MAD Formelsammlung

Jorit Geurts jgeurts@student.ethz.ch
Version: 23. August 2021

Given: Data {(z;,y;)} N, Fit: Function f(z), f(zi) = v;.

Fitting: Construct low order Model. Doesn't go through all data
points. We assume data has errors.

Interpolation: Fitting a curve to descrete datapoints, to get
estimates of datapoint in between

Extrapolation: Fitting a functioin to descrete data, to estimate
a trend (data outisde of the scope)

e Interpolation and Extrapolation: We assume data has no error

2 Linear Least Squares
Given: Data {(z;,v:)}Y,. — Fit a Function f(z).
¢k (x) are M linearly independent functions.

fla;w) = Z wk ek (T)
k=1
w = (wq, ...,wM)T are unknown weights we have to find.
@k (x) are the basis functions, where typically M < N.
Some typical basis functions:
or(@) =21, (@) = cos ((k — 1)z)

Tr — Tk

pr(z) =™, pp(z) =1-
The name Linear Least Squares comes from the fact that the

unknown parameter wj, comes in linearly and not that we fit a
linear function.

Goal: Find w that minimizes the Error Function.
N

2
B(w) = |lef3 =D el Z(yz
i=1 i=1
= arg min E(w)
w

AERN XM Regression or Least Square Matrix

flai))?

*
w

erM yerV
ngzlg LP2E$1§ @Mgmlg w1 Y1
w1(T2 w2(T2 @M (T2 w2 Y2
p1(zn) p2(zN) om(zn)] LM YN

We need to solve the above equation for w.
o M = N: (Easy case)
The Matrix A is square. We get the solution w = A~ ly

e M > N: (Not interesting)
System is underdetemined and has none or infinite solutions.

e M < N: (Most of the time its this case)
The system is overdetermined. We can seek an approximate
solution Aw = y with the least squares method by requiring
that E(w) = ||ly — Aw|)2

2.1.1 Solution for M < N

Derivation of Error function (aE

Normal equation: ag,olution for w:
AT Aw = ATy w* = (ATA)"' ATy
¢k linearly independent — AT A symmetric and positive definite
— solution for w.
2.1.2 Solution for Linear Function
Fit data to f(z) = w1 + waz.
21,1 :v2 27:1 Yi — Z

NZi:l af — (ivzl xi)z
_N Ef\r—l TiYi — Ziv—1 Zi EfV:I Yi
- N a? le)z

) — normal equation:

N
—1 Zi Zi:l TiYi

*_
wy =

2.1.3 Special case: orthogonal case
When the columns a; of A € RNV XM
Condition: Therefore:
ATA=1

are orthogonal.
Solution for w:
w* = ATy

a; - a; = 5-;]'

Y e 2:2 i GEsetriciterpretation nII—

The columns a; of A € RY*M create a M-dimensional space.

The solution Aw™ is a projection of y onto that space spanned
by A. The residual error is perpendicular to that space.
The projected Vector:

p* = Aw* = AATA) ATy = Py

Projection Matrix:
P=AATA)TtAT

Properties of the projection matrix:
It is symmetric: P = PT It is idempotent: P = P2
Same goes for the error:

e =T —-AATA) ATy = My
We see that:

P+ M=1I, PM=0
PA=A, MA=0

From linear algebra that:
y=y,+y,=(P+ My

e* =y—Aw* =My

o

column, = [y, a31,a3) "

Algorithms without the use if AT A:

2.3.1 QR-Decomposition
A=QR=[Q1 Q][R 0T A e RV*M
— c RN)(N

R is upper triangle — dont inverse, solve LGS backwards

2.3.2 Singular Value Decomposition
s 0 v,
A=[U, Un][0 0][‘/3 }:UZVT
Moore-Penrose Pseudo-Inverse:
At =v.=t. " _[s o +_[s™* o
=10 o/ 7% =0 o

Pseudo-Inverse of X:

£ = diag (01,02 ..,0), +=diag<a;1,a;1,...

(o)
2.4 Facts About Linear Least Squares |

® (+) quit robust against outliers

e (-) numerical solutions allways have rounding errors, we cant
guarantee, that the rounding error has siginificant impact on
the result — Condition Number

e Normal Equation: ko (AT A) = ka(A)?

e the normal equations transform the initial problem into a linear
system with a square matrix

e The second derivative is: V> E(w) = 2AT A which is symme-
tric & positive definite = w™ is a minimum

3 Non Linear Systems

Solve Non Linear Equation — Find roots of Non Linear Equation:
g(x) =h(z) — g(=)—h(z)=f(x)=0
Sensitivity: If | f(Z)| ~ 0, does this mean that |2 — ™| ~ 07

3.0.1
With e, =), — a*, if xp

Order of Convergence

k— oo .
z*, there exists:

r, Order of convergence
C', Rate of convergence

ekl
lim -
k—oo |eg|”

—C with {

e r =1:if 0 < C < 1 linear, C = 0 superlinear, C =
sublinear.
e r = 2: quadratic convergence.
~ €k42 €k41

e 7 X log e / log o
) — ol

Error: ep1 1| = ﬁ(b—a) — % = %2’6“71)
°k

Only converges for r =1 to C = 5

Number of Iterations until tol is reached:

lex| =tol = b;ka =tol = k=Ilogs (T)

Disadvantages:

Convergence slow

Initial interval needs to be known
f(x) doesn’t have to be Can’t be generalised for
differentiable, but continuous | higher dimensions

(3.2 Newtons Method (Tangent Method)

Algorithm: Algorithm: roots with m > 1

Advantages:
Certain to converge
Only needs the sign

flxy) flzg)
Tht1l = Tk = %7 (m’Z) Thtl = Tk — M7 (z’;)
A _ lekt1l _ 1" (@)
Facts: r = 2 and C = limy_ oo erlZ = 2] < oo

- Exact for Linear Functions — only one iteration

- f needs to be differentiable and continuous at =™

- Qubic convergence if f”/(z*) =0 but f'(z*) #0, > m =1
Advantages: Disadvantages:

Quadratic convergence Convergence not guaranteed
Linear convergence for if f'(xx) = 0 it breaks

root with multiplicity needs to be differentiable

m>1 — f(z*)=0 requires f(x)) and f'(zy)

Secant through {z), zx—1}

Approximate the Derivative: f'(x TR = ek —1)

k) R

T -1
_ T — Th_1
S T ry

Convergence: # ~ 1.618

Advantages Disadvantages

only f(z) is needed not quadratic convergence

only one evaluation per iteration two first approximations are
needed

r=¢=

3.3.1 Newton and Secant Problem

- Both can get stuck in a local minimum, as they follow the slope.
- Therefore they are sensitive to the initial condition.

- Not certain to converge.

Find the root of N non linear functions f;(x).
N = Number of Equations (f;)
M = Number of Variables (z;)

[f1(@"), fa(z™), ... ()] T =

Taylor Expansion for Matrices and Vectors:
F(z +y) = F(x)+ J(@)y + O (lyl*)

F(z") =

Root Finding Problem f(x) finding Problem
y (=0) given, searching x; x given, searching y;

e=f"'(y) y = f(x)

The Jacobian Matrix:

Well Conditioned: Well Conditioned:
small 6z — big § f(z) small dz — small § f(z)

1l Conditioned: 1l Conditioned:
small dxz — small § f(x) small dx — big § f(x)

Condition Number: Condition Number:

9f1(z) 9f1(x) 9f1(z)

dxq dxo ESY:

3f82(w) 31(;2(7:) 3@)‘2(E)

x x T

J(e) = 1 2 M
ofN(®) iy (=) of N (=)

dxq dxo CESY:

Condition Number:
=
k=||J

General Algorithm:
J(@p)(@p1 —) = —F(2k), Thir =Tk + 2
Az=b, A=J(xy) b=—F(x)

“:%: e K= }?2} = |f'(=")]
f'(z*) = 0, ill conditioned = roots of multiplicity m > 1.
K . . Z@: |f(x+5m)7f(x)| N|f’($){
(f(x)— finding) 5| oz ~

3.4.1 Newton-Raphson Method: (N = M)
J is a square matrix
@1 =k — J (@) Fzy)
In Practise don't invert .J, instead we solve for
J(xk)z = —F(®r), ®p+1 =@k + 2
Facts:

+ Convergence is quadratic (r = 2) if J is not singular

- cost is substantial. O(N?) for building J and O(N?3) for sol-
ving the linear system.
3.4.2 Pseudo-Newton method: (M # N)
J has Full Rank
Zpy1 = @k — J T (@) F(zk)
Moore Penrose pseudo inverse matrix: J+
gt {UTHTHIT for M > N
JTIJITY™Y for M < N
3.4.3 Modified Newton Method
Instead of computing J every iteration we only use one.
le = 7F(m;€), Jo = J(mo)
- Gets rid of O(N?®) and leaves us with O(N?).
- Only good if J doesn’t change to rapidly.

We want to solve a minimization problem:
z" = arg min E(x)
@x

x = (x1, ...,wM)T and E:RM™ 5 R
Maximisation equal to minimisation of —E ().
Sufficient Condition: .
OF OF
F(x)=VE(@)=(_-—(="),...,—(=z")] =0
6:&1 GCEM

Critical Condition:

Hessian matrix positive definite! V2 E(x) = H(x)
92E(x*) 82 E(x*) 82 E(x*)
022 CEFCET) CERCEEY:
H(z") =
82E.(m*) 62E.(m*) 62E.(m*)
dxprdxy EEIY LD 81?\/1
3.5.1 Newtons Method

Algorithm: new Jacobian: — J(z) = VZE(x)
VzE(mk)z =—-VE(z), — Xpi1=xr+2
A lot of computations and not guaranteed to converge.

4

Interpolation and Splines M = N
41 Lagrange Interpolation

Fit a function of degree N — 1 to N data points.

Lagrange Polynomial Lagrange interpolation function:

L (z) = 1,’1c :k%f flx) =N yrli(z)

_ (@-=z)(z—zp_q)(e—mpqy) - (e—aN)
W) = e e re) (1) o)
Facts:

e Polynomials with degree N — 1 for N data points
e Interpolate data not extrapolate data

e Analytic expression from data points
e Lowest degree polynomial through data points
e Derivatives f'(x) and P’(z) not guaranteed to match

(-) Sensitive to noise / Predictability issues

(-) High degrees give rise to huge oscillations, at the edges
(-) they are global and can’t represent the local behaviour

(-) small fluctuations in the data, end in remodelling of the
whole function
e Error minimal for x;, = cos (%nl): Chebyshev polyn. roots

Approximation Error

ly(z) — f(@)] =

(n) kil
y nl(f) 1 -0
k=1

_IA_Igorithm Lagrange Interpolation
nput:
x, y, (arrays)
N, (size)
&, point
Output:
¥, (interpolation value at & ot the data x, y)
Steps:
ygy+0
fork=0,1,...,
fori L 0,1,....N
if ¢ # k then
L U (@ — i) /(alk] — i)
end if

N — 1 do
— 1do

or

g g+ 1*ylk]
end for
return y

We split Interval [a, b] into N Intervals [x;, x;41

Locally defined cubic functions to represent data. Given data
{(zi,yi)}izo,...n With z; < zj41. In every interval [z;_1, z;],

i=1,...,N we - define a cubic function:
fq,(z)—aq,fc + Bz’ + vz +68;, i=1,.,N (1)
4N unknowns — 4 Constraints:
o fi(zic1) =wyi—1, (i=1,...,N)
o fi(zs) =wi, (i=1,...,N)
o filwi)=fi1(@:) (i=1,..,N —1)
o fi'(xs) = fl (), (i=1,..,N —1)
— 4N — 2 constraints, we need 2 more.
Possible Conditions:
e Natural spline: Set f;'(z0) = fy(zn) =0
e Parabolic runout: Set f;'(zo) = f;’(z1) and
f'N(zy) = fy(en-1)
e Clamping: Set f;(z0) = fy(zn) =0
e not-a-knot: 1"/ (z1) = £/’ (x1) and
///(ZN 1) — II,(CEN—I)
e Periodic Function: f/(z0) = " (zn),
f'(z0) = f'(zn) and f(zo) = f(zn)
We can now solve the problem: (¢ = 1,..., N — 1)
From: f/’ (zl) = filq (2)we get:
f”()= Az (fz —)+ Azl (x —xi—1)
fi(z) = ZAa,‘i (& —wi1)? - 2ZA_Q:1 (zi — @) + b
z;—x)3 —
fi(@) = a1t gAzi) +a; e 6212 1’ +bi(x —xi—1) + ¢
Ay, a; —a;_ a;
b; = Az: - 61 Law;, ¢ =yii1 — ——tAa?
Equations to be solved: (i = 1,..., N — 1)
Ayitr Ay,
Azja;_1+2(Az;+Azip1)a;+Azip1ai41 = 6——— —6——
Az Az,

with: a; = f'(x;), Aw; = x; —z;_1 and Ay—_y; — yi—1
This ends up as a Matrix Equation; find the vector a:

BO C() 0 0 aop DO
Al Bl Cl 0 al D1
0 Ao Bso Cs 0 az Do
0 0 Anx-1 Byn-1 By-1| |anv-1 Dy-1
0 0 0 AN BN anN DN
with (fori =1,..., N — 1)
_ _ Ayita Ay,
C,; = AZ-;+1 Di = Azi+1 - Tmz

For i = 0 and ¢ = N we use the special conditions and determine
the Coefficients By, Co, An, By by hand.
Data Points - 1 = Number of Segments

Main Idea: I ~ ZN 1 Titl pi(x)de

Rectangle Rule: Ir; = f(zi)A;

Midpoint Rule: In, = f (”# A
Trapezoidal Rule: Ir, = wAl
Simpsons Rule:
A 24+ x;
s, = 20 + 41 (%) + Fwesn)]
Rectangle Rule: T~ A; 3N 1 f(

Midpoint Rule:
Trapezoidal Rule:
Ay

2

A Ei:o

zi +Ii+1
pl
N-1

I~ <f<zo> +2 > fl@) + flan)

)

i=1
Simpsons Rule: accurate for 3"¢ order polynomials

A, _ _

I S (o) +4 NI fle)+2 2N fla)+f(an)]
i=odd i=even

Find an upper bound for our Integral. Erule,i = Ii — Irule

Rectangle Rule: Second Order Accurate
Er, = 3/ () A2 + 21" (@) A + 4 f7" (@) AL + O(AY)
Midpoint Rule: Third Order Accurate

En; = 518" (@ig12) A3 + O(A]) + ...
Trapezoidal Rule: Third Order Accurate

Er, = =15 " (miy1/2) A% + O(A]) +

Simpsons Rule: Fifth Order Accurate
Is, = 2Im; + 311, = Es, = O(A;)°

‘ For the whole integral the Order is -1 ‘

Exact Integration for degree = (Order of Accuracy - 2)
The leading derivative of the error has to be 0. Always check!

Has nothing to do with A;.

5.4 Newton Cotes Formula |
We use M + 1 equidistant points in [z;, z;+1] (xr = z; + k- h),
(k € [0, M]) and Lagrange Interpolation.

The Integral: h = %
I; ~ f;ii‘*'l pi(z)dz = Z]k\/[:o f(zk) fa:i-H éiw(w)dz
Iy, L, Lim A O f(a)

O = A [Y (a)da
and M oM =1
=1 (z;) = 13 _p(mrr—y)

VA =T — @

Properties: CM = Cc}_,
(@i + @ip1 — oa—)
5.4.1 Error
N Datapoints — N — 1 intervals. If the error of the integration-
rule for a single interval scales with: O(h™), than the error for the
whole integration is:

E < (b—a)- max(c;) - O(hn_1
A higher order rule can perform worse than a lower order rule, if
the constant factor in the error of the ho. rule (C1) is greater than
the factor of the lo. rule (C2). C1-h"™ > C2-h™m < n
5.4.2 Error reduction
Error of our intergration rule scales with: O(h™). How many more
evaluations to decrease error by a factor z7
1 1 b— " n
-=-C-0 =C-0
z z N

N*"= ¥z-N

Refining the grid locally does not change the order of accuracy of
the underlying integration scheme.

b —
N*

a a

E" =

A quantity of interest G is discretized by some grid spacing h:
G =~ G(h). For h — 0 we should obtain the exact value G.
Expanding with a Taylor Series we get: (with G(0) = G)
G(h) = G(0) + c1h + cah® + ...
1 1
G(h/2) =G+ Eclh + Zczh + ...

Subtracting the to equations gives us:

Gi(h) = 2G(h/2) — G(h) = G + chh® + chh® +
Increased exponent of leading error term, by subtraction.
General Case:

Gr(h) = 5

T2 Gn1(h/2)=Gra () = GO)

Error Estimation: For small h the estimation is good.
€(h/2) = G(h/2) — G(h)

e(h/2) < 3- o
En—1(h) > En_1(h/2) > En(h)

Relative Tolerance: tol -

Error order:

Improve an inaccurate, but "cheap” method, and improve it by
using Richardson Extrapolation: Ié, Ig, I[‘)l,

We start by using the Trapezoidal Rule and improve it.

Resulting Integral: (Trapezoidal Rule)

4’91%21 - 11?—1

n o _
= o
Resulting Integral: (Simpsons Rule)
k+1712n n
= AR, Iy
B 4R+1 1

O(h?)

15) ~

O(hY)

]61) /
7 Adaptive Quadrature

e Optimize quadrature by sampling the funtion non-uniformly.

e Evaluate the integral with more precision at points with sudden
changes.

e Use Rhomberg integration and error estim. to evaluate locally.

Main Idea: I = [f(z)dx ~ 3, ci - f(w:)
Choose ¢; and z; to minimise the error.
Undetermined coefficients: (Trapezoidal Rule)
- Only exact for a straight line

b b
I:/ f(z)dz:/ (ap + arz)dx = c1 f(a) + c2 f(b)

b—
2

a

Integration and comparing coefficients: ¢; = ca =
2-point Gauss Quadrature:
Same as above, but variable function evaluation points.

b
I:/ f(x)dz = c1f(z1) + caf(x2)

with f(z) = ap + a1z + asz? + aszz>.

Solving it the same way as above we get:

=2t |(50) (3)+ 5
2 [(550) (G5) + 55

Integral is exact for: polynomials of degree N-1, with N = degrees

of freedom on the right side.

(5 Numerical Integration Richardson and Romberg REMCTIEICITIEE I
_ Interpolate the values y, and derivatives ..

fl@) = Z Uk (z)yr + Z Vi (@) yj
k=1 k=1
Uy and Vi: polynomials of degree 2n — 1, with properties:

Uk(;) = 655, Uglmy) =0, Vil(zy) =0, Vi(z;) =6k

Uk(z) = [1 = 20, (z1) (z — z)] U3 (z)

Vi(@) = (z — ox)li (2)

Move Interval [a, b] to [-1,1]. (z € [a,b] = z € [—1,1])
)

2z — (a+b b—a b+a
= s = —2z4+ —
b—a 2 2
We then get the following integral:
b Lp— b— b
I:/ f(x)da::/ a a ta dz
a 1 2 2 2

Approximating f(m) with Hermite Polynomials

/ f(z)dez = Z yk/ Uk (z)dz + Z yk/ Vi (z)dz
/ f($)d$:ZUkyk+kayL
- k=1 k=1

with uy, = f_ll Uk (z)dz and vy, = f_ll Vi(z)de =0V Ek
Resulting Integral: (uy, is tabulated)

1 n
I=/ f(a:)da: = E ukf(wk)
-1 k=1

2
R ACE
Error with n abscissas:
22n+1 (n')4
T (2n+1)(2n!)3

In Practice we get: w; is tabulated

b —a
I:/ f(z)da f(—b2 (z—1)+

for z € [—1,1]:
I= Zwif(z)
i=1

FARRl(3)

b+a
2

~

Integrate a function in D dimensions:

b1 bp
I:/ / f(z1,...,zp)dzy ---dzp
ay ap

Using Quadrature in every dimension with N gridpoints:

/ f(wd)da:dvawidf wld

ig=1

N
ip=1""

Quadrature in D dimensions requires M = NP function evalua-
tions
Additionally, order of accuracy depends on dimension D, one-

dimensional order of acc. s and grid spacing h = b;‘l‘
1-1g=0(n)=0(N")=0 (M)
@ and s as the order of the used 1D Method.

‘I ~ Z§N=1 Wiy wewip [(Tig s Tip) ‘

8 Monte Carlo 9__ Neural Networks (95 raining | 9.7.1

Monte Carlo only makes sense for more than one Variable.
Sample random points in the domain € and count how many are
inside the area we want to calculate:

I p—

= [QI(f)

y = ‘Qil/nf(f)df, |Q|=/de

Sample the function at M random uniform distributed points Z;:

with

1 M

()= (far) = 37 D f(@)
1_1

I [Q(fa) = 0] — Zf ;)

Assuming the samples Z; are independent, the Expectation value
of the random function (fas) is equal (f), and so is the integral:

I = E[|Q[(fn)]
Error:
ALLE| S O(M71/2)
M
with

Var[f] =~

(Zﬂm - <f>?v,>

For large number of samples M, we expect the following errors:

em, with probability of 68%
[{f) = (fm)| < < 2em, with probability of 95%
em, with probability of 99%
8.0.1 Recipe for Monte Carlo Integration
1. Sample points &; from a uniform distribution and evaluate in-

tegrand f to get f(Z;).

2. Store number of samples, the sum of the values and the sum of
squares
M M
M, DT F@), @)
i=1 i=1
3. Compute mean as the estimate of the expectation (normalized
integral)
I
== () = Z f (&
12| =
4. Estimate the variance using the unbiased sample variance:
Var[f] ~ (Z @) = (N)
5. Estimate error
Vi
ar[f] o O(M—l/Q)
M
8.0.2 Inverse Sampling

Generate any random with PDF px (z) and CDF Fx (x) distri-
bution form an uniform distribution U € [0, 1].

F(z)

x

p(z)dz

Fx(z)=u — == F;l(u),
2@® = F);l(u(i))

with u(?) form a uniform distribution interval.
8.0.3 Rejection Sampling
Generate samples from p(z) from a simple distribution function
h(z) from which we already know how to generate samples. h(z)
has to bound p(z). p(z) < Ap(z)

1. draw random sample = for h(z)

2. draw uniform random number u € [0, 1]
3. accept z if u <)‘h((gz), else reject =

8.0.4 Ubiased Estimator
An unbiased estimator of a statistical parameter means that the
expected value equals the true value of the parameter, e.g.

9.1 General Structure |
y = F(x,w), R"0 - R"L
output = F'(input, weight)
Different Types of Neural Networks:
e Fully Connected Neural Networks
o Convolutional Neural Networks (CNN)
e Recurrent Neural Networks (RNN)

Function y(-, w) : R"0 — R™L parametrized by weights w.
w;;: destination node j and source node i

1st layer 2nd layer

For each layer:

1. Input x; is weighted by w;
2. Summed
3. Activation function ¢ is applied

Map Input to First Layer:
aj =310 wixi

Map First to Second Layer / Output

St wiizg

Compact Notation

1 _
Z; = ¥1

and

yj:Z?:Lpz

and

- (@

)

J

y(@;w) = g2 (W2ey (Wa)) ‘
1st layer L-1 layer L layer
o, z"l al-1 L-1

nL-1 “hI-1

Compact Notation for y(x; w) =

‘ PL (WLWL—I (WL_1<PL—2 (- W3y

(W'a)))) |

Elements of i;Vl:

l l . . .
kazwpkzwji, with p=j, k=1
d = destination and s = source:
a1=4g Wi=d,0=s Wi=d,1=s Wil=d,2=s To=s
A2=qd | = |W2=d,0=s W2=d,1=s W2=d,2=s Ti=s
az=d W3=d,0=s W3=d,1=s W3=d,2=s T2=35

Ramp (ReLU) Hyperbolic Tangent Logistic
1 1
1

-

o) = {0‘ z<0

Heaviside

P

e = {0 250 #0) = tanh(z) () =

x, 20

oal:

ﬁpgate the weights w so that the output y,, given an input x,,

matches a target 4.

Steps:

1. Build a model y (x,,w) with the
w={w'w? .. wk}

. Perform the forward pass, i.e. produce the output y,, for all
X, in the dataset

. Compute the loss with respect to the target:

N
Z(yn :ZEn

4. Perform the backwarﬂ pass, i.e. update weightsn(:sée 6.6)

5. Repeat until you reach a minimum: w* = arg min E(w)
9.6 Gradient Descent (GD) and Variations |
Key ldea:

Use derivatives (gradient) of the cost function E with respect to
the weights w to update the parameters:

wFTD — () _ NVwE (w(k))
with iteration index k and learning parameter n
9.6.1 Stochastic Gradient Descent (SGD):
Alternative to GD with derivative of local error E,, related to the
pair {$n7 gn}:
wk D — ™ _ v B (u;(k))

with sequential or random choice of E,,

9.6.2 Batch Stochastic Gradient Descent (batchSGD):
Method between GD and SGD with gradient on subset Z, with
Z C {1,2,...,N}, chosen randomly.

w<k+1> =w® v, 3 B, (w(k))

nel

initial weights

E(w) = Y (xn, w))

Learning Parameter 7

e Crucial hyper-parameter in deep learning

e Not a priori clear how to be chosen
(a) 7 too high/fast: oscillates between suboptimal values
(b) 7 too low/slow: takes too many iterations to reach w*
(c) desired value of n

E(w) E(w)

iteration

Update weights using Gradient Descent:
wF D = ™ _ v B (w®
and rewrite gradient in terms of a; = Y, w;xZx (chain rule):

OE,, OE, Oaj OE,
= = 2 = 8j Zi
811in 8aj 6wji Baj
Derivative of the Error §;
OE, Oay - Bak
% = =2 day, da; * 9a;
= ap Oaj a;

with @, = Zj Wi jzj = Zj WP (a]-).

da N -
B - =¢ (a) i = 65=¢ (aj)zwkj5k
llj %
Last Layer of Neural Network, i.e. a; = y;
OE, OE, Oaj
= = 6]'21'
Qwj; da; Owgj;
OE, 01
5 = ; —
; o, = 5y 2 v @niw) — 9,

ay 2 Z (yk (ilin, w) gni)z =Yj (wn? w) - ﬂn;

Key ldea of Backpropagation

e At last layer, gradients gf”, and 88% don’'t depend on
Ji J
Neural Network
o Calculate 6, at last layer first, then back-propagate

to acquire the §;'s at every previous layer

E(w) Eow)

ow

W

weight

Bias-Variance-Tradeoff
e Overfitted: Model fits behaviour of noise and does not gene-
ralize efficiently (model estimation errors)
e Underfitted: Too few parameters, model ignores meaningful
data (model mismatch errors)

Key ldea:
Introduce subset of data (~10%) as a test set
and run SGD on both training and test data.
Plot error for both subsets over iterations:
overfitting

E(w)

testing data

training data

| iterations

e Increasing hidden hodes improves representation ability for test
data. Is more prone to Overfitting
e Increase the hidden Layers increases representation ability for
test data. Is more prone to Overfitting
e Two linear (no activation function) NN, can approximate the
same class of functions. Regardless of the number of Layers.
o When Batches are used, the gradient is avaraged. Shuffling
the data of the batch has no effect.
e For too big learning rates the error can increase
10 Dimensionality Reduction
Goal:
e Decrease dimension of the data while either explaining most

of the variance or minimizing the reconstruction loss.
Changes the coordinate system of the data while aligning the
axes to the directions with the most variance

Data must have zero mean, i.e. &, = zn, — 2 € RP

= centered data matrix X¢ = (@1, ..., :z:N)T e RVxDP

Variance of a Matrix X (zero mean):
Var(X] =o0® =01 4 ... + o
o1 PIFEN

X N -1 .

oN Zz TN,i
Maximum Variance Formulation

Find direction v* = argmaxv? Cv s.t. variance is max.:

(xa

Var[{z}N] = v)2 =vTcw,

1
N—-1 n=1

o] =

v € RP needs to fullfill Cvi = Xjvi , vivi=1

10.1.1 Spectral Value Decomposition

1. Construct centered data matrix X¢ € RNV *P

2. Construct covariance matrix C' = IXc e RPXP
3. Preform Eigenvalue Decomposition: V~! = VT ¢ RPXP
C=VAV~! A=diag(A1,..., Aa)

4. Sort Eigenvalues, decreasing order: (A1 > A2 > ... > Aq)
5. Set V = (v1,...,vq)

6. Now Switch of Data Matrix: X = (a1, ...,xx) € RPXN
7. Set X = VT X, with X as the transformed Data Matrix

10.1.2 Data Compression:

Instead of using the whole matrix V' we only use the first R rows:
V, = (vy,...,v,) € RPXE
The Reduced Data set is then given by with X €
X, = VTTX c REXN
or in Terms of Original Centered Matrix X¢ €
Xr,c = XcVr
10.1.3 Reconstruct Data
: The Reconstructed Data X is given by:
X=X, =V, VX
the retained variance (in percent) is computed by
il
Xili

RDXN.

RNXD‘

O'retained —

Kernel PCA:

Nonlinear cluster of data made linearly separable by transforming
the data by using some kernel functions ¢:

1 Y -
NZ¢(£i)¢(1i)

i=1

C changes to C =

Key Idea
e Use Neural Network to learn dimension reduction
e Map input x,, € RP onto an output x™ € RP through

an intermediate layer y,, € R” using a matrix W € R™*P

‘ VYo =Wxn, %.=WTy,

Error Function:

Find optimal weights by minimizing the error,
i.e. the difference between input and output:
N

wh = argmm— Z [|%n — wT Wxn ||2

nl)"n

%l onlinear Pr?blems
apture non-linear problems by adding non-linear activation

function ¢ and more intermittent layers:

Yn =@ (Wrer—1 (- Wapr (Wixy))

%n = W, 02 (W[_ieL (WLTyn)>

Note: Deeper networks increase expressiveness
but are easier to overfit and memorize the training dataset.

[111 Modelfitting]

Model architecture:

The functional form of f(x). We can choose every function.
It could be a straight line, a polynomial, a exponential etc.
Measure of the "best”: (Cost function: e = y — f(x;))

2-Norm: I-Norm:
llell, = L i = f@))? el =25, lvi — f(wa)]
oco-Norm: General Form:
1
llello = maxi|yi — f(@)| lell, = (32, €f)?

Notice: |[e[2 =e-e

1277 Linear Algebra) 11.6.3

Inner Product (Skalarprodukt):
z y=z'y= Zivzl ZiYi

Image/Range:
Space spanned by the
rows of A, range(A).

Null Space/Kernel A ¢ RN*M: Cokernel:
Az =0, null(4) = all (z),z € RM Cokernel = null(A”)
Norm: Rank:
6w = ||[A'sy|| < [|[A~"|lIdyll rank A = rank A”
Norm calculation:
lAll, = v/max(A(AT A))
Inverse Matrix Formulas
a b>‘1: 1 _(d 4;)
c d ad —bc \7¢ @
a b c\7! 1 ei—fh ch—bi bf—ce
d e f = |\ fg—di ai—c cd—af
g h 1 det A dﬁ —eg bg— a!}JL ae — bd

Computers can't calculate exact numbers — rounding error:
bw = w—wand dy = y—§ = Aw — Aw = Adw

Condition Number: well conditioned = k(A) not too large
S —
lpel = (ay el [w(a) = a)la=!|, (?<A> € [1,00)
. _ 1 D omaz(A)
A orthogonal: k(A) = JA|lI|AT] = e oy
Kko(A) =1 (1) for 2-norm & positive definite
Lo-norm = kg Tells us how stable a fit is

Around a Arbitrary point
I’ (20) 7" (xo)

F@) = flao) + 1512 (@ = 20) + TP (@ — w0)” + ..
Around a variable point x: (zg =z, z = + h)
2
Fleth) = f(2) £ hf' (@) + = f" (@) + ...
Vectors: o
dfi
filz +y) = fi(@) + > %yj +0 (llyll*)
j=1 7

For the whole System of Equations:
F(z +y) = F(z) + J(@)y + O (|lyll*)
With J(z) as the Jacobian, see First Page.

Sample &; from U(Q2) (D-Dimensions) for ¢ = 1, ...
Evaluate function f (&;) fori =1... M

M

Accept sample if f (Z;) < yi, reject otherwise:

Continuous Probability:
Cumulative Distribution Function: CDF N

Fx(z) = P(X <a)= p(z)dx
Probability density function: PDF N
d
p@) = —Fx(@) 20, s€QCR [pe)de=1
T

The probability that a value is inside a interval [a, b] is:

b
Pa<x <0) = [pwya
Expected Value: ¢
/wp(w)d:v
Q

h(z)p(z)dz

E[X] = (X)

Expected Value for a Function:
Eln(e) = |

Q

11.6.4 lIdentitys for Both
Expectation Value:

ElaX + bY] = aE[X] + DE[Y]
For two uncorrelated random variables:

E[XY] = E[X]E[Y]

Variance: o = standard deviation

Var[X] = 0?[X] = E[X?] — E[X]?

n

:%Z(IFW

i=1

e = Var[{f)m] = — ((F)nm)

M

— > (Elf (=) f(=5)] —

i,j=1

H?)

M

— ST (E[f(=)%] = (H?)

=1
1 M
+ a5 >

i,j=1,i#]

E [f (i) f(x3)] —(f)*
=(f)2

(H?) =

M

(T

=1

Var(f]
M

12 Algorithms

Algorithm Adaptive integration

Steps:
Subdivide the interval of the integration into sub-intervals

for all sub-intervals d
Compute sug mtegral estimate the error with Richardson

if accuracy is worse than desired then:
ISubdivide the interval

eave the interval untouched end if end for

Algorithm Bisect Method

Input:
a,b, (initial interval, a < b)
tol, (tolerance, minimum lenght of interval, tol > 0)
kmaz, (maximum number of iterations, kmpaz > 1)
Output:
xy,, (approximate solution after k iterations)
Steps:

k<1

while (b — a) > tol and k < ke, do
zp < (a+b)/2
if;igﬂ(%&a)) = sign(f(zy)) then

|
e?)eexk end if
k+—k+1

Fnd while
gorithm Newton Method

Tnput:

xq, (initial condition)

tol, (tolerance, stop if ||z — zr_1]| < tol)

kmaz, (maximum number of iterations, knpaz > 1)
Output:

xy,, (approximate solution of f(zj) = O after k iterations)
Steps:

k<1
while k¥ < ki, 4. do

Calculate f(zr—1) and f/(zr—1)
flzp_1)
(@ _1)
if || — 1] < tol then
klzLea}ck+ ?nd if

Update x < Tp—1 —

end while

Algorithm Newton Method

Tnput:

g, (initial condition)

tol, (tolerance, stop if ||z — zk_1]| < tol)

Kmaz, (maximum number of iterations, kmmaqe > 1)
Output:

x), (approximate solution of f(z)) = O after k iterations)

accepted samples
[n F3ccepted samples
M

| Algorithm Romberg Integration (Trapezoidal Quadrature)

Steps:

116 Probability Theory |
11.6.1 Porbability Distributions:
Binomial Distribution:
P = (R)r*a-p""
Uniform Distribution:
ﬁ z € (a,b)
0 otherwise

Uniform Distribution for Higher Dimensions:
L O
=@ *€
pu(®) {O otherwise
Normal Distribution: ;© = mean, o = standard deviation
1
V2ro2

((z— H)2>
exp | —————
Exponential Distribution:

202
p(z) = Ae™ "
11.6.2 Discrete Porbability:
Discrete Probability Function:

P(z)€0,1], 2€QCN, > P(z;)=1

pu ()

PN =

Expected Value: = mean

EX]=z = ZziP(wi) =

1M
" Zpi (= p mean)
k2

——
pjequally likely

Input:
function f(z) / interval a, b/ numer of iterations K
Output:

I} =
Steps:
Precompute and store function evaluations
maxNumlIntervals < 2%
hmin < (b — a)/mazNumlIntervals
for i <~ 0, ..., max NumIntervals do
fvalues[i] < f(a + i * hmin) end for
forr < 0,..., K do
numlIntervals < 27 / step + 2577 / result + 0
for i < 1,...,numIntervals — 1 do
result < result + fvalues[i * step] end for
fo = fl0] / fn = flmazNumlIntervals]

integral[0,r] < 0.5 boo (fo+2=*result + fn)

integral[K, 0] approximation to the integral f: f(z)dz

numlIntervals

nd for
forl'Y 1. K do
forr < 0,.., K — 1l do
integral[l, r] « 4’*mtegmz[z71,Z;rj]lfmtegmz[za,r]
end for
end for

k<1
while k < ki, 4. do
Calculate F'(x) and N X N matrix J(xy)
Solve the N X N linear system: J(xy)z = —F(xy)
Tp41 < T + 2
if ||z|| < tol then

break end if
k< k+1

end while
Algorithm ANN Training Loop (SGD)

Tnput:

X, {Input dataset} / Y, {Target dataset } / n, {learning rate}

Nyatch, {batch size} / nepocns, {number of training epochs}
Output:

W, {weight} or y = fann (x), {the mapping}
Steps:

Split data into Testing and Training / Create Loss Vector

Iterate over all Epochs:

chuffle Datg
atch:

t%a‘t:eBover

et Batch da

orwarc‘j Bass, ?_oss Computation, Gradient Computation
Update Wheights

nd_Batch lterat |on_
Test(bata tore oss in Loss Vector

if testing._| Ioss[] > testing_loss[i-1] then
Stop training

end if .
Epoghs Iteration

