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1 Linear Least Squares

Given a Set of {(z;, yi)}zN:1 data fit a Function f(x) to the data. f(z)
can be expressed as a linear combination of M linearly independent functions
#r ().

N
flasw) = 3 wrer(@)

®
k=1
w = (wi, ..., wpr) are unknown weights we have to find.
@k () are the basis functions where typically M < N.
Some typical basis functions:
k—1
o) =1, k(a) = cos ((k — 1))
— 2)
T — xp (
or(x) = PR op(e) =1- s

The name Linear Least Squares comes from the fact that the unknown
parameter wy, come in linearly and not that we fit a linear function.

We want to find wy, with k = 1, ..., M such that the error function E(w)
is minimised.

N N

E(w) = llel3 =€ =3 (i — f(z:))? ®)
i=1 i=1

w”* = arg mui}n E(w) (4)

We want to solve the following equation.

Aw =1y (5)
where
AeRN XM Regression or Least Square Matrix ~ weRM  yerN
—N—
e1(z1)  p2(z1) o (z1) wi Y1
p1(z2)  p2(x2) e (z2) w2 Y2
p1(zn)  p2(zN) em(zn)] Llwnm YN

We need to solve the above equation for w. We distinguish between three
different cases:

e M = N: (Easy case)

The Matrix A is square. We get the solution w = Ail'y
e M > N: (Not interesting)

The system is undetermined and has infinite solutions.
® M < N: (Most of the time its this case)

The system is overdetermined. We can seek an approximate solu-
tion Aw = y with the least squares method by requiring that
E(w) = |ly — Aw|3

Yy 2

1.1.1 Solution for M < N

Via derivation of the Error function we get the normal equation.
Normal equation:

AT Aw = AT y. (6)
Since the @y, are linearly independent the matrix AT A s symmetric, we
get a solution for w.

Solution for w:

w* = (ATA)71 ATy @

1.1.2 Special case: orthonormal case
]RNX M

Computer can't calculate exact numbers, so there will be rounding errors:
Sw=w-—wWanddy =y — §

When the columns a; of the matrix A € are orthonormal.

a; - aj =04;; (8) Condition Number:
Then AT A = T and we get the following solution for w: M = A HA—l‘ M _ m(A)M (14)
w
w' _ AT, © wl L Tyl
- - - w(A) = All|A7], w(a) €1, 00) (15)
1.1.3 Solution for Linear Function ) L ;
A problem is well conditioned if ~(A) is not too large.
Fit data to f(z) = w1 + wax:
1 yl lAllz = \/A(AT A) (16)
1 2 [wl] Y2 QR-Decomposition: A = QR
wal w* = R7TQTy an)
Loan YN svD: A = UsyT .
Normal case: w* =vstu (18)
N 2 N N N -1
wF . Zi=1TE iz Yi — i Ti Niza Tivi s = [’g g] [ [SO (0)] (19)
1= 2
NN 2f = (S =) 2 N T S
on Linear Systems
R TR g T
2~ 2 Goal, find root of a function:
NEN a7 = (S, w) )
Orthonormal case: f(z")=0 (20)
Rewrite y = w1 + wox as y = w1 + wa(z — ). LSQ yields Sensitivity: If | f(&)| &~ 0, does this mean that |& — ™| ~ 0?
i Zui s S =) Definition:
1= N 2 = S(z; — 7)2 e Well Conditioned: small change in input causes small change in output
_ e Il Conditioned: small change in input causes big change in output
Condition Number:
The columns a; of A € RV XM create a M-dimensional space. The solu- = 1 (21)
tion Aw™ is a projection of y onto that space spanned by A. The residual | f/ (x*)|

error is perpendicular to that space. . L
perp P Note for f’(z*) = 0 the problem is ill conditioned and correspondents to

roots of multiplicity m > 1.
k-th error: e}, = x, — ™
We define r and C so that there exists a limit wich follows:

y= [)’1,}’2, )’3] J

leg+1l

lex|”
€k+z‘
ekt

e
log %

lim

k— o0

(22)

log

Convergence rate: r, r X

leg41l

Order of convergence: C, C' = limy,_, o TexT™

T
column, = [an, a21,a31]

The projected Vector: e r = 1:if C € (0,1) linear convergence. If C = 0 superlinear,
C = 1 sublinear
w w T =1 ,T, _
P =Aw’ = A(ATA)TA y =Py e 7 = 2: quadratic convergence

Projection Matrix:

i) 21 Bisection Method

Algorithm:
Choose interval [a, b], such that f(a) - f(b) < O

Half interval (z) = a2b), if sign(f(zg))

a = xy else b =z,

P=AaATA)"1AT
Properties of the projection matrix:
e |t is symmetric: P = pPT 1.

e It is idempotent: P = P2 2. = sign(f(a) then

Same goes for the error:
3. repeat until satisfied. (|b — a| < tol)

e = —AATA) ATy = My (11)
Facts:
We see that:
e C=1landr = %
P+M=1I, PM=0, PA=A, MA=0 (12)
We know from linear algebra that: ® (+) f(x) doesn’t have to be differentiable
® (+) certain to find a solution
Y=Y, +y, =(P+ My (13) )
e (-) but slow. k = log, (”;T;‘)
e (-) interval [a, b] may be hard to find.

Algorithm: Tangent at the point xj
_ f@)
f'(zk)

f(zg)

—— (23)

roots with multiplicity m >1

Convergence: r = 2

e ” " (x*
T = e ™ e T <
Facts:

® (+4) Quadratic convergence

® (-) convergence not guaranteed

o (-)if f/(x) = O it breaks

o (-) requires f(zy) and f'(zy)

e (-) f(z) needs to be differentiable

e linear convergence if root has muliplicity m > 1.

Algorithm: secante through x;, and z;,_ 1

— flay) —E Tk 1

Flar) — fler—1)
L5 1,618

T (2)

Convergence: r» = ¢ =
Facts:
e (+) only f(x) is needed, one per iteration
o (

-)
e (-) two first approximations are needed

Find the root of N non linear functions f; (x).
N = Number of Equations (f;), M = Number of Variables (z;)

not quadratic convergence

f1(z™) 0
fa(z™) 0
F(z*) = . =|.|=0 (25)
I (™) 0
Taylor Expansion for Matrices and Vectors:
F(z+y) = F@)+ J(@)y + 0 (yl°) (26)
The Jacobian Matrix:
9f1 (=) 9f1 (=) 9f1 (=)
dxy EED) ES
of2(e)  0fy(e) 35”2%)
T z T
J@=| " ’ M @0
oin(@)  Ofy (@) 2fn (@)
dxq EED) dx s
Condition Number: .
K= HJ (@ )] (28)
2.4.1 Newtons Method
Algorithm:
J(@p) (@1 — @) = —F(2g), @pqp1 = +2z  (29)
Az=b, A=J(xr) b= —F(xzy) (30)
Newton-Raphson method: (N = M)
@pir =@ — I (@) Flak) (31)
In Practise we don't invert J and instead solve the following equation.
J(xp)z = —F(2g), Tppr =T +2 (32)

Facts:
e (+) Convergence is quadratic (r = 2) if J is not singular

o (-) cost is substantial. O(N?2) for building J and O(N3) for solving
the linear system.



Pseudo-Newton method: (M # N)
@py1 =z — I (@) F(2k)
Moore Penrose pseudo inverse matrix: Jt

Fit a function of degree N — 1 to N data points. Therefore we need the

(‘]TJ)*le for M > N Lagrange Polynomial:

+
JT = 34
{JT(JJT)_1 for M < N 4 Nooo—
" 4 _— (o) = [ —— (46)
Modified Newton Method Instead of computing J every iteration we only i=1 Tk — T4
use one. itk
Jiz=—F(zy), Jo=J(zo) (35) Lagrange interpolation function:
Gets rid of O(N?) and leaves us with O(N?). Only good it J doesn't N
change to rapidly. Fz) = Z Vili (@) 47
We want to solve a minimization problem: Facts:
z* = arg mnin E(x) (36) e Polynomials with degree N — 1 for N data points

e Interpolate data not extrapolate data
z=(z1,..,zp)  and E:R > R

Maximisation equal to minimisation of —E (). ® Analytic expression from data points

3 Interpolation and Splines 4 Numerical Integration 5 Richardson and Romberg
" 31 Lagrange Interpolation 41 Numerical Quadratwe 51 Richardson Extrapolation

We split an interval [a, b] into N Intervals [x;, ;4 1] of length
Aj =mip) — @
Rectangle Rule:

Ig, = f(=:)A; (50)

Midpoint Rule:
I, = 1 (zl +2zi+1 ) N (51)

Trapezoidal Rule:

Iy, = f(=3) +2f(33i+1)Ai (52)

Simpsons Rule:

Ly,
flzs) +4f (%) + fziy1)

Isi = A (53)

6

Sufficient Condition: ® (-) Sensitive to noise
T . L Rectangle Rules:
OFE E -) Predictabilit;
F(z) = VE(z) = (—(w*),...,i(w*)> —o @7) e (-) Predictability issues N_1
Oy O\ e (-) High degrees give rise to huge oscillations I=A; Z f(=;) (54)
Critical Condition: Hessian matrix has to be positive definite! e (- they are global and can’t represent the local behaviour =0
V2E(x) = H(x) Midpoint Rule:
e (-) small fluctuations in the data end in remodelling of the whole N-—1 z; + @y
2E(x*)  92BE(x*) 02E(a*) function I~n, Y f (17““1) (55)
o7 CERRED) CEERED Y izo 2
. 5 5 Locally defined cubic functions to represent the data. Given data A N—1
92E(x™)  0°E(=¥) 9 E(=") {(zi:yi)bizo,...N with @; < @;j1. In every interval [z;_1, ], ~ of )
CESVEES EEFYEED 8:%\4 i =1,..., N we define a cubic function: I~ 2 flzo) +2 Zl f@i) + f=n) (56)
i=
] - 22 ) ) P — .
2.5.1 Newtons Method fi(z) = aza” + Biz” +viz +6;, i=1,..,N (48)  Simpsons Rule:
. 2 4N unknowns — 4 Constraints:
Algorithm: J(z) = V“E(x) A N-1 N-2
o fi(i—1) =yi—1, (i=1,...,N) Im — [ fl@o)+4 > fl@)+2 D>, fl@)+ flen)
2 K K
V E(zy)z = —VE(z), @py1 =x,+2 (38) N i=1 i=2
o fi(zi) =yi (i=1,..,N) i i—even
A lot of computations and not guaranteed to converge. , o .
z=—VE(zy), ®p41 =z, +nz (39) . f{’(zi):fq;,gq(zi). (i=1,...,N—1)

We have 4 N — 2 constraints, we need 2 more.
Possible Conditions:

Simpler, but slower than Newton. May only find local minimum. Levenberg-
Marquardt Method:

o Natural spline: Set f1’(z0) = f{ (zn) =0

(VZE(wk) + AI) z2=-VE(x), xpi1=x,+2z  (40)

e Parabolic runout: Set f1’(zo) = f1’(x1) and
f"N(en) = fR(en—1)
e Clamping: Set f{(zg) = fy(zn) =0

We can now solve the problem the following way:
fi'(@i) = fily1 (@) givesus: (i = 1,..., N — 1)

Start with large A (Gradient Descent), then decrease A (Newtons Method).
Often used for Non Linear Least Squares.

2.5.2 Non Linear Least Squares

We have data {(z;, y,‘)}é\,:l and want to fit a function f(z).

N ai_1 a:
f(z) = Z ep(z;w), w e RrM possible that: M > K fiu(z) = Al - (z; —z) + Al_ (z —zi—1) (49)
k=1 x; z;
Cost function: aj = f//(wi) = fl{, and Az; =x; — ;1
N From integrating the last constraint we get: (¢ = 1, ..., N)
B(w) = > (vi — fl@iw)’ = |y - Flmw)l; (41 (@ —2)° (@-=2i1)®
— i(z) = a;_ + a; + Bi(x —xz;_1) + C;
= fi(x) i1 AT YN i( i—1) i
Gauss-Newton Method: Equations to be solved: (: = 1,..., N — 1)
ri =y; — f(zi;w) (42) Ayiyr Ay
Of (245 w) Azja;_1+2(Az;+Aziqp1)a; +Azipia41 = Gf _GT
D;j(w) = Tow (43) Tit1 z;
wj This ends up as a Matrix Equation where we want to find the vector a:
T T
D(wg)” D(wg)z = D(wyg)” r(wg) (44) b1 ¢ O 0 d
a
Wiy = wg + 2 ag bo co 0 a; d;
Steepest Descent Method: 0 a3 bs 3 0 = =
T : :
z = D(wy)" r(wy), Wiyl =wi +Vz (45) . . . . . o d
0 0 0 an_1 bn_1 N-1 N-1

For i = 0 (ag) and i = N (apy) we need to use the special conditions!

We use M + 1 equidistant points in [z, z;41] (z, = x; + k h),
(k € [0, M]) and Lagrange Interpolations.
The Integrals:

M
1 T4
L~ a S oM pay), oM 7/ UM (pyde  (57)
k=0 g

Ay
M .
W@ = 11 = (58)
i=0 Tk — zi)
itk

Properties:
M _ ~M
¢ Cp =Chmyi

. szzoc,Q’f:1

Find an upper bound for our Integral. Eryle,; = Ii — Irule,s

o Rectangle Rule: Second Order Accurate

1 1 1
Br, = S @A+ o0 @) AT+ f (@) AT +0(AY)

e Midpoint Rule: Third Order Accurate

_ 1 " 3 5
Env, = if (Tip1/2)87 + O(A7) + ...
e Trapezoidal Rule: Third Order Accurate

ET,

k3

1 3 5
:*Ef (Tig1/2)A7 +O(A7) + ...
o Simpsons Rule: Fifth Order Accurate (Ig, = %IMi + %ITi)

Es,

7

1
- 7%%4)@ ~ 0(A;)°

A quantity of interest G is discretized by some grid spacing h: G =~ G(h)
For h — 0 we should obtain the exact value G.
Expanding with a Taylor Series we get: (with G(0) = G)

G(h) = G(0) 4+ c1h + cah? + ... (59)
Halving h gives us G(h/2):
G(h/z):c+%c1h+i@h2+.“ (60)
Subtracting the to equations gives us:
G1(h) = 2G(h/2) — G(h) = G+ chh? + hr3 + ... (61)

We increased the exponent of the leading error term, by just one subtraction.
General Case:

Gn(h) = (2"Gp—1(h/2) = Gpo1(h)) = G + O™ 1)

2n —1

Error Estimation:
e(h/2) = G(h/2) — G(h)

For small h the estimation is good.

Improve an inaccurate, but " cheap” method, and improve it by using Richard-
son Extrapolation: Ig, I, Ig, ....

We start by using the Trapezoidal Rule and improve it.

Resulting Integral: (Trapezoidal Rule)

(62)

k2
= AT, - I, 63
k= 11 (63)
Resulting Integral: (Simpsons Rule)
k+172
;o d tgn, Iy (64)
k 4k+1 1

O(h?)
Iy

O(h*) O(h®)

/ (Eq. %) \
\ 1 /
/ 1

Ial (EqQ. % %)

6 Adaptive Quadrature

The main idea is to only subdivide the interval non-uniformly.

12 I

Algorithm 3 Adaptive integration.
Steps:

Subdivide the interval of the integration into sub-intervals
for all sub-intervals do
Compute sub-integral, estimate the error with Richardson procedure described earlier.
if accuracy is worse than desired then
Subdivide the interval
else
Leave the interval untouched
end if
end for

Main Idea:

b
1= [T i@~ e fw0) (65)

We want to choose c¢; and z; to minimzie the error.
Method of undetermined coefficients: (only exact for a straight line)

1= [" f@yds = [ (a0 + ara)dz ~ e1f(@) + e2 (1)



pezoidal Rule).
2-point Gauss Quadrature:
Same as above, but with variable function evaluation points.

Integration and comparing the coefficients we get ¢; = co = b;a (Tra- W4 Monte Carlo

Until now we only looked at one dimensional functions. If we use functions

b
I = / f(z)dz =~ c1 f(z1) + caf(xa) (66) with an arbitrary dimension f : R 5 R I = fﬂ f(x(l), N 2(D) gz
. “ 2 3 Fubinis
with f(z) = ag + a1z + agz? + agz®. Ithegem/ f(x(l) a:(d))dz(d) Coda)
Solving it the same way as above we get: Q Qg ’ ’
b—a b—a —1 b+a N N, 78
(5 () > by ™
2 2 V3 2 Y wil»--wiNf(zgl>,~~-,15d))
+b—a f[(b—a)( 1 )+b+a] i1=1 =1 N— ——rt
. — =W .
2 2 V3 2 T tleetd
For higher order Gauss Quadrature, we need Hermite Interpolation and Le- yw — @@ | (2D) where G is the N X 1 dimensional weight vector as

gendre Polynomials.

Interpolate the values yj, and the derivatives of the data/function y;c.

;wcififed by section ??. In general, l € N;p X -+ X Ng

The error of that Integral will scale as follows:

n n
—s/d
f@) =37 U@k + > Vi(@)yp, (67) oM—%) (9
k=t k=1 with M = n?
U}, and V}, are polynomials of degree 2n — 1 with the following properties.

Up(xj) = 855, Up(zj) =0, Vi(z;) =0, Vi(z;)=3d;;
In Terms of the Lagragne Polynomial we get the follwoing functions:
2
Uk(@) = [1 = 2L} (zp) (@ — op)| LE (@) (68)

Vie(z) = (z — 23) LR (2) (69)

We move the interval [a, b] to [—1,1]. (z € [a,b] — z € [—1,1])
_ 2z —(a+b)

o (70)

z

We then get the following integral: (rearrange the above equation)

R e e O S R )

Approximating a general function f(x) with Hermite Polynomials we get:

1 n 1 il , 1
[r@ae= S u [ vient Yok [ i@ @)

1 n n
[ f@de = 3 wewe+ Y e v (3)
-1 k=1 k=1

with uy, = fll Uy (z)dz and vy, = fll Vi (z)dz = OVk
Resulting Integral: (uy, is tabulated)

n

1
1= [ f@de = 3 uif(er) (74)

k=1
2
(1 —23) (P}, (zx))?
In Practice we get: (z € [—1,1])

I=Lbf(z)dx%¥§wif<

w; is tabulated
Error with n abscissas:

ug (75)

b-a D4+b 76
G- n+) (1)

2211 (1)

_ (2n)
= G )



