distinction for each y resp. i. $= \min_{u_{k} \in \mathcal{U}, *} \mathbb{E} \left[g_{k}(x_{k}, u_{k}, w_{k}) + \sum_{i=1}^{m} p_{\xi_{k}}(i) J_{k+1}(f_{k}(x_{k}, u_{k}, w_{k}), i) \right]$ J_{k+1} is not always a function of $\xi_k \rightarrow$ thus just deterministic/the mean is 4 Infinite Horizon Problem Standard DP setup, with $N \to \infty$ Dynamics (becomes time invariant) $x_{k+1} = f(x_k, u_k, w_k), \quad x_k \in \mathcal{S}, \quad u_k \in \mathcal{U}, \quad w_k \sim p_{w|x, u_k}$ Controll inputs u_k are generated by policy $\pi \in \Pi$ (timeinvariant) $u_k = \mu(x_k) \quad \forall k \ge 0$ Cost (no terminal cost and stationary) $J(x) = \mathop{\mathbb{E}}_{X_1, W_0 \mid x_0 = x} \left| \sum_{k=-\infty}^{\infty} g(x_k, u_k, w_k) \right|$ $\overline{J(x)} = \min_{u \in \mathcal{U}} \mathbb{E}\left[\overline{g(x, u, w)} + J(f(x, u, w))\right]$ Solving the BE is hard. (Has to be done for all $x \in \mathcal{X}$ simultaneously) stic Shortest Path Proble $x_{k+1} = w_k, \quad x_k \in \mathcal{S}$ $\Pr(w_k = j | x_k = i, u_k = u) = P_{ij}(u), \quad u \in \mathcal{U}$ There exists a cost-free termination state, which we designate as state 0. particular there are n + 1 states with $S = \{0, 1, \dots, n\}$ where. $P_{00}(u) = 1 \text{ and } g(0, u, 0) = 0 \quad \forall u \in \mathcal{U}(0)$ Furthermore for every impro e corresponding cost funtion ch that $\forall i \in S$), the sequence $V_l(i)$ gene- $V_{l+i}(i) = \min_{u \in \mathcal{U}} \left| g(i, u) + \sum_{i=1}^{n} P_{ij}(u) V_l(j) \right| \quad \forall i \in \mathcal{S}^+$ where $\mathcal{S}^+ := \mathcal{S} \setminus \{0\}$ and $q(i, u) = \mathop{\mathbb{E}}\limits_w [g(x, u, w)]$ converges to the optimal cost $J^*(i)$ for all $i \in S^+$

$$J^*(i) = \min_{u \in \mathcal{U}} \left(q(i, u) + \sum_{j=1}^n P_{ij}(u) J^*(j) \right) \quad \forall i \in \mathcal{S}^+$$

4. The minimizing u for each $i \in S^+$ of the BE gives an optimal policy which is proper

4.4.1 Value Iteration

Simply iterate the BE until convergence (arbitrary initialization).

$$V_{l+i}(i) = \min_{u \in \mathcal{U}} \left[g(i, u) + \sum_{j=1}^{n} P_{ij}(u) V_l(j) \right] \quad \forall i \in \mathcal{S}$$

Need infinite iterations in theory. 4.4.2 Policy Iteration

Initialization Initialize with a proper policy $\mu^0 \in \Pi$

Stage 1: Policy Evaluation Given a policy μ^h solve for $J^h_{\mu\nu}$

$$J_{\mu h}\left(i\right) = q(i, \mu^{h}(i)) + \sum_{j=1}^{n} P_{ij}(\mu^{h}(i)) J_{\mu h}(j) \quad \forall i \in \mathcal{S}^{+}$$

Can be represented as solving a linear system J = G + PJ. A solution exists if and only if (I - P) is invertible (is the case for proper policies). **Stage 2: Policy Improvement** Obtain a new policy μ^{h+1} by:

$$\mu^{h+1}(i) = \arg\min_{u \in \mathcal{U}} \left[q(i, u) + \sum_{j=1}^{n} P_{ij}(u) J_{\mu h}(j) \right] \quad \forall i \in \mathcal{S}^{+}$$

Stage 3: Termination Iterate until $J_{\mu h+1}(i) = J_{\mu h}(i) \quad \forall i \in S^+$

- · Under Assumptions 4.1 and 4.2, policy iterations always converges to an optimal policy in finite time
- The policy evaluation (Step 1) always has a unique solution. Since PI is initialized with a proper policy, the policy improvement (Step
- 2) always results in a proper policy.
- Policy Improvement always means: $J_{\mu h+1}(i) \leq J_{\mu h}(i)$ (not the case for VI)

4.5 VI vs. PI

• Stage 1 of PI is the same as running VI infinitely many times

- PI has time complexity of $\mathcal{O}(n^2(n+p))$ per iteration
- VI has time complexity of $\mathcal{O}(n^2 p)$ per iteration
- VI faster per iteration but in theory needs infinite iterations where as PI terminates in the worst case after pⁿ iterations (in practice much faster).
- The cost of PI and VI is always the same.
- The policy can be different.

4.5.1 Variant of PI and VI

Gauss-Seidel Update

In practice VI updates V for all states (Calculate $\overline{V}(i)$ for all *i* with the old values of V(i) and store the $\overline{V}(i)$, then update all V(i) with $\overline{V}(i)$). We can do it iteratively in place:

$$V(i) \leftarrow \min_{u \in \mathcal{U}} \left[q(i, u) + \sum_{j=1}^{n} P_{ij}(u) V(j) \right]$$

Asynchronous PI

Under mild conditions all combinations of the following will converge:

- Any number of value updates between policy updates • Any number of states updated at each value update
- Any number of states updated at each policy update
- 4.5.2 Linear Programming

It can be shown that $V_{l+1}(i) > V_l(i) \quad \forall i \in S^+, \forall l$. We can thus formulate the BE as a optimization problem:

$$\max_{V} \sum_{i \in S^{+}} V(i)$$

s.t. $V(i) \leq q(i, u) + \sum_{i=1}^{n} P_{ij}(u)V(j) \quad \forall i \in S^{+}, \forall u \in U$

This is a Linear Program and can be solved using commercial solvers. Be careful for maximization the equality sign has to be flipped and the optimization becomes a minimization. For discounted problem insert α in front of the sum

$$\begin{array}{l} \text{There exists at least one proper policy } \pi \in \mathbf{11.1}\\ \text{per policy } \mu' \text{ and at least one state } i \in \mathcal{S}, \text{ the}\\ \text{is } J_{\mu'} = +\infty.\\ \end{array}$$

$$\begin{array}{l} \text{Proper Policy:}\\ \text{A policy is proper if there exists a integer } m \text{ suc}\\ Pr(x_m = 0 | x_0 = i) > 0\\ \end{array}$$

$$\begin{array}{l} \text{There is a path to the goal for every state.}\\ \textbf{4.3.1 Solution to the SSP}\\ \text{If Assumption 4.1 and 4.2 hold, then:}\\ 1. \text{ Given a initial condition } V_0(1), \ldots, V_0(n)\\ \text{ rated by the iteration} \end{array}$$

$$J^{*}(i) = \min_{u \in \mathcal{U}} \left(q(i, u) + \sum_{j=1}^{n} P_{ij}(u) J^{*}(j) \right) \quad \forall i \in \mathcal{S}^{+}$$

$$\begin{pmatrix} n \end{pmatrix}$$

4.6 Discounted Problems
Dynamics: Same as for infinite horizon problems

$$x_{k+1} = w_k, \quad x_k \in S$$

 $\Pr(w_k = j | x_k = i, u_k = u) = P_{ij}(u), \quad u \in \mathcal{U}(x_k)$

but without a termination state. Policy

ontroll inputs
$$u_k$$
 are generated by policy $\pi \in \Pi$
 $u_k = \mu_k(x_k) \quad \forall k \geq 0$

Cost (no terminal cost)

$$U(x) = \mathbb{E}_{X_1, W_0 | x_0 = x} \left[\sum_{k=0}^{\infty} \alpha^k \tilde{g}_k(x_k, u_k, w_k) \right]$$

 $\alpha \in (0, 1)$ is the discount factor. For initialization only an admissible policy is needed and not a proper one since the discount factor makes sure the problem stays finite. 4.6.1 Conversion to SSP

a virtual termination state 0 with command $\mathcal{U}(0) = \{stay\}$

The transition probabilities are
$$(\tilde{P}_{ij}(u))$$
 is the original probability):

$$p_{w|x,u}(j|i, u) = P_{ij}(u) = \alpha P_{ij}(u) \quad \forall u \in \mathcal{U}(i), \forall i, j \in S^{+}$$

$$p_{0|x,u}(0|i, u) = P_{i0}(u) = 1 - \alpha \quad \forall u \in \mathcal{U}(i), \forall i \in S^{+}$$

$$p_{w|x,u}(j|0, u) = P_{0j}(u) = 0 \quad \forall u = stay, \forall j \in S^{+}$$

$$p_{x,u}(j|0, u) = P_{0j}(u) = 1 \quad \forall u = stay, \forall j \in S^{+}$$

$$p_{w|x,u}(0|0,u) = P_{00}(u) = 1 \quad \forall u = stay$$

 $q(x_k, u_k, w_k) = \alpha^{-1} \tilde{q}(x_k, u_k, w_k)$

Following the derivation the BE looks as follows:

$$J^{*}(i) = \min_{u \in \mathcal{U}} \left(q(i, u) + \alpha \sum_{j=1}^{n} \tilde{P}_{ij}(u) J^{*}(j) \right) \quad \forall i \in \mathcal{S}^{+}$$
$$q(i, u) = \sum_{j=1}^{n} P_{ij}(u) g(i, u, j) = \sum_{j=1}^{n} \tilde{P}_{ij}(u) \tilde{g}(i, u, j)$$

As above the system can be written as $J = G + \alpha \tilde{P}J$. If $(I - \alpha \tilde{P})$ is invertible, then the solution exists. It can be shown that this is the case. There is a mapping between the original discounted problem and the auxiliary problem. PI and VI work the same but with the α in front of the sum. 5 Deterministic Systems

5.1 Deterministic Finite State (DFS) Proble

Dynamics Same setup as normal DP system but without a disturbance:

$$x_{k+1} = f_k(x_k, u_k)$$

with $x_k \in \mathcal{S}_k, u_k \in \mathcal{U}_k$

Policy controll inputs u_k are generated by an admissible policy $\pi \in \Pi$ such that. $u_k = \mu_k(x_k) \quad \forall k \in \{0, 1, \dots, N-1\}$

Cost

$$J_N(x_N) = g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k)$$

with $g_k(x_k, u_k)$ stage cost, $g_N(x_N)$ terminal cost

and
$$X_1 := \{x_1, \dots, x_N\}$$

Objective (since deterministic no feedback needed)

$$\pi^* = \arg\min_{\pi \in \Pi} J_{\pi}(x_N)$$

5.2 Shortest Path Problem (SP)

Graph is defined by a finite vertex space \mathcal{V} (all vertices including start and end) and a weighted edge space:

$$\mathcal{C} := \left\{ (i, j, c_{i,j}) \in \mathcal{V} \times \mathcal{V} \times \mathbb{R} \cup \{\infty\} | i, j \in \mathcal{V} \right\}$$

 $c_{i,j}$ is the cost of the edge from i to j, if no connection exists $c_{i,j} = \infty$. Path is a ordered list of nodes $Q := (i_1, i_2, \ldots, i_q)$. The set of all paths from some node $s \in \mathcal{V}$ to some node $t \in \mathcal{V}$ is denoted by $\mathbb{Q}_{s,t}$. Path Length is the sum of the arc lenghts/costs:

$$J_Q := \sum_{k=1}^{q-1} c_{i_k, i_{k+1}}$$

Objective find $Q^* \in \mathbb{Q}_{s,t}$ that has the smallest length:

$$Q^* = \arg\min_{Q \in \mathbb{Q}_{s,t}} J_Q$$

Assumption 7.1:

For the Problem to make sense it must hold: For all $i \in \mathcal{V}$ and for all $Q \in \mathbb{Q}_{i,i}$, $J_Q \ge 0$.

Equivalence of SP 5.3.1 DFS to SP We have: $\cup \{\top\}, \quad \mathcal{V}_k := \{(k, i) | i \in \mathcal{S}_k\}$ the cost is given b

$c_{(k,i),(k+1,j)} = \min_{u,i} g_k(i, u_k, j), \quad \forall i \in \mathcal{S}_k, \forall j \in \mathcal{S}_{k+1}$

5.3.2 SP to DFS The optimal path needs at most $|\mathcal{V}|$ steps, thus we can formulate the SP as a DFS of length $N := |\mathcal{V}| - 1$: - State space: $\mathcal{S}_k = \mathcal{V} \setminus \{t\}$ for $k = 1, \dots, N-1$ and $\mathcal{S}_N = \{t\}$ and $S_0 = \{ s \}$ - Control space: $\mathcal{U}_k = \mathcal{V} \setminus \{t\}$ for $k = 0, \dots, N-2$ and $\mathcal{U}_{N-1} = \{t\}$ - Dynamics: $x_{k+1} = u_k$, $u_k \in \mathcal{U}_k$, $k = 0, \dots, N-1$ - Stage Cost: $g_k(x_k, u_k) = c_{x_k, u_k}, \quad k = 0, ..., N-1, \ g_N(t) = 0$ The solution can be found using DPA: $J_{N}(t) = 0$ $J_{N-1}(i) = c_{i,t}, \quad \forall i \in \mathcal{V} \setminus \{t\}$ $J_{k}(i) = \min_{j \in \mathcal{V} \setminus \{t\}} [c_{i,j} + J_{k+1}(j)] \quad k = N - 2, \dots, 0$ We can terminate if $J_k(i) = J_{k+1}(i)$ for all $i \in \mathcal{V} \setminus \{t\}$. Forward DP Algorithm D The SP is symmetric, so we can reverse the problem and J can be interpreted as the cost to go. This also means the path can be build sequentially.

Shortest Path Algorithm 5.4.1 Lable Correcting Algorithm Can only be used if assume $c_{i,j} \ge 0$ The steps of a general LCA are: 0. Place node s in OPEN, set $d_s = 0$ and $d_j = \infty, \forall j \in \mathcal{V} \setminus \{s\}$ 1. Remove a node i from open and execute step 2 for all children j of i (for

all nodes $j \in \mathcal{V}$ with $c_{i,j} < \infty$) 2. If $(d_i + c_{i,j}) < d_j$ and $(d_i + c_{i,j}) < d_t$ then set $d_j = d_i + c_{i,j}$ and set *i* as parent of *j*. If $j \neq t$ then place *j* in OPEN. 3. If OPEN is empty then stop, otherwise go to step 1.

If at least one finite cost path from s to t exists, then the LCA terminates with $d_t = J_{O^*}$. Otherwise the LCA terminates with $d_t = \infty$.

Different Methods

- The LCA Algorithms only differ from how to remove the nodes from OPEN • Depth-First Search: "last in, first out", a node is removed from the top of OPEN and new nodes are placed on top.
- Breadth-First Search: "first in, first out" a node is removed from the bottom of OPEN and new nodes are placed on top.
- **Best-First Search (Dijkstra's Algorithm):** "priority queue" a node is removed from OPEN with the smallest d_i and new nodes are placed in OPEN according to their d_i .

A* Algorithm Adding a heuristic function h(i) which is an estimate/lower bound of the The new cost function thus becomes

$$d_j = d_i + c_{i,j} + h(j) < d_t$$

Could also work with negative costs if there are no negative cycles (Assump tion 7.1) But then the terminal cost check must be omitted

$$\begin{array}{ll} x_k \in \mathcal{S}, \quad P_{ij} := p_{w_k=j|x_k=i}(j|i), \quad i,j \in \mathcal{S} \\ \text{but its distribution } p_{x_0} \text{ is known.} \\ \text{odel When the state transition occur the states before and} \\ \text{it ous, but we obtain an observation that relates the two} \quad \begin{array}{l} \text{satisfies the states before and} \\ \text{observation} \\ \text{observation} \end{array}$$

$$a_{ij}(z) = p_{z|w,w}(z|i,j), \quad \forall z \in \mathbb{Z}$$

 $p_{z|w,w}(z|i,j)$ is time-invariant and known to us (likelihood function). **Objective** Given a measurement sequence $Z_1 = (z_1, \ldots, z_N)$, find the most likely sequence of states $X_0 = (x_0, \ldots, x_N)$ that generated the measurements.

$$\hat{X}_0 = \arg\max_{X} p_{X|Z}(X_0|Z_1)$$

Using the conditioning rule and the fact that $p(Z_1)$ is fixed and nonnegative, maximization of $p_{X|Z}(X_0|Z_1)$ is equivalent to maximization of $p(X_0, Z_1)$. This can be rewritten as:

$$p(X_0, Z_1) = p(x_0) \prod_{k=1}^N P_{x_k - 1} x_k M_{x_k - 1} x_k (z_k)$$

This results in the minimazation of the negative log-likelihood:

$$\min_{X_0} \left(c_{s,(0,x_0)} + \sum_{k=1}^N c_{(k_1,x_{k-1}),(k,x_k)} \right)$$

$$c_{5,(0,x_0)} = \begin{cases} -\ln(p(x_0)) & \text{if } p(x_0) > 0\\ \infty & \text{if } p(x_0) = 0 \end{cases}$$

$$c_{(k-1,x_{k-1}),(k,x_k)} = \begin{cases} -\ln(P_{x_{k-1}x_k}M_{x_{k-1}x_k}(z_k)) & \text{if } P_{x_{k-1}x_k}M_{x_{k-1}x_k}(z_k) > 0\\ \infty & \text{if } P_{x_{k-1}x_k}M_{x_{k-1}x_k}(z_k) = 0 \end{cases}$$

Deterministic Continuous Optimal Control

Dynamics

$$\dot{x}(t) = f(x(t), u(t)), \ x(t) \in S := \mathbb{R}^n, \ u(t) \in \mathcal{U} \subseteq \mathbb{R}^m, \ t \in [0, T]$$

Feedback Control Law

$$u(t) = \mu(t, x(t)), \quad \mu(x, t) \in \mathcal{U}, \quad \forall t \in [0, T], \forall x \in \mathcal{S}$$

$$J_{\mu}(t,x) := h(x(T)) + \int_t^T g(x(\tau), u(\tau))d\tau$$

Objective Construct an optimal feedback control law $\mu^*(t, x)$ such that $J_{\mu*}(0,x) < J_{\mu}(0,x), \quad \forall \mu \in \Pi, \ \forall x \in \mathcal{S}$

Assumption 9.1

Cost

Dynamics

states.

where

 $x_{k+1} = w_k$

 x_0 is not known

Measurement Mo

after are unkwnoi

М

For any admissible control law μ , initial time $t \in [0, T]$ and initial condition $x(t) \in S$, there exists a unique trajectory $x(\tau)$ that safitsfies: $\dot{x}(\tau) = f(x(\tau), \mu(\tau)), \quad t < \tau < T$ Assu

HJB is a sufficient condition for optimality, i.e. if a trajectory satisfies HJB it is optimal. If candiadte is differentiable \rightarrow must satisfy HJB for optimality As a result we get: $(\forall t \in [0, T], \forall x \in S)$

$$0 = \min_{u \in \mathcal{U}} \left\{ g(x, u) + \frac{\partial J^*(t, x)}{\partial t} + \frac{\partial J^*(t, x)}{\partial x} f(x, u) \right\}$$

Theorem 9.1 Suppose V(t, x) is continuously differentiable in t and x and solves the HJB:

$$\begin{split} 0 &= \min_{u \in \mathcal{U}} \left\{ g(x, u) + \frac{\partial V(t, x)}{\partial t} + \frac{\partial V(t, x)}{\partial x} f(x, u) \right\} \\ \text{s.t.} V(T, x) &= h(x), \quad \forall x \in \mathcal{S} \end{split}$$

If Assumption 9.1 holds, then V(t, x) is equal to the optimal cost-to-go function

$$V(t, x) = J^*(t, x), \quad \forall t \in [0, T], \ \forall x \in S$$

The mapping $\mu^*(t, x)$ minimizing the HJB is an optimal feedback law.

This is a nessecary condition for optimality, i.e. if a trajectory is optimal it he PMH

s. Control Law and Cost are the same as for DCOC

initial condition $x(0) = x \in S$, find an optimal control trajectory uch that the Cost is minimized.

Theorem 10.1

For a given initial condition $x(0) = x \in S$, let u(t) be an optimal control trajectory with associated state trajectory x(t) for the system. Then there exists a trajectory p(t) such that:

$$\dot{p}(t) = - \left. \frac{\partial H(x, u, p)}{\partial x} \right|_{\substack{x(t) \\ p(t)}}^{\top}, \quad p(T) = \left. \frac{\partial h(x)}{\partial x} \right|_{x(T)}^{\top}$$

 $u(t) = \arg\min H(x(t), u, p(t))$

$$H(x(t), u(t), p(t)) = constant \quad \forall t \in [0, T]$$

here
$$H(x, u, p) := g(x, u) + p^{\top} f(x, u)$$
 is the Hamiltonian

$$\dot{x}(t) = f(x(t), u(t)), \quad x(0) = x_0, \quad x(T) = x_T$$

If only a subset of the states is fixed i.e. $x_i(T) = x_{T,i}, \ \forall i \in \mathcal{I}$ we get the partial boundary conditions:

$$p_j(T) = \left. \frac{\partial h(x)}{\partial x_j} \right|_{x(T)}^\top, \quad \forall j \notin \mathcal{I}$$

6.2.2 Free Initial State If the initial state is also free and we add a cost term l(x(0)) we get:

$$p(T) = \left. \frac{\partial h(x)}{\partial x} \right|_{x(T)}^{\top}, \quad p(0) = -\left. \frac{\partial l(x)}{\partial x} \right|_{x(0)}^{\top}$$

If only some parts of the initial state are free we can proceed similar to the fixed terminal state case. 6.2.3 Free Terminal

terminal time T is also subject to optimization we get
$$H(x(t), u(t), p(t)) = 0, \quad \forall t \in [0, T]$$

6.2.4 Time Varying Systems

of u

Dynamics: $\dot{x}(t) = f(x(t), u(t), t)$ Cost: $J(u) = h(x(T)) + \int_0^T g(x(\tau), u(\tau), \tau) d\tau$ Convert the system to a time invariant system by introducing a new state u(t) representing time:

$$\dot{y}(t) = 1, \quad y(0) = 0 \Rightarrow y(t) = t$$

The augmented system z(t) = (x(t), y(t)) is now time invariant. When applying the conditions with an augmented $\overline{H}(z, u, \overline{p}) = H(x, u, p, y) + q$ we get

$$\dot{p}(t) = - \left. \frac{\partial H(x, u, p, t)}{\partial x} \right|_{\substack{u(t) \\ v(t)}}^{\top} p(T) = \left. \frac{\partial h(x)}{\partial x} \right|_{\substack{x(T) \\ x(T)}}^{\top}$$

$$u(t) = \arg\min_{u \in \mathcal{U}} H(x(t), u, p(t), t)$$

i.e. the Hamiltonian must not be constant along a trajectory. 6.2.5 Singular Problems

• If the Hamiltonian is linear in u the optimal control is bang-bang.

Sometimes the condition $u(t) = \arg \min_{u \in \mathcal{U}} H(x(t), u, p(t))$ is in-

sufficient to determine u(t), if the values of x(t) and p(t) are such that

H(x(t), u, p(t)) is independent of u over a nontrivial interval of time. This

results in a singular problem, where the solution consists over regular arcs

where u can be determined using the Hamiltonian and singular arcs which

can be determined from the condition that the Hamiltonian is independent

 $(a + b + c)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2ac + 2bc$