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1 Systems Theory

1.1 System Dynai
111 Continuous Time
Nonlinear Time-Invariant Continuous Tlme State Space

& = g(xz,u) z€e€R™, ueR g :R" xR™ 5 R™
y € RP h:R™ xR™ — RP
LTI Continuous Time State Space
Linearization using Taylor Expansion around operating point:

of

y = h(z,u)

@)= f@)+ —=| (z—-2)
oz |z
Resulting system:
ACernXn BEeRN XM
. _ 9g ‘
T = du
0x T oy ug Ts,ug &= Az 4+ Bu
_ 8h,‘ S+ dh Su y = Cz + Du
v oz T Tg,Usg du T Tg,Ug
CERPXN DeRPXm
. ACt _ (Act)"
Solution: e e L
c
a(t) = AT 5 4 [f AT Beu(ryar
1.1.2 Discrete Time

Euler Discretization (T's = sampling time) (stability not guaranteed)

@ ZORT) 0 g (k) 1= 7€ (b+hTs), w(k) == u®(to+KTs
Nonlinear System:
w(k+1) = 2(k) + Ts (9°(x(k), u(k))) = g(x(k), u(k))
y(k) = he(z(k), u(k)) = h(z(k), u(k))
Linear System:

z(k+1)=A%(k)+B%u(k), A? =1+ T,A°, B¢ = T, B®

y(k)=C%% (k) + D%u(k), c%=c°, D% = D°
Exact Discretization (only for linear systems), (stability guaranteed)
Exact solution (u assumed constant over T’s)

z(tpy1) = eATs x(ty) + fOTS eA°(Ts=m) geqr u(tg)
= B=(Ac¢)—1l(Aa-1)Bc

We see the solution over k is then given by:

a(k+ N) = ANz(k) + SN ATBu(k + N — 1 —4)
1.2 Linear System Analysis
DT Stability (Lyapunov indirect method)
z(k + 1) = Ax(k) stable iff [A\;| < 1,V j — NL system stable
if [X\;| = 1 NL system no info, if |[A;| > 1 NL system unstable

LTI DT Controllability can reach =* from z(0) in n steps

c=[B A"=1B] = rank(C) £ n
DT Observability uniquely distinguish IC from output

o=[cT (car=HT]T = rank(0) £ n
Stabilizability iff all uncontrollable modes stable Ajg ={A 1< A}
if rank([A;I— A | B]) =n VAj; € A+ = (A, B) stabilizable
Detectablity |ff all unobservable modes stable AT = {2l 1< A}
if rank([A 7/\]'11\ c’ D=nvXj; GAA = (A, C) detect.
1.3 Nonlinear System Analysis
Lyapunov Stability (w.r.t eq. point & of a system)
Lyapunov Stable if for every € > 0 exists §(¢) s.t.
[|2(0) — Z|| < &(e) = |lz(k) —Z|| < e
Globally Asympt. Stable if Lyap. stable & Attractive
limy s o0 |2 (k) — 3| = 0 ¥ 2(0)
Lyapunov Function
Consider eq point Z = 0. V : R™ — R, continuous at origin, finite V z,
1) [lz|| & o0 = V(z) = oo
(2) V(0)=0, V(z)>0 vazeR™\{0}
() V(g(@) - V(z) < —afx) vz R
where o : R™ — R continuous pos. def.
Lyapunov Stability
If sys admits a V' (z) = @ = 0 is Globally Asympt. Stable
Caution if o pos. semidef = = = 0 is Globally Lyapunov Stable
Asympt. Stable in pos invar set @ C R™ if Lyap. stable and attactive
llm [lz(k) — xH =0 vz(0) e

Globally Asympt. Stable if asympt. stable & Q = R™
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Linear Quadratic Optimal Control
Prohlem Definition

1((0),U) i= oy Pen + S N5 (@] Qus + ul Rus)
subj. to x; 41 = Az, + Bui, zg = z(0)
e N :horizonlength o Q >0, Q= QT e (0): current state

e P-0, P=P' ¢ R+ 0, R=R' ® x;, u;: opt. variable
211 Batch Approach
Idea explicitly represent ©; € R™ through 2o & u; € R™
I 0 .0 wo
o A B . 0 uq
= z(0) +
. . : 0 X
TN AN AN-1p B lun_1

Equivalent to S* € R(N+1)7LX", s* ¢ RIN+LnXNm

X = 8%2(0) + S"U — J(z(0),U) = XT@x + UTRU
Cost:

Q := blockdiag(Q, ..., Q, P) & R := blockdiag(R, ..., R)
Solve by setting gradient to zero: 2HU* + FTSL‘(O) =0
Optimal Input: H = (S*)T QS* + R, F = (8%) ' Q8"

U*(2(0)) = —((8*)T@SY + R) "1 (s*) T Q5% 2(0)
Optimal Cost

— — — —\ —1 —_—

J* = a(0)7[S] @Sz — S]QSu (S, QSu +R) ™ S, QSa]w(0)
2.1.2 Recursive Approach

Idea: Recursively compute optimal input u’f and optimal cost J’f

(z(])) = manJ‘)N zNPzN + 217 (ZTQZ'L + uTRu7)

P = , F' < f(P), Control input, P +— f(F), Cost calculation, repeat
Optlmal Control Pollcy
*

uwl=—(B"P; 1B+ R)"'BTPi 1A 2(i) = Fz;
Optimal Cost-To-Go J (z;) = @; P;x;
RDE - Riccati Difference Equation (PN = P)
Pi=A"P 1A+Q—AT P, 1B(B' P, 1 B+R)"?
Numerically Safer Alternative
Pi = Q+ F, RF; + (A+ BF;) P(A+ BF;)
213 Comparison - Batch vs. Recursive
e Batch - sequence of numeric values U*
o Recursive — feedback policies u
e Control actions identical if perfect model
e Disturbances — Recursive more robust to disturbances
o Computational efficiency
— Recursive more efficient for large N
— Matrix inversion in Batch appréach expensive
e Constraints — Neither works with constraints on z; or u;
e Batch Approach easier to adapt when contraints are present
constrained minimization (solving for J; 1 with constraints) hard
2.2 Receding Horizon Control
Compute optimal control policy for N steps, apply only first step, then re-
compute

U*

B'P 1A

:= argmin zNPzN+Z -0 ITQ11+u Ru;

subj. to z; 41 = Az; + Bu; = U*
e Extract first input in sequence: U* = {uf, ..., ujy_1} = uf
® Introduce feedback to sys: z(k + 1) = Az(k) + Bu(k) = =
Why Reoptimize Provides robustness to noise / modeling errors,
Sol’n at k subopt. (finite horizon) ~~ reopt. potentially better performance
2.3 Infinite Horizon Control LQR
Solve LQOC for N — oo

Joo (2(0)) = muin 2o x;r Qx; + u;r Ru;

subj. to x; 41 = Ax; + Bug, zg = x(0)
As with recursive approach it must hold:
uw*(k) = —(B' Ps B+ R) " 'BT Poo A - a(k) i= Foou(k)

with infinite cost to go: Joo (ac(k;) = a:(k:)TPoo:c(k)
Algebraic Riccati Equation (ARE) to find Po:

Poo =ATPouA+Q— AT PooB(B' PooB+ R) " 'BT Poo A
LQR Lyapunov Function
If (A, B) stabilizable, (Q'/2, A) detectable ~ J*(z) = x| Poox is
Lyap. func. for system T = (A + BFoo)x
Choice of P in Finite Horizon Control

e Can choose to match co-Horizon sol'n ~» Make P ~ Jn _, oo with ARE
o Can Choose P assuming no control action after end of horizon
This P determined from solving Lyap eqn ATPA +Q=P
Only makes sense if system asympt. stable
o Assume we want state and input both to be O at end of horizon ~~ no P
but extra constraint z;, y = 0

3 1 Problem Formulation

mingedom(f) f(=) subj. to g;(x) <0

hi(z) =0 i=1,...
. X {z € dom(f) | g; < 0,h; =0 } feasible set
; : ineq constraints, h; : eq contraints
FeaSIblllty Point = satlsfles gL < 0, h; = 0 & eq contraints
Optimal Value lowest cost p* = f(z*) = mingex f(z)
Strictly Feasible Point x satisfies g; < 0
Optimizer smallest p* € X: argmin, ¢ y f(z):={z€X|f(z)=p"}
Caution NOT always unique
Active Contraints: when ineq const. are eq ~~ “active”
Locally Optimal: y € X, ||y — z|| < R = f(y) > f(z)
Unbounded Below p* = —oco, Unconstrained X = R"™
Redundant Contraints do not change feasible set
Globally Optimal: y € X = f(y) > f(x)
Infeasible p* = co < X = {}
3 Convex Sets
Definition Set X is convex iff for any pair of points  and y in X:
A+ (1—-XNyeXx viel[o,1], Vz,y€ X
Interpretation: All lines starting in X stay within X
Convex Combination:
x =011 4+ 0220 + ...

1=1,...,m

» P

+ Opzp, withy; 0; =1,0; >0

Hyperplane
{zeR™

Halfspace
{zeR™ | uTzﬁb}

open: <, closed: <

| aTz:b}

A hyperplane
Polyhedron : N
P::{z|a;z§bi,i:...} p
= {z | Az < b} ‘ .
Polytope: - |

bounded Polyhedron An (unbounded) polyhedron

Intersection of Polytopes in inequality form:

A polytope

gl

<

{w\Abe}ﬁ{x\Cde}:{x\[é]x

Ellipsoid

{zl(z—xe) T AT (@ —xe) < 1}

x . : center of ellipsoid
R
Norm Ball {z | [lz—zc|| <7} =1y
o p = 2 Euclidean Norm ||z||2 = ,/Ziz? (=1
-
e p =1 Sum of Absolute ||z||1 = >, |z;] x
e p = oo Largest Absolute

Intersection [ of two convex sets is convex itself
Union L_éof two convex sets is NOT convex in general

- onvex Functions
Definition A function f : D — R is convex if and only if its domain
D = dom(f) is a convex set and

fAz+ (1= Ny) < Af(z) + (1 =N f(y), Vo, y € D, X €[0,1]
f : D — Ris strictly convex if the inequality is strict.
f is concave if — f is convex.
First order condition . . . .
A differentiable function f : D — R with a convex domain D is convex if
and only if

fW) > f@) + Vi@ (y—x), veyeD
Gradient is given by: V f(z) = {8“?) RN %(:)}T

Second order condition
A twice-differentiable function f : D — R with a convex domain D is
convex if and only if

52
V(@) 20, Ve €D, V2f(x)i; = folier
Strictly convex if V2 f(z) > 0.
Examples
Convex Concave

Affine ax + b for any a, beR Affine ax + b for any a, b € R

Exp. e*® forany A € R Powers =%, = eERy 4, for 0<a<1
Powers %, z €Ry 1, @>1, <0 Log log = on domain R+

Vector norms on R™: L Entropy —x log x on domain Ry |
lzll, = (i 12P) /P vp > 1

Convextiy Preserving Operations

- Nonnegative weighted sum: f(x) = 37", 0;f;(x), 6; > 0

- Composition with an affine mapping: f(x (Az + b)

- Pointwise maximum: f(x) = max{f1(z), ..., fm(z)}
- Partial minimization: f(z,y) = min, g(z, y, z)

Level and sublevel sets

Levelset
Definition The level set L, of a function f : D — R is the set of points in
the domain D which f(z) = a.

Lo ={z€D]| f(z) =a}
For f : R2 — R, these are contour lines of constant height.
Sublevelset i . i
Definition The sublevel set C, of a function f : D — R is the set of points
in the domain D which f(z) < a.

Co={xeD| f(z) < a}
IFI
3.

is convex, then C, is convex for all a.
Convex Optimization Problem
A convex optimization problem in standard form:

ming e dom(f) f(z), subj. to g;(z) <0 i=1,...,m
T .
hi(z) =a; € =b; i=1,...,p
f, g; are convex, h; are affine.
Affine constraints are typically written in matrix form as Az = b.

Important Property: Feasible set of a convex optimization problem is convex.
Local and Global Optimality: For a convex optimization problem, any local
optimal solution is also a global optimal solution.

Equivalent Optimization Problems

Two problems are called equivalent if the solution from one can be inferred
easily from the solution of the other.

Example: ming f(Aoxz+b) subj. to g;(A;xz+b;) <0,i=1,...,m

is equal to

;n;'! f(yo) subj.tog;(y;) <0, Ajxz+b;=y;, i=0,...,m
'Yiq

341 Linear Program

Problem Solutions N
min cTac Case 1: LP unbounded: p* = —oco
z€ER™ Case 2: Bounded and unique

subj. to Gz < h, Az =1b
3.4.2 Quadratic Program
Problem — solution is unique

Case 3: LP bounded but not unique

1
min —x Hz+q x4+ 7T
T ER™ 2

subj.to Gz < h, Az =10

r not needed (does not change optimal x), Convex if H > 0
Case 1: optimizer lies strictly inside the feasible polyhedron
Case 2: optimizer lies on the boundary of the feasible polyhedron

3.5 Optimality Conditions
3.5.1 Lagrang Dual Problem
Lagrangian Function
Lz, A, v) = f(2) + 7y Aigie) + S7_; vihi(z)
Lagrange Dual Function (concave)
d(X,v) = inf
xzedom(f)

inf = infimum, the greatest lower bound of a set.

L(z, A\, v) < p*

Primal and Dual Problem
min, x
= (=) max,, x d(v, \)

P): subj.to g;(z) <0 D) :
(P) J- to gi(z) < (D) cubj. to A > 0
hi(z) =0
e d()\,v) always concave e (D) convex even if (P) not

e d* < p* ~ d(\v) gens
lower bound for p

LP — Dual
(P) : ming cgn cla

e Point (XA, v) dual feas. if A > 0,
(X, v) € dom(d)

subj. to Az = b,
T>\7

Cz <e
(D):maX)\YV—bT stATv4+CTA4e¢=0,A>0
QP - Dual with Q > 0
(P) :mingecpn %xTQa: +cla,
(D) :maxy , 1ATCQTICTA+(CQ  ete) A+ S

A>0

v—e

subj. to Cz < e
CTQ_lc
subj. to
QP - Lagrangian
min %ETHz+qu+r L:%CCTHQC"’QTCCJ"T
z
+ AT ( Gz —h)+v T (Az —b)

Vel =Ho4+q+G A+A v

st Gz < h
Az =1b

Weak & Strong Duality

Weak Duality — it is always true that d* < p*
Stront Duality - it is sometimes true that d* = p
e Strong duality usually does not hold for non-convex problems
e Can impose conditions on convex prob. to guarantee d* = p*
o Sometimes the dual much easier to solve than the primal

o LP always has strong duality

*



3.5.2 Slater Condition
If 3 at least one strictly feasible point i.e

{z | Az =1b,g;(z) <O Vi} #0 = p* =d*

3.5.3 KKT Conditions
(1) Primal Feasibility

gi(z*)<0,i=1...m hi(z*)=0,i=1...p
£2; Dual feasibility A\* > 0
3) Complementary Slackness

Afgi(z*) =0 i=1...m
(4) Stationarity

VL =Vf(z* )+Z>\ Vgi(z )+Zu Vhi(z*) =0

i=1 i=1

General Optimization Necessary condition
KK * A, v* sol'n to (P), (D) with 0 duality gap = a*, A\*, v* satisfy

Convex Optimization Sufficient conditi
¥, \*, v* satisfy KKT = o

gap
Convex Opt. + Slater, Necessary & Sufficient condition

If Slater’s cond. holds, z*, A*, v*

Remark for convex opt. problem, KKT conditions sufficent ~ if z*,

satisfy KKT then p* = d*

4 CFTOC

Constrained Flnlte Time Optimal Control

¥, A%, v* sol'n to (P), (D) with 0 duality

are sol'n to (P), (D) IFF KKT satisfied

A* u*

T (z(k)) = min lp(xy) + i U@y ug)
subj. to x; 41 = Ax; + Bu;
r; €X, wu; €U
zN € Xy, xo = z(k)

o Quad. Cost / Squared Euclidian Norm:

J(z(k)) = z;PzN + Zf\i?)l z;erl + u; Ru;

o p-Norm: J(x(k)) = |[Pay|lp + SN
4.1 Transform CFTOC to QP

QP Problem

Goal — Rewrite Quad. Cost CF-
TOC as QP

~~ easier to solve

411
Idea — Sub. state eqns z; 1 = Az; + Bug,
Cost — Rewrite as (see Batch Approach for H

J*(z(k)) = mUin [UT

z€R

subj. to GU < w + Exz(k)
Constraints — Rewrite as GU < w + Exz(k)

subj. to Gz < h,
Construction with Substitution, dense (good for large n)
zg = z(k)

o Q@ + |

and F)

w7 [HE] ] [UT

[Rui|lp

m1n —zTHz+qu+r

Az =10

e(k)T] T

X={o|Ao<bs} U={ulAyu<by} X;={a|A;c<bs}

Ay
Ay
G= AlB o |.E=
Az AB AgzB 0O
ApAN-1p AsB

Solution For a given z(k), U*
4.1.2
Idea — Keep state eqns as eq. constraints

Cost with z = [:cir . acN “0

0
0

7A3')

—AgA |

N
—AfA

can be found via QP solver
Construction without Substitution, sparse (good for large N)

.
T
‘UN—l}

bu
bu
ba
by

w =

by

T k) = min [=T o) T [H 9] [T z(k)T]T

subj. to Ginz < win + Einz(k)
Geqz = Eeqa(k)
H = diag(Q,...,Q,P,R,..., R)

Equality Constraints from System Dyn. z;11 = Ax; + Bu;

Geg

1
—A 1
—A I

Inequality Constraints

—B
-5 73]  Beq

|

A
0
0

X={z|Azx<by} U={ulAyu<by} Xy={z|Ajz<by}

0 0
Ag 0
Ay 0
Gin = Af
A
0 u
0 Ay
0
<
Ein = [-aT 0, 0]

s Win =

4.1.3 QP Feedback Solution
CFTOC problem as multiparametric QP

T (@) = min [UT ) 7] [2 5] ] CAECHE

subj. to GU < w + Exz(k)
Solution Properties
e First component of optimal solution:

ug = r(z(k)), Vez(k) € Xy

k : R™ — R™ is cont. and pw. affine on Polyhedra
k(z)=Fla+g’ if z€CR, j=1,...,N"
e Polyhedral sets CR7 = {z ER™ | Hig < Kj} ,j=1,...,N"
are partition of the feasible polyhedron X.
e Value func. J* (z(k)) is convex and pw quad. on polyhedra.
4.1.4 Transform p-norm CFTOC to LP
£ 5o -Minimization
min ||z min t
Bl iy
subj. to Fxz < g subj.to — 1t <z <1t, Fxe <g
—1t < z < 1t bounds abs value of every elem. with scalar ¢
£1-Minimization
min ||z||1 min 1’
xzER™ T ER™ tER™
subj. to Fz < g subj.to —t <z <t, Fr<g

ey =S gle;l < Syt =10t ~» —t<e<t
bounds abs value of each component of x with a component of ¢
4.1.5 Consturction of co-norm

Cost (with substitution)

o N-1_a , .u
min en + 3257 € T &

subj. to — 1pe; < +Q [A 10+Z AjBui,l,j}

—1,.¢% < £P [A w0+ SN} AJ’BuN,l,j]
— 1me; < Ruy
zi € X, uy EU, Ty € Xy, zo = z(k)

Substitution: z := {€{f ... €%, € - .- e}t\fil,ug .. 4uE71} € R®

s:= (m+ 1)N + N + 1 results in:
subj. to Gz < w + Sx(k)

5§ %) s-[s]. o=

Solution for given z(k), U* can be optained via LP solver
4.1.6 LP State Feedback Solution

Multiparam-LP

Properties

-First component of sol'n has form: ufy = x(z(0)), Vz(k) € Xo

k : R™ — R™ is cont. & pw affine on Polyhedra

k(z) = Flo+ g’ ife € CRI, j=1, ,N"

-Polyhedral sets CR7 = {z € R™ | Hig < KJ} are partition of X
-In case of multiple optimizers, a pw affine control law exists
-J*(2(0)) is convex, pw linear on polyhedra

Quad vs 1/oco-norm cost

Solution is either (n = # opt. var., FS = feas. set. )

Quadratic Cost Linear Cost

-unique & in interior of FS (no -Unbounded

constraints active) -unique at vertex of FS (at least n active cons-
-unique & on boundary of FS traints)

(at least 1 const. active) -multiple optima (min. 1 active const.)

5 MPC vs Classical Controll
5.1 Difference to Classical Control
Classical Control main issues:
Distrubance rejections
Noise insensitivity

. T
min ¢z
z

G =

min, ¢ z subj. to Gz < w + Sz (k)

MPCT main issues:
Control constraints (input limits)
Process/state constraints
Model uncertainty (saftey and physical constraints)
Usually in frequency domain Usually in time domain
MPC can better handle constraints as they are implemented into the control
scheme. Classical controllers usually us ad hoc constraint management or
suboptimal operation.
5.2 Advantages & Challenges
Advantages:
e Systematic and propper handling of constraints
o High performance controller
Challenges:
Implementation: — real-time solving is challenging
Feasibility: Oprimization problem may become infeasible in the future
Stability: Closed-loop stability is not automatically guaranteed
Robustness: Closed-loop system is not nessecarily robust against uncer-
tainties or disturbances

7~ MPC Formulation

System

Autonomous z(k + 1) = g(z(k))
Closed-Loop z(k + 1) = g(xz(k), x(x(k))) for given K

Positively Invariant Set (Minkowski sum of invariant sets is also invariant)

Set O positively invariant for autonomous system if
z(k) e O=>ax(k+1) €O, vke{0,1,...}

Maximal Positively Invariant Set

Osc C X positively invariant and
contains all other O

Initialize: Q¢ + X
Do: Q;41 < pre(Q2;) N Q;
Until: Q511 = Q; = Oco = Q;

Pre-Set
Given set S, the pre-set of S is the set of states that evolve into S in 1 k:
z(k + 1) = g(z(k)) z(k + 1) = Az(k)
=pre(S) := {z | g(z) € S} | =pre(S) :={z | Az € S}

Pre-Set Computation Linear System

Set S:={z | Fe < f}, o(k + 1) = Axz(k) then
pre(S) :={z | Az € S} = {z | FAz < f}

e For {z | Fx < f},if F | or f 1 ~~ Less Restrictive

® SN F ~- constraints from both sets active

Invariant Set Conditions
Given set S, the pre-set of S is the set of states that evolve into S in one
time step. Set O is positively invariant set iff
O Cpre(0) & pre(0O)NO =0
Necessary if O ¢ pre(O), then 32 € O st & ¢ pre(0) ~ = €
O, g(z) ¢ (O), thus O not positively invariant
Sufficient |f O not pos invar set, then 32 € O st g(z) ¢ O
~ T € O,z ¢ pre(O) thus O ¢ pre(O)

Control Invariance

6.1

Control Invariant Set
Set C C X control invariant if

z(k)€C = Ju(k) €U st g(z(k),u(k)) € C vk e NT

Maximal Control Invariant Set

Set Coo maximal control invariant if it is control invariant and contains all
control invariant sets contained in X’

For all states in Coo, there exists control law s.t system constraints never
violated ~» The best any controller could ever do

Pre-Set pre(S) := {z | Ju € U s.t g(xz,u) € S}

Control Invariant Set = Control Law

Let C be the control invariant set for z(k + 1) = g(z(k), u(k))

The control law k(x(k)) will guarantee that the system satisfies cons-
traints Vt if g(z,k(z)) € C Vo € C ~» With f as any function,
synthesize control law k: k(z) := argmin{ f(z,u) | g(z,u) € C}

o Does not ensure sys. will converge, but will satisfy constraints

o Don't often do because calculating control invariant sets is very hard

o MPC implicitly describes cont. invar. set s.t easy to represent/compute
6.2 Practical Invariant Set Computation

Minkowski-Weyl Theorem

For P C R4 following statements equivalent:
e P polytope, 3A,bst P = {z | Az < b}
e P finitely generated, 3 finite set of {v;} st P = co({vy ...

6.2.1 Invariant Sets from Lyapunov Functions

Lemma If V :R™ — R a Lyap. func. for sys. z(k + 1) = g(x(k)), then

Y : V(z < «a} is an invariant set for all « > 0

Proof: V(g(a:)) ~V(x) < 0~ once V(z(k)) < a, stays there vV j > k

6.2.2 Maximum Ellipsoidal Invariant Sets

For o(k + 1) = Az(k) with P > 0 with AT PA — P < 0 then

V(z(k)) = z(k) | Pa(k) is Lyap. function. Find largest as.tset Yo € X

Ya.—{z\zTPz<a}CX—{z\Fz f}

Equivalent to maxg @ subj. to hy, (F3) < f; Vi€ {l...n}

Support of an ellipse: hy, (F;) = maxg Fyz subj. to z Prx < o

F; and f; are the rows of the polytopic description of X and U

Change of Variables: y := pl/2,

~ hy, (F;) = maxg F; P~1/2y

Maximizer found by inspection:

—1/2 p—t/2pT p—1/2pT
m\/a =l Ve

ellipse now 1-dim optimization problem:

maxq @ S.t. |\P71/2Fi-rH2a < fl2 vie {l...n}

2

vs})

styly < Va?

hy, (Fi) = F; P

Largest

*
a* =

min; P w—
e{1... — T
i€f n} F; P 1F1‘

System: z(k + 1) = Az(k) + Bu(k), (k) € R™, u(k) € R™
Control Law is defined by: v = u* (0)

*(@(k) =ming L (en) + S0 Ui, wi)
Az; + Bu;

u; €U

subj. to z; 41 =
T; € X,
TN € Xy, x9 = z(k)
Assumptions that need to be met:

1 Sta e cost pos def, strictly positive, only 0 at origin
erminal set invariant under local control law Ky (X):

i+1 = Az; + Bryg(x;)
(b) AII state and input cohstraints satisfied in X'y
3. Terminal cost is cont. Lyap. func. in terminal set X'y and satisfies

lp(wiqr) —lp(zg) < =z, kp(w)) Vg € Xy
If 1-3 are met: CL system under MPC control law ué (a) asympt. stable and
set Xy is positive invariant for system x(k + 1) = Ax(k) + Bug(z(k))
Often Quadratic Cost:

. N—-1
T (z(k)) = mmz}C,PzN >ico
subj. to x;41 = Az; + Bu;
Tz, €EX, u; €U,

T T
z; Qr; +u; Ru;

TN € Xy, z0 = z(k)
Q=Q" =0,R=R" =0
For 3. this implies: A,; = A+ BK
AT PAy — P < -Q(-KTRK),
7.1 Loss Of Feasibility & Stability
Infinite-Horizon Solve RHC for N = oo, OL traj. are same as CL traj.
e |If problem feasible, CL trajectories always feasible
e If cost finite, states and inputs will converge asympt. to origin
Finite-Horizon RHC “short-sighted” approximating co-horizon controller
o Feasibility — after some steps finite horizon optimal control problem may
become infeasible (disturbances, model mismatch)
e Stability — generated inputs may not lead to traj. that converge to orgin
Solutlon Introduce terminal cost & constraints to ensure feas. & stab.
Feasibility & Stability Guarantees
Proof Strategy
Recursive Feasibility show existence of feasible control sequence for all time
when starting from feasible initial point
o Assume feas. of x(k), {uy,...,upn_1} {z5, -, zN}
* At z(k+1) = «_{uf, cees re(zi)} should be feas.
Stability show that optimal cost is Lyapunov function
® [l necessary to provide cost decrease for asympt. stability
Terminal Constraint At Zero )y € X5 = 0
If at 0 and no input is given system stays there ~» stable and feasibly point.
need large N to approximate maximum control invariant set
General Terminal Set X
Need assumptions 1-3 for stability guarantees. Cost decrease proof:

J(xtk+1) < T¥

AT pPB,-P=o0

HGg ) + l(xN,uN = Kf(xN)) + U (Axyy + B (xy) )

[ S i
cost of propagated state

stage cost at k+1
= ZE G, u) — 106, ug) + Uk, ke () + U (Axiy + Bier ()
70—t
= 1 (x(0)) = 1eCk), u3) + 1oxi ey (i) + 1y (A + Brp (i) = 1 Ge)
subtract cost

at stage k>0
= J*(x) is a Lyap. function & the CL system under the MPC control law is AS.

Terminal Set & Cost — LQR
e Choose P = Py from (D)ARE
e Choose Xy to be max. invar. set for CL system (A + BFoo )z

~~ ellipsoidal inv. set with Lyap.
o All z, u constraints satisfied in Xf

<0 by assumption of Lyap func.in terminal set X¢

All assumptions of Feasibility & Stability Theorem Satisfied

Useful Properties

-X1, Xo convexinvar. for Az(k) ~ aX1®(l—a)XginvarVa €

X1 CX, X2CX, X;, X convex »aX1®(1l-a) X CX Vae
“Vi(z(k)) = x| (k)P;z(k) lyap. func. for z(k 4+ 1) = Axz(k), rate of
decrease z | (k)Tx(k) ~ V(z(k)) = aVi(z(k)) + (1 — a)Va(z(k))
also lyap. func. with rate of decrease @ | (k)T'z(k) for all a € [0,1]

7.21 Feasibility & Stability Remarks

e Terminal constraint provides a Suffiecient Condition for feas. & stab.

® Region of attraction w/o term. const. may be larger than with term. const.
e In practice: enlarge horizon and check stability by sampling. As N 1, region
of attraction appraoches max. control invariant set

CL traj. may not follow assumptions made for OL predictions

oo-Horizon LQR controller locally optimal ~ best choice for quad. cost
oco-Horizon provides stab. and invariance. Finite-Horizon MPC may not
be stable & may not satisfy constraints v time

Extension to Nonlinearity

Assumptions on terminal set/cost did not rely on linearity

Lyapunov stability is general framework (works for NL sys)

Results can be directly extended to NL systems

However, computing sets X'y and function [ ¢ can be very difficult




8 Practical MPC
8.1 MPC Reference Tracking
—B xs| _ |0
0 us| |7

8.1.1 Steady-State Target Tracking
Target Condition
N
(ng+nr)X(ng+ny)
In presence of constraints, (s, us) must satisfy them
In case of multiple feas. ug, compute ‘cheapest’
min u:RSuS, subj. to [Target Condition],zs € X,us € U

In general, asssume target problem is feasible
If no sol’'n 3: compute reachable point ‘closest’ to r

min(Hzs — T)TQS(HIS —r), subj.toxzs = Azs + Bug

8.1.2 Referenece Tracking
MPC Design

minl|2y — Hao|[B, + 5

Azs + Bug

Hzg =1

Ts

I—A
H

Zs

Tz — Hasl1g, + lw — sl

subj. to [model, constraints], zg = z(k)
Delta Formulation
Coord.Trans.
Set pt. trackihng ———————— Regulation Problem
Az =z — x5 | GeAx < hy — Grxs
Au GulAu < hy — Guus
e Obtain target steady-state corresponding to reference
e Initial state Az (k) = (k) — x¢
o Apply reg problem to new system in A-Formulation

min [Vf(AzN) + 21_1 AZTQAZ.L + AuTRAuJ

=U — Usg

subj. to Az; 1 = AAz; + BAuy,

GuAu; < hy — Guus,

e Find optimal sequence of AU*

e Input applied to system ufj = Auf + ug
Convergence

Assume target feasible with z3 € X,us € U, choose terminal weight
V() and constraint X'y as in regulation case satisfying
e Xy CX, KxeU Vz € Xy

o Vi(z(k+ 1)) — Vi(z(k)) < —U(z(k), Kz(k))

If in addition the target reference x5, us is such that

® ;b Xy CX, KAz+us €U, VAIEXf
then CL system converges to target reference

GgpAz; < hg — Ggzs

Azn € Xy, Azg = Ax(k)

vz € Xy

(k) — w5, 2(k) = Ho(k) 222 ¢

Proof
e Invariance under local ctrol law inherited from regulation case
o Constraint satisfaction provided by extra conditions
-z @X CX ST EXVAEX
- KAz + ug GMVAIEXf%uGM
k— oo

— Fron asympt stability of the regulation problem: Az (k) ——— 0
Terminal Set

e Set of feasible targets may be significantly reduced.
o Enlarge set of feasible targets by scaling terminal set for regulation
scaled _

Xf = aXy

® Invariance maintained if X'y invariant ~ so is a Xy

o Choose v s.t. =, u constraints still satisfied ~» scaling target dependent

o Targets at the boundary of the constraints: zy = x4, correspons to
O-terminal set in regulation case

8.2 Disturbance Rejection

Augmented Model

Tp41 = Az + Buy + Bgdy
yi = Czp + Cqdg
,quD Loy tny

c oy
] = [yﬂs } and given y, ds must

dgy1 = dj,
Observability of aug. system: rank ([

A-1By
c Cd][

Ts

Inuition At steady-state [ de

be uniquely defined
Linear State Estimation
Observer For Augmented Model:

ot =8 ) ]+ (5]
+[F2] o +cam - cadenn
Error Dynamics = cho?se L s.t error dynamics asympt. staE)Ie
e -1 B

- {fz] (Cé(k) + Cygd(k) — Ca(k) — Cyd(k))

([ %]+ [tz o) [ 50)

Observer Steady-State
Suppose observer asympt. stable and ny = ng4

A—1 B][#cc] _ [ —Bgdeg
c 0] [uoo Yoo — Cadoo
~~» Observer output CZ oo + Cd(ioc tracks Yoo without offset
Offset-Free Tracking

Goal Track constant r: z(k) = Hy(k) — 7 as k — oo
Steady-State Condition

x5 = Azs + Bus 4+ Bgdoo, 2s = H(Czs + Cgdeo) =1

e Best forecast for doo is current estimate doc =d
o Same Procedure for regulation case with r = 0
. os — I T —Bgyd
Offset-Free Tracking Condition: S| = e
set-Free Tracking Condition [HC [ug] [r— HCdd}
Offset-Free Tracking Procedure

1. Estimate # & d .
Obtain (z s, us) from steady-state tgt problem using d

3. Solve MPC problem for tracking usingd, T; = x; —Tg, U = U; —Ug
minVy (Zxn) + TG E) T Q@) + (@) T R(a;)
subj. to x; 41 = Az; + Bu; + Bgd;, d;11 =d;

x; €X, u; €U, mo =(k), do=d(k),

Offset-Free Tracking: Main Result
With g = w(&(k), d(k), ). Assuming ng
sable and unconstrained for k > j, j € NT and the CL system:
o(k + 1) = Az(k) + Br(a(k), d(k), ) + Bad
#(k+1) = (A+ Lz O)2(k) + (Ba + L2 Ca)d(k)
+ Br(#(k), d(k), ) — Lyy(k)
d(k 4+ 1) = LgC&(k) + (I+ LaCq)d(k) — Lay(k)

Ty —xTs € X

ny, RHC recursively fea-

converging, i.e. ((&, d) koo, (Too, doo))

Then z(k) = Hy(k) 222,

8.3 Enlarging Feasible Set

8.3.1 No Terminal Set

Motivation Terminal constraints reduce feasible set, Stability guarantees can

add large number of constraints and adds state constraints to problems with

only input constraints.

Goal MPC without terminal constraints with guaranteed stability

Note Feasible set without terminal constraint not invariant

MPC Without Terminal Set

Can remove terminal constraint while maintaining stability if

e |Initial state lies in sufficiently small subset of feasible set

o N sufficiently large

s.t term. state satisfies term. const. without envorcining it in the optimizati-

on. ~» Sol'n of finite-horizon MPC problem corresponds to co-horizon sol'n

Advantage — Controller defined in larger feasible set

Disadvantage — Characterization of region of attaction of specification of

required horizon length extremely difficult

e Term constraint provides sufficient condition for stab: Region of attraction
without term constraint may be larger than with

e In practice: Enlarge horizon and check stability by sampling

e N 1 ~» RoA approachees max control invar. set

8.3.2 Soft constraints

Motivation Input constraints usually ‘hard’ due to physical limits, state cons-

traints rarely ‘hard’ (more safety and comfort reasons)

Goal Min size & duration of violation (usually conflict!)

MPC Problem Setup

muinz;PzN +le(en) + Zf\;gl IETQIE7 + ’U,TR’Uq + le(eq)

sit. @, = Aw; + Bu;, Hewy < kate€;, Hyu; < ku,

Requirement on l¢
Original Problem “Softened” Problem

mzin f(z) stg(z) <0 mzin f(z)+le(e) stg(z)<e €>0
If original problem has feasible solution z*, Softened problem should have
same solution z*, and e=0.
Note lc(¢;) = se does not fulfill requirement
Choice of Penalty
® Quad. Penalty [ (€;) = €; T Se; (eg S=Q)
e Quad. + Linear Penalty lE(ET,) = ei Se; + vlleill1 /00
Exact Penalty Function

le(e) = v - € satisfies requirement for any v > A* > 0, where A\* is
optimal Lagrange multiplier for original problem.
In practice combined cost — exact penalty and tuning capabilities
le(e) =v-e+ ¢! Se
with v > A* and S > 0.
Tumng
e Increasing S leads to hardeing of constraints — reduced violation size but
longer duration

Increasing v leads to constraint satisfaction if possible — larger but shorter
violation

€e; >0

Objective Seperation

1. Minimize violation over horizon:

emin — argmin, . >;0 71 TSE7 +ol
st xip1 = Az + BuiHij < kg + €5
Hyu; < ku, € 20

2. Optimize Controller performance
. T _

min, z 5Py + Zf\rzol z;r Qz; + u;r Ru;
st 41 = Az + Buy, Hgz; < kg + ei-ni", Hyu; < ky

Simplifies tuning and constraint satisfied if possible, but two optimization
problems have to be solved.
Note SC MPC does not provide stability guarantee for OL unstable sys.

9 Robust MPC for Linear Systems
9.1 Robust Open-Loop MPC
9.1.1 Uncertainty Models
Motivation: Random noise w influences system evolution, Model structure is
unknown, Unknown parameters 6 impact dynamics.
Uncertain Constrained System
z(k + 1) = g(z(k), u(k), w(k); 0),
z,u,w,0 € X, U, W, O

9.1.2 Robust Invariance

Robust Positive Invariant Set

Set O™ said to be robust positive invariant for the autonomous system
ek +1) = g(a(k), w(k)) if
x € oW = g(z,w) € oW

, YVweW, Vk

Robust Pre Set
Given set  and dynamic system z(k + 1) = g(x(k), w(k)),
pre(Q) := {z | g(z, w) € 2 Vw € W}

Maximal Robust Positively Invariant Set

OLX C X positively invariant and contains all other owW.
Calculation using the algorithm for the nominal case.

Computing Robust Pre-Sets for Linear Systems
System Az (k) + w(k), set Q := {z | Fz < f}
w
Q) = FAx < f — F
@) ={e| FAz < f — max Fuw}

—{o| FAz < f — hyyi (F)}
hyy is the support function

Robust Invariant Set Conditions

Set O™V is a robust positive invariant set iff

oW C preW(OW) < preW(OW) noW =o"W

9.1.3 Impact of Additive Bounded Noise
Additive Bounded Noise System:
z(k + 1) = Az(k) + Bu(k) + w(k),
T, u,w € X, U,W
Uncertain State Evolution:
é; = Alwg + Zhl AIBu;_1_j+ 2171 Alw;_y_;

= Nominal System Disturbance Offset

T; =

Robust Open-Loop MPC
Robust Open-Loop MPC

mmlf(JuN)JrZ ol Uwisug)
subj. to z;11 = Ax; + Bu;

z; € X © (D]

j=

%)Aj\/\/)7 u; €U

w0 =a(k), N € X6 (@Y ATW)

where Xy C X robust positive invariant set for system (A+ BK)xz(k)+
w (k) with w € W V k for some stabilizing K, and Kz € U Yz € Xy

Intuition Nominal MPC, but with tigher state constraints

Open-Loop: Not accounting for FB during solving, just plan ahead for w
Caution: )

Unstable systems Aty grows — use ‘pre-stabilization’ u; = Ka; +u;
Potentially very small region of attraction, particularly for unstable sys
9.1.4 Robust Constrained Control

Goals: Design u(k) = r(z(k)) such that the system
a) Satisfies constraints: {z(k)} C X, {u(k)} C U for all disturbances

b) Is Stable: converges to a nelghborhood of the origin
c) Optimizes (expected/worst-case) ‘Performance’
d) Maximizes Set {z(0) | Condition 1-3 met}

(a) Robust Constraint Satisfaction
Ensure all states ¢; (g, U, W) satlsfy system constraints X:
e State & Input Constramts fori =0,...,N —1,
Enforce constraints explicitly by |mposing:
b €X, ug €U, VW € WN
Terminal Constramts fori =N,...
Enforce constraints |mp||c|t|y by:
Constraining ¢y € robust invariant set Xy and KXy € U for ;41 =
(A+ BK)¢; + w;
We want for all 2 = 0, ...
(w0, U, W) = {z; +ZH Alwi ;| Wew'hcx
Assume X = {z | Fz < f} (polyhedron)
—1
Fag < f —hyy (Fz’ AJ)
— tightening constrains on the nominal system.
Support function hWi can be pre-computed offline.
Same goes for i = N, ..., 00, ie ¢n(z0, U, W) C Xp.
Requirement can be rewritten as:
picz; ®WHAW.. . ATTIw)y Ccx
or
z e xo (@I AaIw)
Fi @;71 AT W is called disturbance reachable set.
Note: F; 41 = AF; @ W
Caution: Must ensure term state contained in robust invariant set
Intuition: Tightening constraints on the nominal system
(b) Is stable: To show stability more general stability theory is needed.

(c) — Optimizes Performance
Cost to Minimize:

J(20, U, W) := Ly (¢n (x0, U, W)) + 1
Several options to eliminate dependence on W:
e Minimize expected value: Jn (z, U) = E{J(zo, U, W)}
® Take the worst case: Jn (zg,U) := max ;o N=1 J(zg, U, W)
e Take the Nominal Case J (zg, U) := J(zg, U, 0)

(d) Maximizes Set: potentially very small region of attraction
9.2 Robust Closed Loop MPC
Increase the feasibly set using closed-loop feedback.

9.2.1 Closed-Loop Predictions
Goal optimize over seq. of funcs {ug, 1(+), ..., un—1()}
where p; (x;) : R — R™ s called control policy
Problem Can't optimize over arbitrary functions!

Solution assume some structure on functions f;

Pre-Stabilization p;(z;) i+

Fixed K, st A + BK stable ~> Slmple often conservative
Linear Feedback pu;(z;) = K;z; + v;
Optimize over K;, v;, Non-Convex — Extremely difficult to solve
i—1
Yo Mijwj + v
Optimize over M;,;, v; — Equiv to linear feedback but Convex — Ef-
fective, but computationally intense
Tube-MPC 1, (z;) = v; + K(z; — T;)
Fixed K, s.t A + BK stable — Optimize over Z;,v; — Simple, can
be effective
9.2.2 Tube-MPC
System: z(k + 1) = Az(k) + Bu(k) + w(k) z,u € X,U weEW
Idea Seperate available control authority into 2 parts
Portion that steers nominal system to origin:
z(k + 1) = Az(k) + Bu(k)
Portion that compensates for deviations from this system uw; = K (z; —
z;) + v; (keeps real traj close to nominal), for some linear K, which
stabilizes nominal system

— Fix linear feedback K offline and optimize over nominal trajectory
{vo,...,vN_1} — convex problem
Error Dynamics
Define ¢; :=x; — z; ~ e;41 = (A+ BK)e; + w;

Bound maximum error, how far ‘real’ traj from nominal

eir1 = (A+BK)e; +w;  w; €W

Dynamics A 4+ BK are stable, set W bounded ~~ Set £ s.t e stays inside
V k — ‘minimal robust invariant set’

Tube-MPC Procedure
(a) Compute set £ that error remains inside
(b) Modify constraints on nominal traj {z; }

(c) Formulate as convex optimization problem

(a) Minimum Robust Invariant Set (mRPI)

L Ui (w0, U, W), )

Disturbance Feedback p;(z;)

(2)

= = Algorithm to C te F.
Minimum Robust Invariant Set SOThMIE0I=ompatertoo
Qo + {0}
el i loop
o =P A'W Q441 < 9 © ATW
j=0 if Q; 11 =, then
return Fogo = €2,
Fp :={0} end if ‘
IfFp =Fpy1 = Fp = Fo end loop

-Finite n does not always exist, ‘large’ n often good approximation.
-If n not finite, other methods for small invariant sets, bit larger than Foo



(b) Modify Nominal Trajectory Constraints
Noisy System Trajectory:
Given nominal trajectory z; noisy system trajectory x; = z; + e; will be
somewhere in £

2, €2, PE={z;+elec &}
Goal z;,u; € X,U forall {w;} € W
State Condition Necessary & Sufficent Condition

Z2ZiBECAX & z,€XBE
Input Condition:

u; E KEGv; CU & v, EUB KE

Set £ known offline — can compute constraints offline!

Ideally £ is the minimum RPI set Foo = 030 Alw
(c) Convex Optimization Problem
Problem Formulation:
mm lf(ZN)+ZL— Uz, v4)
s.t. 2,41 = Az; + Bu;
2, €EXOE, u, EUSKE ) =:Set Z
zN € Xy, w(k) €E20®E

Control Law : piype(z) := K(z — 2§ (x)) + v(*] (z)
o Optimizing nominal system with tightened state, input constraints
e First tube center z( is opt. var. ~ has to be within € of g
o Cost is w.r.t tube centers, terminal set is w.r.t tightened constraints
Caution: K (z — z{(x)) + v§(z) NOT LINEAR in CL

Robust Invariance

Suppose the terminal ingredients (I, X;t, Ty ) are designed such that
X§' C X and forall z € X5

o mr(z) €U

. Az+B7rf(z)+w6Xf Yw e W

o lf(Az+ Bmy(2)) —lp(z) < —l(z, ms(2))

Let X' be the feasible set and V'* (x(k)) be the optimizer of the robust
constraint-tightening MPC problem.

Then Ax(k) + Bvj (z(k)) + w(k) € Xy Yw(k) € W

— problem is recursively feasible

Robust Constraint Satisfaction

Tube-MPC Assumptions: almost the same as for nominal MPC

1) Stage cost pos def, i.e strictly pos and only O at origin

2) Terminal set is invariant for the nominal system under local control law
ry(2): Az + Bry(z) € Xy Vz € Xy

All tightened state and input constraints satisfied in Xf:

Xy Cxeé, mf(z)EU@KS VzeE Xy

Terminal cost is cont. Lyapunov function in terminal set X'y:

lf(Az 4+ Bry(2)) —lf(2) < =l(z,kf(2)) Vz€ Xy

Theorem: Robust Invariance of Tube-MPC
Set Z = {z | Z is robust invariant set of system x(k + 1) =
Ax(k) + Bputube (ac(k ) + w(k) subject to constraints x, u € X, U
Proof let ({vg ... v _1}, {25 ---2N}) be optimal sol'n for z(k) At
next point in time, state z(k 4+ 1) may have many possible values due to
disturbance
By construction, state x(k + 1) inin the set 2} & € VW
Therefore the following sequence is feasible for all (k + 1)
(o] - vl 1, mp (R} {2] - 2N, Azl + Brg(z)})
N—_— —
feas. IC

®3)

GXfwfeas.

Robust Stability
Robust Stability of Tube-MPC

State x(k) of system z(k + 1) = Axz(k) + Buiupe(z(k)) + w(k)
converges in the limit to the set £

Proof As in standard MPC we have
T (=5 (@(R) = 1y (2R) + T U= v)
T (=5 (2(k + 1)) < 15 (2x) + T M U=E 0))
+l(zo,vo) - l(zo,vo) + lf(zN) — lf(z;\,)

= T (@ (k)= U(z5,v5) —lp(zx)+lp (zn1) +Hl(zNs rp(2N))
>0

<0 (lf is lyap function in Xf)

This shows lim J(z{(z(k))) = 0, therefore lim zj(z(k)) =0
k— oo k— oo

Caution:

e x(k) does not tend to 0! It only stays within robust invar set centered at
2z (w(k)) : limg_, ¢ dist(z(k),E) =0

e & must be robust positive invariant for proof (so error remains bounded)

9.3 Tube-MPC Implementation

Offline Design
1) Choose stabilizing controller K s.t |[|A + BK|| < 1
2) Compute mRPlset £ = F forsystem z(k+1) = (A+BK)xz(k)+
w(k), w € W
3) Compute tightened constaints X := X © £, U :=U & KE
4) Choose terminal weight function I and constraint X satisfying ass-
umptions on tube MPC
LQR Terminal Constraint (typical choice)
e Choose LQR terminal control law x ¢ (z) = Kz, (Q, R same as MPC)
e Find Xy invar under this controller s.t satisfies constraints
Online Design
%1; Measure / Estimate state
2

Solve optimization problem:

(V*(20), Z* (z0)) = argminy, z{J(Z,V) | (Z,V) € Z(=z0)}
(3) Setinputtou = K(xz — 2{(x)) + vg (x)
Tube-MPC Summary

Benefits Cons

e Less conservative than OL robust e Sub-optimal MPC (optimal extre-
MPC (now actively compensating mely difficult)
for noise in prediction) .

o Works for unstable systems

Reduced feasible set when com-
pared to nominal MPC

e Optimization problem to solve is ® We need to know what W is
‘simple’ (usually not realistic)
9.4 Robust MPC for Uncertain Systems - Summary
Idea compensate for noise in prediction to ensure constraint satisfaction
Cons
3 e Complex (tubes easy to imple-
Benefits . . ment, complex to understand)
e Feasible set invariant — know exactly Must k | £ noise W
when controller will work ¢ Must know largest noise

e Easier to tune — knobs to tradeoff® Often conservative

robustness against performance
9.5 Robust MPC - Extensions
9.5.1 Robust Constraint Tightening MPC
Idea Combine best of Robust OL and Tube-Based MPC
— Use propagated error bound to tighten constraints
Error Dynamics:
eit+1 = (A+ BK)e; +w; = Age; + w;,

i—1

If eg = 0 then e; = Z Alw;_q

o Feas set may be small

w; € W

_JEWRARW .. AW

Problem Setup:

mln lf(zN)+21_ Uz, v4)

subJ. to z;41 = Az; + Bv;
2, EXOWBAKW® ... ALTIw)
uw EUOKW®ARW ® ... Alz1w)
INEX;OWHALWS .. AXTIW)
zo = z(k)
Control Law u(k) = v + K (z(k) — z0) = v}

Motivation can robustly ensure constraint satisfaction at each time step
Note need terminal set X'y that is robust invariant under tube controller K

9.5.2 Nominal MPC with Noise
Standard MPC Problem for z(k + 1) = Az (k) + Bu(k) + w(k)
N-—-1
T*(20) = minly(@n) + > Ui ui)
i=0
st i1 = Az; + Bug, 4, u5, 28 € X, U, Xy
Effect on Lyapunov Function
Assume Optimal cost J* Lipschitz continuous
|J*(Az + Bu* (z) + w) — J* (Az + Bu™ (z))]
< AllAz + Bu™ (X) + w — (Az + Bu™ (2))|| = 7/|w]|
Lyapunov Decrease can be bounded as
J*(Az + Bu* 4+ w) — J*(z) —J* (Az + Bu* + w) + J* ()

< J¥(Az + Bu®) = JN(2) +yllwl| < —l(z, u*) + v]|w]]

e Amount of decrease grows with ||z ||
o Amount of increase upper bounded by max{||w| | w € W}

Benefits C
No special knowledge required —q

ons
? \ ° Very difficult to determine region
‘just works' (sometimes)

of attraction (set of states where
controller works)

Hard to tune

e Often very effective in practice
Large feasible set i

Only works for NL systems under
continuity assumptions

Region of attraction may be relative- ®

ly large

ISS — Input-To-State Stability
Asymptotic stability ISS stability
Bound that Bound that
monotonically monotonically
decreases to zero decreases to max{||w|| | w € W}
Ixi
time time
Converges to set around zero, who's
size is determined by size of the noise
10
10.1 Explicit MPC
U(x)
U*(x(k)) = argmln xp Pxn + Zx Qx; + u Ru; —
i=0
subj. to xo = x(k)
Xiy1 = Axi+Buj, i=0,...,N—1
X€EX, y €U, i=0,...,N-1 U (x(K TPlant state x(k)
xn € X Plant
[Output y(k)

Recall: Quadratic Cost State Feedback Solution
MP-QP - Multiparametric Quadratic Program

(k) = min [UTe(0) 7] [ 1 5] ] [UTz(k)T}T

subj. to GU < w + Ez(k)
Solution Properties — J* (z(k)) convex and PW Quad. on polyhedra.
Active Setfor I =1,...,m
Define active set at «, A(x), and it's complement N A(x) as

A(z) :={j€l: sz*(z) — Sjxz = w;} (satisfied with eq.)

NA(z):={j€l: sz*(z) - Sjz < wj}
Critical Region
CR 4 is set of parameters x for which set A C [ of constraints i active at
the optimum. For given Z € K* let (A, NA) := (A(Z), NA(X)). Then
CRp = {x € K* : A(z) = A} (states share active set)
Point Location
e Sequential Search — Computationally linear, very simple, works for all pro-
blems
e Search Tree — Potentially logarithmic, significant offline processing (reaso-
nable for < 1k regions)
Remarks on Explicit MPC
e Linear MPC + Quad / Linear-norm cost ~~ Controller PWA func.
e Can pre-compute this function offline
e Online evaluation of PWA function very fast (ns - 52]
e Can only do this for small systems (3-6 states, small horizon)
10.2 Iterative Optimization Methods
Generic Optimization Problem:
convex if f : R — R and set Q convex
Analytical sol'n cannot be obtained except simplest cases
minimize f(x)
subj. toxz € Q

(strict inequality)

Iterative Optimization Methods Given initial guess z(o), produce sequence
of iterates
vl ) )
2D =y, f0), i=o,...

such that [f(z("™)) — f(z*)| < e and dist(z(") Q) <5
where € and § are user defined tolerances
10. Unconstrained Minimization

,m—1

Optimality Conditions
Assume f(-) diff'bar at *. If f convex, then z* global min iff V f(z*) =
0

Descent Methqu )
20D — 20 4 p (D) Az (D)
with f(a(HD) < f(2(D)
o Au: step/search direction
o K(): step size/length
hd f(“L(1+l)) < f(z(l)) until termination condition
Az (%) is descent function (eg £(z(M)) — F(z*) < €1)
o (M > 0st f(2tD) < f@D)if V()T az® <0
Descent Direction i i i i
o Gradient descent z(t+1) = z(4) _ p(i )Vf(x( )
— Assume V f Lipschitz-continuous ||V f(z) — V f(y)|| <
— Choose constant step size h(?) = 1/L
o Newton Step 201 = (D) + h(’)Acc nt
= Azne = —(V2f (@) T V()
— Exact Line Search h(1)* = = argming o f(z( i) + R )A’L'nf)

Optimization in 1 var ~+ solve by bisection, time consuming
— Inexact Line search: find h(%) that decreases f by some amount

Input 2(0) ¢ dom(f)
repeat
Compute descent dir. Az(i)
Line Search: choose step size h(i') > 0
st f(z(D) + D a0y < pa(d)
Update 2 (i+1) := 2(1) 4 hag (1)

Lllz = yll

10.4 Constrained Minimization
Projected Gradient Methods
Incorporate Constraints in Gradient Step

LD WQ((L‘(i) _ h“’)vf(z(i)))
Projection 7g = argmin,, %Hzfyug stz €Q
e Simple input constraints

e State constraints: hard ~~ solve for dual Q

Interior-Point Methods

System min f(z) s.t. g;(x) < 0,72 = 1,..., m Assumptions f,g;

convex, twice cont. diff'bar. f(z*) is finite and attained, stict feasiblity

Jg(&) < 0, feasible set closed & compact Idea Reformulate as uncons-

trained problem

Primal-Dual Interior-Point Methods

Idea — Iteratively solve relaxed KKT sys- -

tem leave A} as variables, linearize and | e sty

solve resultlng sytem of linear eqns at each

iteration

Search Dwection Alz, v, X, s](v)

° v pure Newton direction
predlctor"/ ‘affine-scaling”

n
centerng

resuling search
direction wih « € (0,1)
Al hs) (ox1)

Newton =

direction
(predicton

cantral path ¢
— Ay rsl©) <

optimal point

o v " .rul tcﬁnterlng direction, approach = combine via centering para-
central pa meter o € (0,1

11 Appendix

11.1 Set Operations

Minkowski Sum: A® B:={z+y|z € A,y € B}

Pontryagin Difference: AO B:={z |z +e € A Ve € B}
A

Caution: A©S B@® B C
11.2 Exercises

LIV y I EIBUVEIDEV NI determine largest terminal invariant set for
the system x;4+; = Ax; + Bu; with constraint —c < u; < c under a stabilizing
linear terminal control law u(k) = Kx(k)

1) we need (4 + BK) stable > K € [__,_]

. _ _ K c
2)x€eX ={x|KxeU} = {XH_K]x < [C]}
3) max. control invariant set algorithm:

ot - Ko < 1)~ 220 < )

K C
Q, =pre(Q) N Qg = —K <[} =g,
1= pre(th 0 = V¥) K+ BK) |*=|c|( T
—K(A + BK) c

Q, = Q, holds always for a stabilizing controller since |A + BK| < 1 and thus Q, is
more restrictive than pre(Q,)

Quadratic Program
= if the problem is convex & Slater’s cond. satisfied minleHx +fTx
= KKT are necessary and sufficient for x* being a x€X2
global minimizer (convex = only 1 minimum) st g() =6x<0
h(x) =a"x—b=0
1) Convexity: = check if all eigenvalues of the Hessian Matrix H are non-
negative = if furthermore g(x), h(x) are linear / affine sets = X is convex
2) Slater’s Cond: - find a strictly feasible point s.t. Slater’s Cond. is satisfied
= we have strong duality p* = d*
3) KKT Cond.: find suitable Lagrange Multipliers A", v* s.t. KKT Cond. are

satisfied (V,L(x",2",v") = 0 = 1",v") = then x* is a global minimizer

1D system: x(k + 1) = x(k) + u(k) + w(k)
constraints: *u € U = {u| — 10 < u < 10} weW ={w|lwl <1}
1) maximum robust invariant set X, with control law u(k) = —x(k)
CLsystem: x(k + 1) = w(k) with constraint -x(k) € U = {u| — 10 < u < 10}
We must be able to recover to the origin after the disturbance, therefore we
compute the robust pre-set of [-10,10]:

pre™ ([-10,10]) = {x|x —x + w = [-1,1] € [-10,10]} = [-10,10] =
2) terminal set for an OL robust MPC controller with horizon = 2
terminal set Xy © (B}, AW) = X; © 2W = [-10,10] © [-2,2] = [-8,8]
3) state QP problem w:th = 2 l(xx,u[) = 3x7x; + ul'w; & terminal cost 5x} x,

) UEU *xy_, € X, =[—88]
min[t X1 Uy X,] [; 0 ‘1 }{ 10 0 07 r10
0005 xz -10 0 0| |10
stl 001 o<|i0
- ) ) .
s.t 5 %(1_(1] —[ O]xn 00 0 1 8
0o 0o-1 lsg

3) feasability of terminal set X',
show that X; = [—~1,1.5] will result in a recursively feasible controller for the
terminal control law u(k) = —0.3x(k) = e.g. the set X, must be invariant for the
nominal system subject to tightened constraints:

= Invariance: (A + BK)X;=0.8[-1,15] = [-0.8,1.2] € X v’

= Constraints: 1) X; € X © €=[-1,15] ¥

2) KX;=-03[-1,15] = [-0.45,0.3] € U © KE=[-0.65,05] V'



