MAD Formelsammlung

Jorit Geurts jgeurts@student.ethz.ch Version: 23. August 2021

Data Fitting

Parametric Function Fitting

Given: Data $\{(x_i, y_i)\}_{i=1}^N$, Fit: Function f(x), $f(x_i) \approx y_i$.

- Fitting: Construct low order Model. Doesn't go through all data points. We assume data has errors.
- Interpolation: Fitting a curve to descrete datapoints, to get estimates of datapoint in between • Extrapolation: Fitting a function to descrete data, to estimate
- a trend (data outisde of the scope)
- Interpolation and Extrapolation: We assume data has no error

2 Linear Least Squares

Given: Data $\{(x_i,y_i)\}_{i=1}^N$. \to Fit a Function f(x). $\varphi_k(x)$ are M linearly independent functions.

$$f(x; \boldsymbol{w}) = \sum_{k=1}^{\infty} w_k \varphi_k(x)$$

 $\boldsymbol{w} = (w_1, ..., w_M)^T$ are unknown weights we have to find $\varphi_k(x)$ are the basis functions, where typically $M \ll N$ Some typical basis functions:

$$\varphi_k(x) = x^{k-1}, \quad \varphi_k(x) = \cos((k-1)x)$$

$$\varphi_k(x) = e^{\beta_k x}, \quad \varphi_k(x) = 1 - \frac{x - x_k}{\delta}$$

The name Linear Least Squares comes from the fact that the unknown parameter w_k comes in linearly and not that we fit a linear function.

Goal: Find w that minimizes the Error Function.

$$E(\mathbf{w}) = \|e\|_{2}^{2} = \sum_{i=1}^{N} e_{i}^{2} = \sum_{i=1}^{N} (y_{i} - f(x_{i}))^{2}$$
$$\mathbf{w}^{*} = \arg\min_{i} E(\mathbf{w})$$

2.1 Matrix Formulation

We need to solve the above equation for w

M = N: (Easy case)

The Matrix A is square. We get the solution $w = A^{-1}y$

• M > N: (Not interesting)

System is underdetemined and has none or infinite solutions.

• M < N: (Most of the time its this case)

The system is overdetermined. We can seek an approximate solution $A oldsymbol{w} pprox oldsymbol{y}$ with the least squares method by requiring that $E(\boldsymbol{w}) = \|\boldsymbol{y} - A\boldsymbol{w}\|_2^2$

2.1.1 Solution for M < N

Derivation of Error function $\left(\frac{\partial E}{\partial w}\right) \rightarrow$ normal equation:

Normal equation:	Solution for w :	
$A^T A \boldsymbol{w} = A^T \boldsymbol{y}$	$\boldsymbol{w}^* = \left(A^T A\right)^{-1} A^T y$	
P. 1 1 1	T , AT A	

 φ_k linearly independent $\to A^T A$ symmetric and positive definite \rightarrow solution for w.

2.1.2 Solution for Linear Function

$$w_{1}^{\star} = \frac{\sum_{i=1}^{N} x_{i}^{2} \sum_{i=1}^{N} y_{i} - \sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} x_{i} y_{i}}{N \sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}\right)^{2}}$$

$$w_{2}^{\star} = \frac{N \sum_{i=1}^{N} x_{i} y_{i} - \sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} y_{i}}{N \sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}\right)^{2}}$$

2.1.3 Special case: orthogonal case

vviicii tiic coluiiiii	is the or are the	arc orthogonal.
Condition:	Therefore:	Solution for w :
$\boldsymbol{a}_i \cdot \boldsymbol{a}_j = \delta_{ij}$	$A^T A = I$	$\boldsymbol{w}^* = A^T\boldsymbol{y}$
2.2 C		

The columns $oldsymbol{a}_i$ of $A \in \mathbb{R}^{N imes M}$ create a M-dimensional space. The solution $A {m w}^*$ is a projection of ${m y}$ onto that space spanned by A. The residual error is perpendicular to that space. The projected Vector:

The projected Vector:
$$\boldsymbol{p}^* = A\boldsymbol{w}^* = A(A^TA)^{-1}A^T\boldsymbol{y} = P\boldsymbol{y}$$
 Projection Matrix:

When the columns a of $A \subset \mathbb{R}^{N \times M}$ are orthogonal

Properties of the projection matrix:

It is symmetric: $P = P^T$ It is idempotent: $P = P^2$

Same goes for the error:

 $PA = A, \quad MA = 0$

 $\mathbf{y} = \mathbf{y}_r + \mathbf{y}_n = (P + M)\mathbf{y}$

Algorithms without the use if $A^T A$:

2.3.1 QR-Decomposition

$$A = QR = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 & 0 \end{bmatrix}^T \qquad \qquad A \in \mathbb{R}^{N \times M}$$

$$\mathbf{w}^* = R_1^{-1} Q_1^T \mathbf{y} \qquad \kappa(A) = \kappa(R_1) \qquad \qquad R \in \mathbb{R}^{N \times M}$$

 $\overline{R_1}$ is upper triangle \rightarrow dont inverse, solve LGS backwards

$$A = [\begin{array}{cc} U_r & U_n \end{array}] \left[\begin{array}{cc} S & 0 \\ 0 & 0 \end{array} \right] \left[\begin{array}{cc} V_{r}^{\top} \\ V_{r}^{\top} \end{array} \right] = U \Sigma V^{\top}$$

Moore-Penrose Pseudo-Inverse:

$$A^+ = V \cdot \Sigma^+ \cdot U^T \qquad \Sigma = \begin{bmatrix} S & 0 \\ 0 & 0 \end{bmatrix} \to \Sigma^+ = \begin{bmatrix} S^{-1} & 0 \\ 0 & 0 \end{bmatrix}$$

Pseudo-Inverse of Σ :

$$\Sigma = \operatorname{diag}(\sigma_1, \sigma_2 \dots, 0), \quad \Sigma^+ = \operatorname{diag}\left(\sigma_1^{-1}, \sigma_2^{-1}, \dots, 0\right)$$
$$\mathbf{w}^* = V\Sigma^+ U^T \mathbf{y} \quad \kappa(A) = \kappa \left(\Sigma V^\top\right)$$

2.4 Facts About Linear Least Squares

- (+) quit robust against outliers
- (-) numerical solutions allways have rounding errors, we cant guarantee, that the rounding error has siginificant impact on the result → Condition Number
- Normal Equation: $\kappa_2(A^T A) = \kappa_2(A)^2$
- the normal equations transform the initial problem into a linear system with a square matrix
- The second derivative is: $\nabla^2 E(\mathbf{w}) = 2A^T A$ which is symmetric & positive definite \Rightarrow w^{*} is a minimum

Non Linear Systems

Condition Number:

 $\kappa = \frac{|\delta x|}{|\delta y|} = \frac{1}{|f'(x^*)|}$

Solve Non Linear Equation → Find roots of Non Linear Equation: $g(x) = h(x) \rightarrow g(x) - h(x) = f(x) = 0$

Sensitivity: If $ f(x) \approx 0$, does t	ensitivity: If $ f(x) \approx 0$, does this mean that $ x - x \approx 0$?		
Root Finding Problem	f(x) finding Problem		
y $(=0)$ given, searching x;	x given, searching y;		
$x = f^{-1}(y)$	y = f(x)		
Well Conditioned:	Well Conditioned:		
small $\delta x o big\ \delta f(x)$	small $\delta x o ext{small } \delta f(x)$		
III Conditioned:	III Conditioned:		
small $\delta x o $ small $\delta f(x)$	small $\delta x o big\ \delta f(x)$		

 $f'(x^*) = 0$, ill conditioned = roots of multiplicity m > 1.

 $\kappa_{(f(x)-finding)} = \frac{|\delta y|}{|\delta x|} = \frac{|f(x+\delta x) - f(x)|}{|\delta x|} \approx |f'(x)|$

Condition Number:

Condition Number: $\kappa = \frac{|\delta y|}{|\delta x|} = |f'(x^*)|$

General Algorithm:

$$J(\boldsymbol{x}_{k})(\boldsymbol{x}_{k+1} - \boldsymbol{x}_{k}) = -F(\boldsymbol{x}_{k}), \quad \boldsymbol{x}_{k+1} = \boldsymbol{x}_{k} + \boldsymbol{z}$$
$$A\boldsymbol{z} = \boldsymbol{b}, \quad A = J(\boldsymbol{x}_{k}) \quad \boldsymbol{b} = -F(\boldsymbol{x}_{k})$$

3.0.1 Order of Convergence

sublinear.
r = 2: quadratic convergence.

• $r \approx \log \left| \frac{e_{k+2}}{e_{k+1}} \right| / \log \left| \frac{e_{k+1}}{e_k} \right|$

Only converges for r=1 to $C=\frac{1}{2}$

Advantages:

Algorithm:

Advantages:

Advantages

3.3.1

only f(x) is needed

Not certain to converge.

 $N = Number of Equations (f_i)$

 $M = Number of Variables (x_i)$

3.4 Set of Equations

The Jacobian Matrix:

Quadratic convergence

Linear convergence for

 $m > 1, \rightarrow f'(x^*) = 0$

Secant through $\{x_k, x_{k-1}\}$

3.3 Secant Method

root with multiplicity

Certain to converge

Only needs the sign

f(x) doesn't have to be

Number of Iterations until tol is reached:

With $e_k = x_k - x^*$, if $x_k \stackrel{k \to \infty}{=} x^*$, there exists: $\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|^r} = C \quad \text{with } \left\{ \begin{array}{l} r, \text{ Order of convergence} \\ C, \text{ Rate of convergence} \end{array} \right.$

ullet r=1: if 0 < C < 1 linear, C=0 superlinear, C=1

Error: $|e_{k+1}| = \frac{1}{2^{k+1}}(b-a) \rightarrow \frac{|e_{k+1}|}{1+2} \approx \frac{(b-a)^{1-r}}{2} 2^{k(r-1)}$

Disadvantages:

Disadvantages:

Convergence slow

Can't be generalised for

Initial interval needs to be known

Algorithm: roots with m > 1

Convergence not guaranteed

if $f'(x_k) = 0$ it breaks

Disadvantages

not quadratic convergence

 $\frac{\partial x_M}{\partial f_2(\mathbf{x})}$

needs to be differentiable

requires $f(x_k)$ and $f'(x_k)$

 $|e_k| = tol \implies \frac{b-a}{2k} = tol \implies k = log_2\left(\frac{b-a}{tol}\right)$

Facts: $\mathbf{r}=2$ and $C=\lim_{k\to\infty}\frac{\int \mathbf{r}(x_k)}{|e_k|^2}=\frac{\int f''(x^\star)|}{2|f'(x^\star)|}<\infty$

• Qubic convergence if $f''(x^*) = 0$ but $f'(x^*) \neq 0$, $\rightarrow m = 1$

differentiable, but continuous higher dimensions

Exact for Linear Functions → only one iteration

- f needs to be differentiable and continuous at x^{*}

Approximate the Derivative: $f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$

Convergence: $r = \varphi = \frac{1+\sqrt{5}}{2} \approx 1.618$

Newton and Secant Problem

Find the root of N non linear functions $f_i(x)$.

Taylor Expansion for Matrices and Vectors:

Therefore they are sensitive to the initial condition.

 $x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}$

only one evaluation per iteration two first approximations are

Both can get stuck in a local minimum, as they follow the slope.

 $F(\mathbf{x}^*) = [f_1(x^*), f_2(x^*), \dots, f_N(x^*)]^T = \mathbf{0}$

 $F(\boldsymbol{x} + \boldsymbol{y}) = F(\boldsymbol{x}) + J(\boldsymbol{x})\boldsymbol{y} + O(\|\boldsymbol{y}\|^2)$

3.2 Newtons Method (Tangent Method)

3.4.1 Newton-Raphson Method: (N = M)J is a square matrix

 $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - J^{-1}(\boldsymbol{x}_k) F(\boldsymbol{x}_k)$

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - J^{-1}(\boldsymbol{x}_k)F(\boldsymbol{x}_k)$$

In Practise don't invert
$$J$$
, instead we solve for $J(x_k)z = -F(x_k)$, $x_{k+1} = x_k + z$

- + Convergence is quadratic (r=2) if J is not singular
- cost is substantial. $O(N^2)$ for building J and $O(N^3)$ for solving the linear system.

3.4.2 Pseudo-Newton method: $(M \neq N)$

J has Full Rank

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - J^+(\boldsymbol{x}_k) F(\boldsymbol{x}_k)$$

Moore Penrose pseudo inverse matrix: J^+

$$J^{+} = \begin{cases} (J^{T}J)^{-1}J^{T} & \text{for } M > N \\ J^{T}(JJ^{T})^{-1} & \text{for } M < N \end{cases}$$

Instead of computing J every iteration we only use one.

 $J_1 \mathbf{z} = -F(\mathbf{x}_k), \quad J_0 = J(\mathbf{x_0})$

- Gets rid of $O(N^3)$ and leaves us with $O(N^2)$.
- Only good if J doesn't change to rapidly.

3.4.3 Modified Newton Method

3.5 Non Linear Optimization
We want to solve a minimization problem:

$$x^* = \arg\min_{\boldsymbol{x}} E(\boldsymbol{x})$$

 ${m x}=(x_1,...,x_M)^T$ and $E:\mathbb{R}^M \overset{{m x}}{
ightarrow} \mathbb{R}$ Maximisation equal to minimisation of -E(x).

Sufficient Condition:

$$F(\boldsymbol{x}) = \nabla E(\boldsymbol{x}) = \left(\frac{\partial E}{\partial x_1}(\boldsymbol{x}^*), ..., \frac{\partial E}{\partial x_M}(\boldsymbol{x}^*)\right)^T = \mathbf{0}$$

Critical Condition:

Hessian matrix positive definite! $\nabla^2 E(x) = H(x)$

$$H(\boldsymbol{x}^*) = \begin{pmatrix} \frac{\partial^2 E(\boldsymbol{x}^*)}{\partial x_1^2} & \frac{\partial^2 E(\boldsymbol{x}^*)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 E(\boldsymbol{x}^*)}{\partial x_1 \partial x_M} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 E(\boldsymbol{x}^*)}{\partial x_M \partial x_1} & \frac{\partial^2 E(\boldsymbol{x}^*)}{\partial x_M \partial x_2} & \cdots & \frac{\partial^2 E(\boldsymbol{x}^*)}{\partial x_M^2} \end{pmatrix}$$

3.5.1 Newtons Method

Algorithm: new Jacobian: $\rightarrow J(\mathbf{x}) = \nabla^2 E(\mathbf{x})$

 $\nabla^2 E(\boldsymbol{x}_k) \boldsymbol{z} = -\nabla E(\boldsymbol{x}), \quad \rightarrow \quad \boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{z}$ A lot of computations and not guaranteed to converge.

4 Interpolation and Splines M=N

4.1 Lagrange Interpolation

Fit a function of degree N-1 to N data points.

Lagrange Polynomial: Lagrange interpolation function: $\ell_k(x) = \prod_{\substack{i=1\\i \neq k}}^{N} \frac{x-x_i}{x_k-x_i} \qquad f(x) = \sum_{i=1}^{N} y_k \ell_k(x)$

$$\frac{i \neq k}{l_k(x) = \frac{(x - x_1) \dots (x - x_{k-1})(x - x_{k+1}) \dots (x - x_N)}{(x_k - x_1) \dots (x_k - x_{k-1})(x_k - x_{k+1}) \dots (x_k - x_N)}}$$

- Polynomials with degree N-1 for N data points
- Interpolate data not extrapolate data
- Analytic expression from data points
- Lowest degree polynomial through data points
- Derivatives f'(x) and P'(x) not guaranteed to match
- (-) Sensitive to noise / Predictability issues
- (-) High degrees give rise to huge oscillations, at the edges
- (-) they are global and can't represent the local behaviour • (-) small fluctuations in the data, end in remodelling of the
- Error minimal for $x_k = \cos\left(\frac{2k-1}{2n}\pi\right)$: Chebyshev polyn. roots

Approximation Error

$$|y(x) - f(x)| = \left| \frac{y^{(n)}(\xi)}{n!} \prod_{k=1}^{n} (x - x_k) \right|$$

Algorithm Lagrange Interpolation $\boldsymbol{x}, \boldsymbol{y}$, (arrays) N. (size) $ar{x}$, point Output: \bar{y} , (interpolation value at \bar{x} of the data x, y) Steps: $\bar{\boldsymbol{y}} \leftarrow 0$ for $k = 0, 1, \dots, N-1$ do $l \leftarrow 1$ for i = 0, 1, ..., N-1 do if $i \neq k$ then $l \leftarrow l * (\bar{\boldsymbol{x}} - \boldsymbol{x}[i]) / (\boldsymbol{x}[k] - \boldsymbol{x}[i])$ $\bar{\boldsymbol{y}} \leftarrow \bar{\boldsymbol{y}} + l * \boldsymbol{y}[k]$

Locally defined cubic functions to represent data. Given data $\{(x_i, y_i)\}_{i=0,\ldots N}$ with $x_i < x_{i+1}$. In every interval $[x_{i-1}, x_i]$, $i=1,\ldots,N$ we define a cubic function: $f_i(x) = \alpha_i x^3 + \beta_i x^2 + \gamma_i x + \delta_i, \quad i = 1, ..., N$

$$f_i(x) = \alpha_i x^3 + \beta_i x^2 + \gamma_i x + \delta_i, \quad i = 1, ..., N$$
 (1)
 $4N$ unknowns \rightarrow **4 Constraints:**

•
$$f_i(x_{i-1}) = y_{i-1}, (i = 1, ..., N)$$

•
$$f_i(x_i) = y_i$$
, $(i = 1, ..., N)$

•
$$f'_i(x_i) = f'_{i+1}(x_i)$$
, $(i = 1, ..., N-1)$

•
$$f_i''(x_i) = f_{i+1}''(x_i)$$
, $(i = 1, ..., N-1)$

$$ightarrow 4N-2$$
 constraints, we need 2 more.

Possible Conditions:

• Natural spline: Set $f_1''(x_0) = f_N''(x_N) = 0$

$$\bullet$$
 Parabolic runout: Set $f_1^{\prime\prime}(x_0)=f_1^{\prime\prime}(x_1)$ and $f^{\prime\prime}N(x_N)=f_N^{\prime\prime}(x_{N-1})$

• Clamping: Set
$$f_1'(x_0) = f_N'(x_N) = 0$$

• not-a-knot:
$$f_1'''(x_1) = f_2'''(x_1)$$
 and $f_N'''(x_{N-1}) = f_N'''(x_{N-1})$

• Periodic Function:
$$f''(x_0) = f''(x_N)$$
, $f'(x_0) = f'(x_N)$ and $f(x_0) = f(x_N)$

$$f'(x_0) = f'(x_N)$$
 and $f(x_0) = f(x_N)$

We can now solve the problem:
$$(i=1,...,N-1)$$
 From: $f_i''(x_i)=f_{i+1}''(x_i)$ we get: $f_i''(x)=\frac{a_{i-1}}{\Delta x_i}(x_i-x)+\frac{a_i}{\Delta x_i}(x-x_{i-1})$

$$f'_i(x) = \frac{\Delta x_i}{a_i^2} (x - x_{i-1})^2 - \frac{\Delta x_i}{2\Delta x_i} (x_i - x)^2 + b_i$$

$$f_i(x) = a_{i-1} \frac{(x_i - x)^3}{6\Delta x_i} + a_i \frac{(x - x_{i-1})^3}{6\Delta x_i} + b_i (x - x_{i-1}) + c_i$$

$$b_i = \frac{\Delta y_i}{\Delta x_i} - \frac{a_i - a_{i-1}}{6} \Delta x_i, \quad c_i = y_{i-1} - \frac{a_{i-1}}{6} \Delta x_i^2$$

Equations to be solved: (i = 1, ..., N - 1)

$$\Delta x_i a_{i-1} + 2(\Delta x_i + \Delta x_{i+1})a_i + \Delta x_{i+1}a_{i+1} = 6\frac{\Delta y_{i+1}}{\Delta x_{i+1}} - 6\frac{\Delta y_i}{\Delta x_i}$$

with: $a_i = f''(x_i), \ \Delta x_i = x_i - x_{i-1} \ \text{and} \ \Delta y = y_i - y_{i-1}$ This ends up as a Matrix Equation; find the vector a:

$$\begin{bmatrix} B_0 & C_0 & 0 & 0 & \cdots \\ A_1 & B_1 & C_1 & 0 & \cdots \\ 0 & A_2 & B_2 & C_2 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ 0 & 0 & A_{N-1} & B_{N-1} & B_{N-1} \\ 0 & 0 & 0 & A_N & B_N \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{N-1} \\ a_N \end{bmatrix} = \begin{bmatrix} D_0 \\ D_1 \\ D_2 \\ \vdots \\ D_{N-1} \\ D_N \end{bmatrix}$$

with (for
$$i = 1, ..., N - 1$$
)

$$\begin{array}{ll} A_i = \Delta x_i & B_i = \Delta x_i + \Delta x_{i+1} \\ C_i = \Delta x_{i+1} & D_i = 6 \left(\frac{\Delta y_{i+1}}{\Delta x_{i+1}} - \frac{\Delta y_i}{\Delta x_i} \right) \end{array}$$

For i=0 and i=N we use the special conditions and determine the Coefficients B_0, C_0, A_N, B_N by hand. Data Points - 1 = Number of Segments

Numerical Integration

Main Idea: $I \approx \sum_{i=0}^{N-1} \int_{x_i}^{x_i+1} p_i(x) dx$

5.1 Numerical Quadrature, $\Delta_i = x_{i+1} - x_i$ We split Interval [a,b] into N Intervals $[x_i,x_{i+1}]$

Rectangle Rule: $I_{R_i} = f(x_i)\Delta_i$

 $I_{M_i} = f\left(\frac{x_i + x_{i+1}}{2}\right) \Delta_i$ Midpoint Rule: Trapezoidal Rule:

Simpsons Rule:

$$S_i = \frac{\Delta_i}{6} [f(x_i) + 4f\left(\frac{x_i + x_{i+1}}{2}\right) + f(x_{i+1})]$$

Rectangle Rule: $I \approx \Delta_i \sum_{i=0}^{N-1} f(x_i)$

 $I \approx \Delta_i \sum_{i=0}^{N-1} f\left(\frac{x_i + x_{i+1}}{2}\right)$ Midpoint Rule:

Trapezoidal Rule

$$I \approx \frac{\Delta_i}{2} \left(f(x_0) + 2 \sum_{i=1}^{N-1} f(x_i) + f(x_N) \right)$$

Simpsons Rule: accurate for 3^{rd} order polynomials $I \approx \frac{\Delta_i}{3} [f(x_0) + 4\sum_{i=1}^{N-1} f(x_i) + 2\sum_{i=2}^{N-2} f(x_i) + f(x_N)]$

Find an upper bound for our Integral. $E_{\text{rule},i} = I_i - I_{\text{rule},i}$ Rectangle Rule: Second Order Accurate

 $E_{R_i} = \frac{1}{2} f'(x_i) \Delta_i^2 + \frac{1}{6} f''(x_i) \Delta_i^3 + \frac{1}{24} f'''(x_i) \Delta_i^4 + \mathcal{O}(\Delta_i^5)$

$$E_{R_i} = \frac{1}{2}f'(x_i)\Delta_i^2 + \frac{1}{6}f''(x_i)\Delta_i^3 + \frac{1}{24}f'''(x_i)\Delta_i^2 + \mathcal{O}(\Delta_i^3)$$

Midpoint Rule: Third Order Accurate

$$E_{M_i}=rac{1}{24}f''(x_{i+1/2})\Delta_i^3+\mathcal{O}(\Delta_i^5)+\dots$$
 Trapezoidal Rule: Third Order Accurate

 $E_{T_i} = -\frac{1}{12}f''(x_{i+1/2})\Delta_i^3 + \mathcal{O}(\Delta_i^5) + \dots$

 $I_{S_i} = \frac{2}{3} I_{M_i} + \frac{1}{3} I_{T_i} \rightarrow E_{S_i} = \mathcal{O}(\Delta_i)^5$

For the whole integral the Order is -1

Exact Integration for degree = (Order of Accuracy - 2)

The leading derivative of the error has to be 0. Always check! Has nothing to do with Δ_i

Newton Cotes Formula

We use M+1 equidistant points in $[x_i, x_{i+1}]$ $(x_k = x_i + k \cdot h)$ $(k \in [0, M])$ and Lagrange Interpolation.

The Integral: $h = \frac{x_{i+1} - x_i}{M}$, $\Delta_i = x_{i+1} - x_i$

$$I_{i} \approx \int_{x_{i}}^{x_{i+1}} p_{i}(x) dx = \sum_{k=0}^{M} f(x_{k}) \int_{x_{i}}^{x_{i+1}} \ell_{k}^{M}(x) dx$$
$$I \approx \sum_{i} I_{i}, \quad I_{i} \approx \Delta_{i} \sum_{k=0}^{M} C_{k}^{M} f(x_{k})$$

$$C_k^M = \frac{1}{\Delta_i} \int_{x}^{x} i^{+1} l_k^M(x) dx$$

Properties: $C_k^M = C_{M-k}^M$ and $\sum_{k=0}^M C_k^M = 1$ $l_k^M(x_i + x_{i+1} - x_{M-i}) = l_k^M(x_i) = l_{M-k}^M(x_{M-i})$

N Datapoints $\rightarrow N-1$ intervals. If the error of the integrationrule for a single interval scales with: $\mathcal{O}(h^n)$, than the error for the whole integration is:

$$E \le (b-a) \cdot \max(c_i) \cdot \mathcal{O}(h^{n-1})$$

A higher order rule can perform worse than a lower order rule, if the constant factor in the error of the ho, rule (C1) is greater than the factor of the lo. rule (C2). $C1 \cdot h^n > C2 \cdot h^m m < n$

5.4.2 Error reduction

Error of our intergration rule scales with: $\mathcal{O}(h^n)$. How many more evaluations to decrease error by a factor z?

$$E^* = \frac{1}{z} \Rightarrow \frac{1}{z} C \cdot \mathcal{O}\left(\left(\frac{b-a}{N}\right)^n\right) = C \cdot \mathcal{O}\left(\left(\frac{b-a}{N^*}\right)^n\right)$$
$$\Rightarrow N^* - \sqrt[p]{z} \cdot N$$

Refining the grid locally does not change the order of accuracy of the underlying integration scheme.

Richardson and Romberg

Richardson Extrapolation A quantity of interest G is discretized by some grid spacing h:

 $G \approx G(h)$. For $h \to 0$ we should obtain the exact value G. Expanding with a Taylor Series we get: (with G(0) = G)

$$G(h) = G(0) + c_1 h + c_2 h^2 + \dots$$

$$G(h/2) = G + \frac{1}{2} c_1 h + \frac{1}{4} c_2 h^2 + \dots$$

Subtracting the to equations gives us:

$$G_1(h)=2G(h/2)-G(h)=G+c_2'h^2+c_3'h^3+\dots$$
 Increased exponent of leading error term, by subtraction.
 General Case:

$$G_n(h) = \frac{1}{2^n - 1} (2^n G_{n-1}(h/2) - G_{n-1}(h)) = G + O(h^{n+1})$$

 $\epsilon(h/2) = G(h/2) - G(h)$ Relative Tolerance: $\epsilon(h/2) < 3 \cdot \text{ tol } \cdot \frac{h}{h}$

Error order: $E_{n-1}(h) > E_{n-1}(h/2) > E_n(h)$

Improve an inaccurate, but "cheap" method, and improve it by using Richardson Extrapolation: $I_0^1, I_0^2, I_0^4, \dots$

We start by using the Trapezoidal Rule and improve it. Resulting Integral: (Trapezoidal Rule)

$$I_k^n = \frac{4^k I_{k-1}^{2n} - I_{k-1}^n}{4^k - 1}$$
(Since we have)

Resulting Integral: (Simpsons Rule

$$I_k^n = \frac{4^{k+1} I_{k-1}^{2n} - I_{k-1}^n}{4^{k+1} - 1}$$

- Optimize quadrature by sampling the funtion non-uniformly.
- Evaluate the integral with more precision at points with sudden
- · Use Rhomberg integration and error estim. to evaluate locally

Main Idea: $I = \int_{a}^{b} f(x) dx \approx \sum_{i} c_{i} \cdot f(x_{i})$

Choose c_i and x_i to minimise the error.

Undetermined coefficients: (Trapezoidal Rule) Only exact for a straight line

$$I = \int_{a}^{b} f(x)dx = \int_{a}^{b} (a_0 + a_1 x)dx \approx c_1 f(a) + c_2 f(b)$$

Integration and comparing coefficients: $c_1=c_2=rac{b-a}{2}$

2-point Gauss Quadrature: Same as above, but variable function evaluation points.

 $I = \int_{-\infty}^{\infty} f(x)dx \approx c_1 f(x_1) + c_2 f(x_2)$

with $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$. Solving it the same way as above we get:

$$I \approx \frac{b-a}{2} \cdot f\left[\left(\frac{b-a}{2}\right)\left(\frac{-1}{\sqrt{3}}\right) + \frac{b+a}{2}\right]$$

$$b-a = \left[\left(b-a\right)\left(\frac{1}{2}\right) + \frac{b+a}{2}\right]$$

Integral is exact for: polynomials of degree N-1, with N = degreesof freedom on the right side.

Interpolate the values y_k and derivatives y'_k .

$$f(x) = \sum_{k=1} U_k(x) y_k + \sum_{k=1} V_k(x) y_k'$$
 U_k and V_k : polynomials of degree $2n-1$, with properties:

$$U_k(x_j) = \delta_{jk}, \quad U'_k(x_j) = 0, \quad V_k(x_j) = 0, \quad V'_k(x_j) = \delta_{jk}$$

$$U_k(x) = \left[1 - 2l'_k(x_k)(x - x_k)\right] l_k^2(x)$$

$$V_k(x) = (x - x_k)l_k^2(x)$$

Move Interval
$$[a,b]$$
 to $[-1,1]$. $(x\in[a,b]\to z\in[-1,1])$ $z=\dfrac{2x-(a+b)}{b-a},\quad x=\dfrac{b-a}{2}z+\dfrac{b+a}{2}$

$$I = \int_{a}^{b} f(x)dx = \int_{-1}^{1} \frac{b-a}{2} f\left(\frac{b-a}{2}z + \frac{b+a}{2}\right) dz$$
pproximating $f(x)$ with Hermite Polynomials:
$$\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^$$

$$\int_{-1}^{1} f(x)dx = \sum_{k=1}^{n} y_k \int_{-1}^{1} U_k(x)dx + \sum_{k=1}^{n} y_k' \int_{-1}^{1} V_k(x)dx$$
$$\int_{-1}^{1} f(x)dx = \sum_{k=1}^{n} u_k y_k + \sum_{k=1}^{n} v_k y_k'$$

with $u_k = \int_{-1}^{1} U_k(x) dx$ and $v_k = \int_{-1}^{1} V_k(x) dx = 0 \,\forall k$ Resulting Integral: $(u_k \text{ is tabulated})$

regran:
$$(u_k)$$
 is capacitated)
$$I = \int_{-1}^{1} f(x) dx = \sum_{k=1}^{n} u_k f(x_k)$$

$$u_k = \frac{2}{(1 - x_k^2)(P'_-(x_k))^2}$$

Error with n abscissas:

$$\varepsilon = \frac{2^{2n+1}(n!)^4}{(2n+1)(2n!)^3} f^{(2n)}(\xi)$$

$$I = \int_a^b f(x)dx \approx \frac{b-a}{2} \sum_{i=1}^n w_i f\left(\frac{b-a}{2}(z-1) + \frac{b+a}{2}\right)$$
 for $z \in [-1,1]$:

$$I = \sum_{i=1}^{n} w_i f(z)$$

Integrate a function in D dimensions:

$$I = \int_{a_1}^{b_1} \cdots \int_{a_D}^{b_D} f\left(x_1, \ldots, x_D\right) \mathrm{d}x_1 \cdots \mathrm{d}x_D$$
 Using Quadrature in every dimension with N gridpoints:

$$\int_{a_d}^{b_d} f(x_d) dx_d \approx \sum_{i_d=1}^{N} w_{i_d} f(x_{i_d})$$

$$I \approx \sum_{i_1=1}^{N} \dots \sum_{i_N=1}^{N} w_{i_1} \dots w_{i_N} f\left(x_{i_1}, \dots, x_{i_D}\right)$$

Quadrature in D dimensions requires $M = N^D$ function evalua-

Additionally, order of accuracy depends on dimension D, onedimensional order of acc. s and grid spacing $h = \frac{b-a}{N}$

$$I - I_Q = \mathcal{O}\left(h^s\right) = \mathcal{O}\left(N^{-s}\right) = \mathcal{O}\left(M^{-s/D}\right)$$

With $M=n^d$ and s as the order of the used 1D Method

Monte Carlo only makes sense for more than one Variable. Sample random points in the domain Ω and count how many are inside the area we want to calculate:

$$\langle f \rangle = \frac{1}{|\Omega|} \int_{\Omega} f(\vec{x}) d\vec{x}, \quad |\Omega| = \int_{\Omega} d\vec{x}$$

Sample the function at M random uniform distributed points \vec{x}_i :

$$\langle f \rangle \approx \langle f_M \rangle = \frac{1}{M} \sum_{i=1}^{M} f(\vec{x}_i)$$
$$I \approx |\Omega| \langle f_M \rangle = |\Omega| \frac{1}{M} \sum_{i=1}^{M} f(\vec{x}_i)$$

Assuming the samples
$$\vec{x}_i$$
 are independent, the Expectation value of the random function $\langle f_M \rangle$ is equal $\langle f \rangle$ and so is the integral:

of the random function $\langle f_M \rangle$ is equal $\langle f \rangle$, and so is the integral: $I = \mathbb{E}[|\Omega|\langle f_M \rangle]$

$$\varepsilon_M = \sqrt{rac{\mathsf{Var}[f]}{M}} \propto \mathcal{O}ig(M^{-1/2}ig)$$

$$\mathsf{Var}[f] \approx \frac{M}{M-1} \left(\frac{1}{M} \sum_{i=1}^{M} f(\vec{x}_i)^2 - \langle f \rangle_M^2 \right)$$

For large number of samples M, we expect the following errors: $|\langle f \rangle - \langle f_M \rangle| < \begin{cases} \varepsilon_M, & \text{with probability of } 68\% \\ 2\varepsilon_M, & \text{with probability of } 95\% \\ 3\varepsilon_M, & \text{with probability of } 99\% \end{cases}$

- 1. Sample points \vec{x}_i from a uniform distribution and evaluate integrand f to get $f(\vec{x}_i)$.
- 2. Store number of samples, the sum of the values and the sum of

$$M, \sum_{i=1}^{M} f(\vec{x}_i), \sum_{i=1}^{M} f(\vec{x}_i)^2$$

3. Compute mean as the estimate of the expectation (normalized 9.3 L-layer NN

$$\frac{I}{|\Omega|} = \langle f \rangle \approx \langle f \rangle_M = \frac{1}{M} \sum_{i=1}^M f(\vec{x}_i)$$

4. Estimate the variance using the unbiased sample variance:

$$\mathsf{Var}[f] \approx \frac{M}{M-1} \left(\frac{1}{M} \sum_{i=1}^{M} f(\vec{x}_i)^2 - \langle f \rangle_M^2 \right)$$

5. Estimate error

$$arepsilon_{M} = \sqrt{rac{\mathsf{Var}[f]}{M}} \propto \mathcal{O}ig(M^{-1/2}ig)$$

Generate any random with PDF $p_X(x)$ and CDF $F_X(x)$ distribution form an uniform distribution $U \in [0, 1]$.

$$F_X(x) = u \rightarrow x = F_X^{-1}(u), \quad F(x) = \int_0^x p(x)dx$$

 $x^{(i)} = F_X^{-1}(u^{(i)})$

with $u^{(i)}$ form a uniform distribution interval.

8.0.3 Rejection Sampling

Generate samples from p(x) from a simple distribution function h(x) from which we already know how to generate samples. h(x)has to bound p(x). $p(x) < \lambda p(x)$

- 1. draw random sample x for h(x)
- 2. draw uniform random number $u \in [0, 1]$
- 3. accept x if $u < \frac{p(x)}{\lambda h(x)}$, else reject x

Ubiased Estimator

An unbiased estimator of a statistical parameter means that the expected value equals the true value of the parameter, e.g.

Neural Networks

$$\mathbf{y} = F(\mathbf{x}, \mathbf{w}), \quad \mathbb{R}^{n_0} \to \mathbb{R}^{n_L}$$
 output $= F(\mathsf{input}, \mathsf{weight})$

Different Types of Neural Networks:

- Fully Connected Neural Networks
- Convolutional Neural Networks (CNN)
- Recurrent Neural Networks (RNN)

Function $m{y}(\cdot, m{w}): \mathbb{R}^{n_0}
ightarrow \mathbb{R}^{n_L}$ parametrized by weights $m{w}$ w_{ii} : destination node i and source node i 9.2 2-Laver NN

1. Input x_i is weighted by w_i

- 2. Summed 3. Activation function φ is applied

Map Input to First Laver: $a_{i}^{1} = \sum_{i=0}^{n_{0}} w_{ii}^{1} x_{i}$ and $z_{i}^{1} = \varphi_{1} \left(a_{i}^{1} \right)$

Map First to Second Layer / Output

$$a_j^2 = \sum_{i=0}^{n_1} w_{ji}^2 z_i^1 \quad \text{and} \quad y_j = z_j^2 = \varphi_2\left(a_j^2\right)$$

Compact Notation

$$y(x; w) = \varphi_2(W^2 \varphi_1(W^1 x))$$

Compact Notation for y(x; w) =

$$\varphi_{L}\left(W^{L}\varphi_{L-1}\left(W^{L-1}\varphi_{L-2}\left(\cdots W^{2}\varphi_{1}\left(W^{1}\boldsymbol{x}\right)\right)\right)\right)$$

Elements of
$$W^l$$
:
$$W^l_{pk} = w^l_{pk} = w^l_{ji}, \quad \text{with} \quad p = j, k = i$$
 d = destination and s = source:

Activation Function

Goal: Update the weights w so that the output y_n given an input x_n Steps:

- 1. Build a model $\mathbf{y}(\mathbf{x}_n, \mathbf{w})$ with the initial weights $\mathbf{w} = \{W^1, W^2, \dots, W^L\}$
- 2. Perform the forward pass, i.e. produce the output \mathbf{y}_n for all \mathbf{x}_n in the dataset
- 3. Compute the loss with respect to the target:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\hat{\mathbf{y}}_n - \mathbf{y}(\mathbf{x}_n, \mathbf{w}))^2 = \sum_{n=1}^{N} E_n$$
 4. Perform the backward pass, i.e. update weights (see 6.6)

- 5. Repeat until you reach a minimum: $\mathbf{w}^* = \arg\min E(\mathbf{w})$
- 9.6 Gradient Descent (GD) and Variations

Kev Idea: Use derivatives (gradient) of the cost function E with respect to the weights w to update the parameters:

 $\boldsymbol{w}^{(k+1)} = \boldsymbol{w}^{(k)} - \eta \nabla_{\boldsymbol{w}} E\left(\boldsymbol{w}^{(k)}\right)$ with iteration index k and learning parameter η

9.6.1 Stochastic Gradient Descent (SGD): Alternative to GD with derivative of local error E_n related to the pair $\{x_n, \hat{y}_n\}$:

$$\boldsymbol{w}^{(k+1)} = \boldsymbol{w}^{(k)} - \eta \nabla_{\boldsymbol{w}} E_n \left(\boldsymbol{w}^{(k)} \right)$$

with sequential or random choice of E_n .

9.6.2 Batch Stochastic Gradient Descent (batchSGD): Method between GD and SGD with gradient on subset \mathcal{I} , with

 $\mathcal{I} \subset \{1, 2, \dots, N\}$, chosen randomly. $\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta \nabla_{\mathbf{w}} \sum_{n \in \mathcal{T}} E_n \left(\mathbf{w}^{(k)}\right)$

Learning Parameter η

- Crucial hyper-parameter in deep learning
- Not a priori clear how to be chosen
- (a) η too high/fast: oscillates between suboptimal values
- (b) n too low/slow: takes too many iterations to reach w*
- (c) desired value of n

Update weights using Gradient Descent:

$$oldsymbol{w}^{(k+1)} = oldsymbol{w}^{(k)} - \eta
abla_{oldsymbol{w}} E\left(oldsymbol{w}^{(k)}
ight)$$

and rewrite gradient in terms of $a_j = \sum_k w_{jk} \tilde{z}_k$ (chain rule): $\frac{\partial E_n}{\partial w_{ji}} = \frac{\partial E_n}{\partial a_j} \frac{\partial a_j}{\partial w_{ji}} = \frac{\partial E_n}{\partial a_j} \tilde{z}_i = \delta_j \tilde{z}_i$

$$\delta_{j} = \frac{\partial E_{n}}{\partial a_{j}} = \sum_{k} \frac{\partial E_{n}}{\partial \tilde{a}_{k}} \frac{\partial \tilde{a}_{k}}{\partial a_{j}} = \sum_{k} \tilde{\delta}_{k} \frac{\partial \tilde{a}_{k}}{\partial a_{j}}$$

with $\tilde{a}_k = \sum_j \tilde{w}_{kj} z_j = \sum_j \tilde{w}_{kj} \varphi(a_j)$:

$$\frac{\partial \tilde{a}_{k}}{\partial a_{j}} = \varphi'(a_{j}) \, \tilde{w}_{kj} \ \Rightarrow \ \delta_{j} = \varphi'(a_{j}) \sum_{k} \tilde{w}_{kj} \, \tilde{\delta}_{k}$$

Last Layer of Neural Network, i.e. $a_i = y_i$

$$\frac{\partial E_n}{\partial w_{ji}} = \frac{\partial \hat{E}_n}{\partial a_j} \frac{\partial a_j}{\partial w_{ji}} = \delta_j z_i$$

$$\delta_j = \frac{\partial E_n}{\partial a_j} = \frac{\partial}{\partial y_j} \frac{1}{2} \| \boldsymbol{y} \left(\boldsymbol{x}_n; \boldsymbol{w} \right) - \hat{\boldsymbol{y}}_n \|^2$$

$$= \frac{\partial}{\partial y_i} \frac{1}{2} \sum \left(y_k \left(\boldsymbol{x}_n; \boldsymbol{w} \right) - \hat{y}_{ni} \right)^2 = y_j \left(\boldsymbol{x}_n; \boldsymbol{w} \right) - \hat{y}_{nj}$$

Key Idea of Backpropagation

ullet At last layer, gradients $rac{\partial E_n}{\partial w_{ii}}$ and $rac{\partial E_n}{\partial a_i}$ don't depend on Neural Network

ullet Calculate δ_i at last layer first, then back-propagate to acquire the δ_i 's at every previous layer

Bias-Variance-Tradeoff

- Overfitted: Model fits behaviour of noise and does not generalize efficiently (model estimation errors)
- Underfitted: Too few parameters, model ignores meaningful data (model mismatch errors)

Introduce subset of data ($\sim 10\%$) as a test set and run SGD on both training and test data. Plot error for both subsets over iterations:

Facts about Neural Networks

- Increasing hidden hodes improves representation ability for test data. Is more prone to Overfitting • Increase the hidden Layers increases representation ability for
- test data. Is more prone to Overfitting • Two linear (no activation function) NN, can approximate the
- same class of functions. Regardless of the number of Layers. • When Batches are used, the gradient is avaraged. Shuffling
- the data of the batch has no effect. • For too big learning rates the error can increase

Dimensionality Reduction Principal Component Analysis

- Decrease dimension of the data while either explaining most of the variance or minimizing the reconstruction loss. • Changes the coordinate system of the data while aligning the
- axes to the directions with the most variance • Data must have zero mean, i.e. $\tilde{x}_n = x_n - \bar{x} \in \mathbb{R}^D$
- \Rightarrow centered data matrix $X_C = (m{x}_1,...,m{x}_N)^T \in \mathbb{R}^{N imes D}$

• Variance of a Matrix X (zero mean):

 $Var[X] = \sigma^2 = \sigma_1 + \dots + \sigma_n^2$ $\begin{bmatrix} \sigma_1 \\ \vdots \end{bmatrix} = \frac{1}{N-1} \begin{bmatrix} \sum_i x_{1,i} \\ \vdots \end{bmatrix}$

Maximum Variance Formulation

Find direction $\mathbf{v}^* = \operatorname{argmax} \mathbf{v}^T C \mathbf{v}$ s.t. variance is max.:

$$\mathsf{Var}[\{\hat{\pmb{x}}\}_{i=1}^N] = \sigma_1^2 = \frac{1}{N-1} \sum_{n=1}^N \left(\mathbf{x}_n^T \mathbf{v} \right)^2 = \mathbf{v}^T C \mathbf{v}_1$$

 $m{v} \in \mathbb{R}^D$ needs to fullfill $C \mathbf{v}_1^\star = \lambda_1^\star \mathbf{v}_1^\star$, $\mathbf{v}_1^T \mathbf{v}_1 = 1$

Spectral Value Decomposition

- 1. Construct centered data matrix $X_C \in \mathbb{R}^{N \times D}$
- 2. Construct covariance matrix $C = \frac{1}{N-1} X_C^T X_C \in \mathbb{R}^{D \times D}$
- 3. Preform Eigenvalue Decomposition: $V^{-1} = V^T \in \mathbb{R}^{D \times D}$ $C = V\Lambda V^{-1}$, $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_d)$
- 4. Sort Eigenvalues, decreasing order: $(\lambda_1 > \lambda_2 > ... > \lambda_d)$
- 5. Set $V = (v_1, ..., v_d)$ 6. Now Switch of Data Matrix: $X = (\boldsymbol{x}_1,...,\boldsymbol{x}_N) \in \mathbb{R}^{D imes N}$
- 7. Set $\hat{X} = V^T X$, with \hat{X} as the transformed Data Matrix

Data Compression:

Instead of using the whole matrix V we only use the first R rows: $V_r = (\boldsymbol{v}_1, ..., \boldsymbol{v}_r) \in \mathbb{R}^{\tilde{D} \times R}$ The Reduced Data set is then given by with $X \in \mathbb{R}^{D \times N}$: $\hat{X}_r = V_r^T X \in \mathbb{R}^{R \times N}$

or in Terms of Original Centered Matrix $X_C \in \mathbb{R}^{N \times D}$: $X_{r,C} = X_C V_r$

10.1.3 Reconstruct Data

: The Reconstructed Data \tilde{X} is given by: $\tilde{X} = V_r \hat{X}_r = V_r V_r^T X$

the retained variance (in percent) is computed by

$$\sigma_{ ext{retained}} = rac{\sum_{i=1}^R \lambda_i}{\sum_{i=1}^D \lambda_i}$$

Kernel PCA:

Nonlinear cluster of data made linearly separable by transforming the data by using some kernel functions ϕ :

$$C$$
 changes to $C = \frac{1}{N} \sum_{i=1}^{N} \phi\left(x_{i}\right) \phi\left(x_{i}\right)^{T}$

Key Idea

- Use Neural Network to learn dimension reduction
- Map input $\mathbf{x}_n \in \mathbb{R}^D$ onto an output $\tilde{\mathbf{x}}^n \in \mathbb{R}^D$ through an intermediate layer $\mathbf{y}_n \in \mathbb{R}^r$ using a matrix $W \in \mathbb{R}^{r \times D}$

$$\mathbf{y}_n = W\mathbf{x}_n, \quad \tilde{\mathbf{x}}_n = W^T\mathbf{y}_n$$

Error Function:

Find optimal weights by minimizing the error, i.e. the difference between input and output:

$$\mathbf{w}^{\star} = \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_{n} - W^{T} \underbrace{W \mathbf{x}_{n}}_{\mathbf{y}_{n}} \|_{2}^{2}$$

Nonlinear Problems
Capture non-linear problems by adding non-linear activation function φ and more intermittent lavers:

$$\mathbf{y}_{n} = \varphi_{L} \left(W_{L} \varphi_{L-1} \left(\cdots W_{2} \varphi_{1} \left(W_{1} \mathbf{x}_{n} \right) \right) \right)$$

$$\tilde{\mathbf{x}}_{n} = W_{1}^{\top} \varphi_{2} \left(\cdots W_{L-1}^{\top} \varphi_{L} \left(W_{L}^{\top} \mathbf{y}_{n} \right) \right)$$

Note: Deeper networks increase expressiveness but are easier to overfit and memorize the training dataset

Model architecture:

The functional form of f(x). We can choose every function. It could be a straight line, a polynomial, a exponential etc. Measure of the "best": (Cost function: $e = y - f(x_i)$)

$$\begin{aligned} \|e\|_2 &= \sqrt{\sum_{i=1}^N \left(y_i - f(x_i)\right)^2} & \|e\|_1 &= \sum_{i=1}^N \left|y_i - f(x_i)\right| \\ \hline \infty & \text{-Norm:} & \text{General Form:} \end{aligned}$$

 $\|e\|_{\infty} = \max_{i} |y_{i} - f(x_{i})| \qquad \|e\|_{p} = \left(\sum_{i=1}^{N} e_{i}^{p}\right)^{\frac{1}{p}}$ Notice: $||e||_2^2 = e \cdot e$

Linear Algebra

Norm calculation:

 $||A||_2 = \sqrt{\max(\lambda(A^T A))}$

Inverse Matrix Formulas

Condition Number:

 $\frac{\|\delta \boldsymbol{w}\|}{\|\boldsymbol{w}\|} = \kappa(A) \frac{\|\delta \boldsymbol{y}\|}{\|\boldsymbol{u}\|},$

11.4 Taylor Expansion

Around a Arbitrary point:

For the whole System of Equations:

11.6 Probability Theory

Binomial Distribution:

Uniform Distribution:

Exponential Distribution:

Expected Value: = mean

11.6.2 Discrete Porbability:

Discrete Probability Function:

11.6.1 Porbability Distributions:

Uniform Distribution for Higher Dimensions:

With J(x) as the Jacobian, see First Page.

11.5 Monte Carlo Integration Scheme

Evaluate function $f(\vec{x}_i)$ for $i = 1 \dots M$ Accept sample if $f(\vec{x}_i) \leq y_i$, reject otherwise:

A orthogonal:

 L_2 -norm $\Rightarrow \kappa_2$

 $\kappa_2(A) = 1$

$$\begin{array}{ll} \hline \textbf{Inner Product (Skalarprodukt):} & \textbf{Image/Range:} \\ \boldsymbol{x} \cdot \boldsymbol{y} = \boldsymbol{x}^T \boldsymbol{y} = \sum_{i=1}^N x_i y_i & \text{Space spanned by the rows of A, range(A).} \\ \hline \textbf{Null Space/Kernel } A \in \mathbb{R}^{N \times M} : & \textbf{Cokernel:} \\ A\boldsymbol{x} = 0, \text{ null}(A) = \text{all } (\boldsymbol{x}), \boldsymbol{x} \in \mathbb{R}^M & \textbf{Cokernel} = \text{null}(A^T) \\ \hline \end{array}$$

 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

 $\begin{pmatrix} a & b & c \\ d & e & f \\ q & h & i \end{pmatrix}^{-1} = \frac{1}{\det A} \cdot \begin{pmatrix} ei - fh & ch - bi & bf - ce \\ fg - di & ai - cg & cd - af \\ dh - eg & bg - ah & ae - bd \end{pmatrix}$

 $\delta \boldsymbol{w} = \boldsymbol{w} - \tilde{\boldsymbol{w}}$ and $\delta \boldsymbol{y} = \boldsymbol{y} - \tilde{\boldsymbol{y}} = A\boldsymbol{w} - A\tilde{\boldsymbol{w}} = A\delta \boldsymbol{w}$

 $f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots$ Around a variable point x: $(x_0 = x, x = x + h)$

 $f(x \pm h) = f(x) \pm hf'(x) + \frac{h^2}{2}f''(x) \pm \dots$

 $f_i(\boldsymbol{x} + \boldsymbol{y}) = f_i(\boldsymbol{x}) + \sum_{j=1}^{M} \frac{\partial f_i(\boldsymbol{x})}{\partial x_j} y_j + \mathcal{O}(\|y\|^2)$

 $F(\boldsymbol{x} + \boldsymbol{y}) = F(\boldsymbol{x}) + J(\boldsymbol{x})\boldsymbol{y} + \mathcal{O}(\|\boldsymbol{y}\|^2)$

Sample \vec{x}_i from $U(\Omega)$ (D-Dimensions) for i=1,...,M

 $I \approx \frac{\text{\# accepted samples}}{\text{\# accepted samples}}$

 $P(k) = \binom{n}{k} p^k (1-p)^{n-k}$

 $p_{\mathcal{U}}(x) = \begin{cases} \frac{1}{b-a} & x \in (a,b) \\ 0 & \text{otherwise} \end{cases}$

 $p_{\mathcal{N}} = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$

 $p(x) = \lambda e^{-\lambda x}$

 $P(x) \in [0,1], \quad x \in \Omega \subseteq \mathbb{N}, \quad \sum P(x_i) = 1$

 $\mathbb{E}[X] = \bar{x} = \sum_{i} x_i P(x_i) = \frac{1}{M} \sum_{i}^{M} p_i \quad (= \mu \text{ mean})$

 $p_{\mathcal{U}}(x) = \begin{cases} \frac{1}{|\Omega|} & x \in \Omega \\ 0 & \text{otherwise} \end{cases}$ Normal Distribution: $\mu = \text{mean}, \ \sigma = \text{standard deviation}$

Computers can't calculate exact numbers \rightarrow rounding error:

 $\|\delta \boldsymbol{w}\| = \|A^{-1}\delta \boldsymbol{y}\| \le \|A^{-1}\| \|\delta \boldsymbol{y}\|$

 $\operatorname{rank} A = \operatorname{rank} A^T$

Rank:

well conditioned = $\kappa(A)$ not too large

 $\kappa(A) = ||A|| ||A^{-1}||, \ \kappa(A) \in [1, \infty)$

 $\kappa(A) = ||A|| ||A^{-1}|| \stackrel{\text{(1)}}{=} \frac{\sigma_{max}(A)}{\sigma_{min}(A)}$

(1) for 2-norm & positive definite

Tells us how stable a fit is

11.6.3 Continuous Probability:

Cumulative Distribution Function: CDF
$$F_X(x) = P(X \leq a) = \int_{-\infty}^a p(x) dx$$

Probability density function: PDF

$$p(x) = \frac{d}{dx} F_X(x) \ge 0, \quad x \in \Omega \subseteq \mathbb{R}, \quad \int p(x) dx = 1$$

The probability that a value is inside a interval [a, b] is:

$$P(a \le X \le b) = \int_{a}^{b} p(x)dx$$

Expected Value:

$$\mathbb{E}[X] = \langle X \rangle = \int_{\Omega} x p(x) dx$$

Expected Value for a Function:

$$\mathbb{E}[h(x)] = \int_{\Omega} h(x)p(x)dx$$

 $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$

11.6.4 Identitys for Both **Expectation Value:**

For two uncorrelated random variables: $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$

Variance:
$$\sigma = \text{standard deviation}$$

$$\mathsf{Var}[X] = \sigma^2[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$$

11.7 Error of Monte Carlo $\varepsilon_M^2 = \operatorname{Var}\left[\langle f \rangle_M\right] = \left\langle \langle f \rangle_M^2 \right\rangle - \left\langle \langle f \rangle_M \right\rangle^2$

$$\begin{split} &= \frac{1}{M^2} \sum_{i,j=1}^{M} \left(\mathbb{E}\left[f(\boldsymbol{x}_i) f(\boldsymbol{x}_j) \right] - \langle f \rangle^2 \right) \\ &= \frac{1}{M^2} \sum_{i=1}^{M} \left(\mathbb{E}\left[f(\boldsymbol{x}_i)^2 \right] - \langle f \rangle^2 \right) \\ &+ \frac{1}{M^2} \sum_{i,j=1, i \neq j}^{M} \left(\underbrace{\mathbb{E}\left[f(\boldsymbol{x}_i) f(\boldsymbol{x}_j) \right]}_{=\langle f \rangle^2} - \langle f \rangle^2 \right) \end{split}$$

 $= \frac{1}{M^2} \sum_{i=1}^{M} \left(\left\langle f^2 \right\rangle - \left\langle f \right\rangle^2 \right) = \frac{\mathsf{Var}[f]}{M}$

Algorithm Romberg Integration (Trapezoidal Quadrature)

function f(x) / interval a, b/ numer of iterations K

 $I_K^1 = \text{integral}[K, 0]$ approximation to the integral $\int_a^b f(x) dx$ Steps:

Precompute and store function evaluations $maxNumIntervals \leftarrow 2^K$

 $hmin \leftarrow (b-a)/maxNumIntervals$ for $i \leftarrow 0, ..., maxNumIntervals$ do

 $fvalues[i] \leftarrow f(a+i*hmin)$ end for for $r \leftarrow 0, ..., K$ do

 $numIntervals \leftarrow 2^r / step \leftarrow 2^{K-r} / result \leftarrow 0$ for $i \leftarrow 1, ..., numIntervals - 1$ do

 $result \leftarrow result + fvalues[i*step]$ end for $\begin{array}{l} f_0 = f[0] \ / \ f_N = f[maxNumIntervals] \\ integral[0,r] \leftarrow 0.5 \frac{b-a}{numIntervals} (f_0 + 2*result + f_N) \end{array}$

end for $l \leftarrow 1, ..., K$ do

$$\begin{aligned} & \text{for } r \leftarrow 0, ..., K-l \text{ do} \\ & integral[l,r] \leftarrow \frac{4^l * integral[l-1,r+1] - integral[l-1,r]}{4^l - 1} \end{aligned}$$

end for end for

Algorithm Adaptive integration Steps:

Subdivide the interval of the integration into sub-intervals for all sub-intervals do: Compute sub-integral, estimate the error with Richardson if accuracy is worse than desired then:

.Subdivide the interval else
Leave the interval untouched end if end for

Algorithm Bisect Method

Input:

a,b, (initial interval, a < b) tol, (tolerance, minimum length of interval, tol > 0)

 k_{max} , (maximum number of iterations, $k_{max} > 1$)

 x_k , (approximate solution after k iterations)

Steps:

while $(b-a) > \text{tol and } k < k_{max} \text{ do}$

 $x_k \leftarrow (a+b)/2$ if $\underset{a \leftarrow x_k}{\operatorname{sign}(f(a))} = \operatorname{sign}(f(x_k))$ then

 $\overset{\text{else}}{b} \leftarrow x_k \quad \text{end if} \quad$ $k \leftarrow k + 1$

end while Algorithm Newton Method

Input: x_0 , (initial condition) tol, (tolerance, stop if $||x_k - x_{k-1}|| < tol$)

 k_{max} , (maximum number of iterations, $k_{max} > 1$) x_k , (approximate solution of $f(x_k) = 0$ after k iterations)

Steps:

Calculate $f(x_{k-1})$ and $f'(x_{k-1})$ Update $x_k \leftarrow x_{k-1} - \frac{f(x_{k-1})}{f'(x_{k-1})}$

if $\|x_k - x_{k-1}\| < tol$ then break $k \leftarrow k+1$

Algorithm Newton Method x_0 , (initial condition)

tol, (tolerance, stop if $||x_k - x_{k-1}|| < tol$) k_{max} , (maximum number of iterations, $k_{max} > 1$)

 x_k , (approximate solution of $f(x_k) = 0$ after k iterations) Steps:

 $\begin{array}{l} k \leftarrow 1 \\ \text{while } k \leq k_{max} \text{ do} \\ \text{Calculate } F(\boldsymbol{x}_k) \text{ and } N \times N \text{ matrix } J(\boldsymbol{x}_k) \end{array}$ Solve the $N \times N$ linear system: $J(\boldsymbol{x}_k)\boldsymbol{z} = -F(\boldsymbol{x}_k)$ $x_{k+1} \leftarrow x_k + z$

if ||z|| < tol then break end if $k \leftarrow k + 1$ end while

Algorithm ANN Training Loop (SGD)

end while

X, {Input dataset} / Y, {Target dataset} / η , {learning rate} n_{batch} , {batch size} / n_{epochs} , {number of training epochs}

W, {weight} or $y = f_{ANN}(x)$, {the mapping}

Split data into Testing and Training / Create Loss Vector

Iterate over all Epochs: Schuffle Data Iterate over Batch: Get Batch data Forward Pass, Loss Computation, Gradient Computation

Update Wheights End Batch Iteration Test Data, Store Loss in Loss Vector

if testing_loss[i] > testing_loss[i-1] then Stop training end if

Epochs Iteration