
MPC Summary
Jorit Geurts - jgeurts@ethz.ch

Version: 17. August 2023

1 Systems Theory
1.1 System Dynamics

1.1.1 Continuous Time

Nonlinear Time-Invariant Continuous Time State Space
ẋ = g(x, u)

y = h(x, u)

x ∈ Rn
, u ∈ Rm

y ∈ Rp

g : Rn × Rm → Rn

h : Rn × Rm → Rp

LTI Continuous Time State Space
Linearization using Taylor Expansion around operating point:

f(x) ≈ f(x̄) +
∂f

∂x⊤

∣∣∣∣
x̄
(x− x̄)

Resulting system:

ẋ =

Ac∈Rn×n︷ ︸︸ ︷
∂g

∂x⊤

∣∣∣
xs,us

δx +

Bc∈Rn×m︷ ︸︸ ︷
∂g

∂u⊤

∣∣∣
xs,us

δu

y = ∂h
∂x⊤

∣∣∣
xs,us︸ ︷︷ ︸

C∈Rp×n

δx + ∂h
∂u⊤

∣∣∣
xs,us︸ ︷︷ ︸

D∈Rp×m

δu

ẋ = A

c
x + B

c
u

y = Cx +Du

Solution: eA
ct =

∑∞
n=0

(Act)n

n!

x(t) = e
Ac(t−t0)

x0 +
∫ t
t0
eA

c(t−τ)Bcu(τ)dτ

1.1.2 Discrete Time

Euler Discretization (Ts = sampling time) (stability not guaranteed)

ẋ
c≈ xc(t+Ts)−xc(t)

Ts
, x(k) := xc(t0+kTs), u(k) := uc(t0+kTs)

Nonlinear System:

x(k + 1) = x(k) + Ts(g
c
(x(k), u(k))) = g(x(k), u(k))

y(k) = h
c
(x(k), u(k)) = h(x(k), u(k))

Linear System:

x(k+1)=A
d
x(k)+B

d
u(k), A

d
= I + TsA

c
, B

d
= TsB

c

y(k)=C
d
x(k) +D

d
u(k), C

d
= C

c
, D

d
= D

c

Exact Discretization (only for linear systems), (stability guaranteed)
Exact solution (u assumed constant over Ts) :

x(tk+1) = e
AcTs︸ ︷︷ ︸
=A

x(tk) +
∫ Ts
0 eA

c(Ts−τ)Bcdτ︸ ︷︷ ︸
B=(Ac)−1(A−I)Bc

u(tk)

We see the solution over k is then given by:

x(k +N) = A
N
x(k) +

∑N−1
i=0 AiBu(k +N − 1− i)

1.2 Linear System Analysis

DT Stability (Lyapunov indirect method)
x(k + 1) = Ax(k) stable iff |λj | < 1, ∀ j → NL system stable

if |λi| = 1 NL system no info, if |λi| > 1 NL system unstable

LTI DT Controllability can reach x∗ from x(0) in n steps

C =
[
B · · · An−1B

]
⇒ rank(C) !

= n

DT Observability uniquely distinguish IC from output

O =
[
C⊤ · · · (CAn−1)⊤

]⊤ ⇒ rank(O)
!
= n

Stabilizability iff all uncontrollable modes stable Λ+
A

= {λ| 1 ≤ |λ| }
if rank([λj I− A | B]) = n ∀λj ∈ Λ

+
A ⇒ (A,B) stabilizable

Detectablity iff all unobservable modes stable Λ+
A

= {λ| 1 ≤ |λ| }
if rank([A

⊤ − λj I | C
⊤
]) = n ∀λj ∈ Λ

+
A ⇒ (A,C) detect.

1.3 Nonlinear System Analysis

Lyapunov Stability (w.r.t eq. point x̄ of a system)
Lyapunov Stable if for every ϵ > 0 exists δ(ϵ) s.t.

||x(0)− x̄|| < δ(ϵ)→ ||x(k)− x̄|| < ϵ
Globally Asympt. Stable if Lyap. stable & Attractive

limk→∞||x(k)− x̄|| = 0 ∀ x(0)
Lyapunov Function
Consider eq point x̄ = 0. V : Rn → R, continuous at origin, finite ∀ x,

(1) ||x|| → ∞ ⇒ V (x)→∞
(2) V (0) = 0, V (x) > 0 ∀ x ∈ Rn \ {0}
(3) V (g(x))− V (x) ≤ −α(x) ∀ x ∈ Rn

where α : Rn → R continuous pos. def.

Lyapunov Stability
If sys admits a V (x)⇒ x = 0 is Globally Asympt. Stable
Caution if α pos. semidef⇒ x = 0 is Globally Lyapunov Stable
Asympt. Stable in pos invar set Ω ⊆ Rn if Lyap. stable and attactive

lim
k→∞

||x(k)− x̄|| = 0 ∀ x(0) ∈ Ω

Globally Asympt. Stable if asympt. stable & Ω = Rn

2 Linear Quadratic Optimal Control
2.1 Linear Quadratic Optimal Control

Problem Definition
J(x(0), U) := x⊤NPxN +

∑N−1
i=0 (x⊤i Qxi + u⊤i Rui)

subj. to xi+1 = Axi + Bui, x0 = x(0)

• N : horizon length

• P ⪰ 0, P = P⊤
• Q ⪰ 0, Q = Q⊤

• R ≻ 0, R = R⊤
• x(0): current state
• xi, ui: opt. variable

2.1.1 Batch Approach
Idea explicitly represent xi ∈ Rn through x0 & ui ∈ Rm

x0
.
.
.
xN

 =

I
A

.

.

.

AN

 x(0) +

0 · · · 0
B · · · 0

.

.

.
. . . 0

AN−1B · · · B

u0
u1

.

.

.
uN−1

Equivalent to Sx ∈ R(N+1)n×n, Su ∈ R(N+1)n×Nm

X = Sx
x(0) + Su

U → J(x(0), U) = X
T
Q̄X + U

T
R̄U

Cost:
Q := blockdiag(Q, . . . , Q, P) & R := blockdiag(R, . . . , R)

Solve by setting gradient to zero: 2HU⋆ + F⊤x(0) = 0

Optimal Input: H = (Su)⊤QSu + R, F = (Sx)⊤QSu

U⋆(x(0)) = −
(
(Su)⊤QSu + R

)−1
(Su)⊤QSxx(0)

Optimal Cost

J
⋆

= x(0)
⊤
[S⊤x QSx − S

⊤
x QSu

(
S⊤u QSu + R

)−1
S⊤u QSx]x(0)

2.1.2 Recursive Approach
Idea: Recursively compute optimal input u⋆

j and optimal cost J⋆
j

J⋆
j (x(j)) := minUj→N

x⊤NPxN +
∑N−1

i=j (x⊤i Qxi + u⊤i Rui)

P = PN , F ← f(P), Control input, P ← f(F), Cost calculation, repeat
Optimal Control Policy

u
⋆
i = −(B

⊤
Pi+1B + R)

−1
B
⊤
Pi+1A · x(i) := Fixi

Optimal Cost-To-Go J⋆
i (xi) = x⊤i Pixi

RDE – Riccati Difference Equation (PN = P)

Pi = A
⊤
Pi+1A+Q−A⊤Pi+1B(B

⊤
Pi+1B+R)

−1
B
⊤
Pi+1A

Numerically Safer Alternative

Pi = Q + F
⊤
i RFi + (A + BFi)

⊤
P (A + BFi)

2.1.3 Comparison - Batch vs. Recursive
• Batch – sequence of numeric values U⋆

• Recursive – feedback policies u⋆
i

• Control actions identical if perfect model
• Disturbances – Recursive more robust to disturbances
• Computational efficiency

– Recursive more efficient for large N
– Matrix inversion in Batch approach expensive

• Constraints – Neither works with constraints on xi or ui
• Batch Approach easier to adapt when contraints are present

constrained minimization (solving for Ji+1 with constraints) hard
2.2 Receding Horizon Control
Compute optimal control policy for N steps, apply only first step, then re-
compute

U
⋆

:= argmin x
⊤
NPxN +

∑N−1
i=0 x⊤i Qxi + u⊤i Rui

subj. to xi+1 = Axi + Bui ⇒ U
⋆

• Extract first input in sequence: U⋆ = {u⋆
0 , . . . , u

⋆
N−1} ⇒ u⋆

0
• Introduce feedback to sys: x(k + 1) = Ax(k) + Bu(k)⇒ x
Why Reoptimize Provides robustness to noise / modeling errors,
Sol’n at k subopt. (finite horizon) ⇝ reopt. potentially better performance
2.3 Infinite Horizon Control LQR
Solve LQOC for N →∞

J∞(x(0)) = min
u

∑∞
i=0 x

⊤
i Qxi + u⊤i Rui

subj. to xi+1 = Axi + Bui, x0 = x(0)

As with recursive approach it must hold:

u
⋆
(k) = −(B

⊤
P∞B + R)

−1
B
⊤
P∞A · x(k) := F∞x(k)

with infinite cost to go: J∞(x(k)) = x(k)⊤P∞x(k)
Algebraic Riccati Equation (ARE) to find P∞:

P∞ = A
⊤
P∞A +Q− A⊤P∞B(B

⊤
P∞B + R)

−1
B
⊤
P∞A

LQR Lyapunov Function

If (A,B) stabilizable, (Q1/2, A) detectable ⇝ J⋆(x) = x⊤P∞x is

Lyap. func. for system x+ = (A + BF∞)x

Choice of P in Finite Horizon Control
• Can choose to match∞-Horizon sol’n⇝ Make P ≈ JN→∞ with ARE
• Can Choose P assuming no control action after end of horizon

This P determined from solving Lyap eqn A⊤PA +Q = P
Only makes sense if system asympt. stable

• Assume we want state and input both to be 0 at end of horizon ⇝ no P
but extra constraint xi+N = 0

3 Convex Optimization
3.1 Problem Formulation

minx∈dom(f) f(x) subj. to gi(x) ≤ 0 i = 1, . . . ,m

hi(x) = 0 i = 1, . . . , p

• X : {x ∈ dom(f) | gi ≤ 0, hi = 0 } feasible set
• gi : ineq constraints, hi : eq contraints
Feasibility Point x satisfies gi ≤ 0, hi = 0 & eq contraints
Optimal Value lowest cost p∗ = f(x⋆) = minx∈X f(x)
Strictly Feasible Point x satisfies gi < 0
Optimizer smallest p∗, x ∈ X : argminx∈X f(x) :={x∈X|f(x)=p

∗}
Caution NOT always unique
Active Contraints: when ineq const. are eq ⇝ “active”
Locally Optimal: y ∈ X , ||y − x|| ≤ R⇒ f(y) ≥ f(x)
Unbounded Below p∗ = −∞, Unconstrained X = Rn

Redundant Contraints do not change feasible set
Globally Optimal: y ∈ X ⇒ f(y) ≥ f(x)
Infeasible p∗ =∞⇔ X = {}
3.2 Convex Sets
Definition Set X is convex iff for any pair of points x and y in X :

λx + (1− λ)y ∈ X ∀λ ∈ [0, 1], ∀ x, y ∈ X
Interpretation: All lines starting in X stay within X
Convex Combination:

x = θ1x1 + θ2x2 + . . . + θkxk, with
∑

i θi = 1, θi ≥ 0

Hyperplane

{x∈Rn | a⊤x=b}
Halfspace

{x∈Rn | a⊤x≤b}
open: <, closed: ≤

Convex Sets: Hyperplanes and Halfspaces
Definitions: Hyperplanes and halfspaces

A hyperplane is defined by
{
x ∈ Rn

∣∣ a>x = b
}
for a 6= 0, where a ∈ Rn is the

normal vector to the hyperplane.

A halfspace is everything on one side of a hyperplane
{
x ∈ Rn

∣∣ a>x ≤ b
}
for

a 6= 0. It can either be open (strict inequality) or closed (non-strict inequality).

For n = 2, hyperplanes define lines. For n = 3, hyperplanes define planes.

Hyperplanes are affine and convex, halfspaces are convex.

{x | aTx = b}

x1

x2

a

A hyperplane

{x | aTx b}

x1

x2

a

A closed halfspace

MPC Lec. 3 - Introduction to Convex Optimization 18 2 – Convex SetsPolyhedron

P := {x | a⊤i x ≤ bi, i = . . . }

:= {x | Ax ≤ b}
Polytope:
bounded Polyhedron

Convex Sets: Polyhedra and Polytopes
Definitions: Polyhedra and polytopes

A polyhedron is the intersection of a finite number of closed halfspaces:

P :=
{
x
∣∣ a>i x ≤ bi , i = 1, . . . , n

}
= {x |Ax ≤ b}

where A := [a1, a2, . . . , am]> and b := [b1, b2, . . . , bm]>.

A polytope is a bounded polyhedron.

Polyhedra and polytopes are always convex.

x1

x2

An (unbounded) polyhedron

x1

x2
ak

A polytope

MPC Lec. 3 - Introduction to Convex Optimization 19 2 – Convex SetsIntersection of Polytopes in inequality form:

{x | Ax ≤ b} ∩ {x | Cx ≤ d} = {x |
[
A
C

]
x ≤

[
b
d

]
}

Ellipsoid

{x|(x−xc)⊤A−1
(x−xc) ≤ 1}

xc : center of ellipsoid

Convex Sets: Ellipsoids
Definition: Ellipsoid

An ellipsoid is a set defined as
{
x
∣∣ (x − xc)>A−1(x − xc) ≤ 1

}
,

where xc is the centre of the ellipsoid, and A � 0 (i.e. A is positive definite).

x1

x2

xc

{x | (x - xc)TA-1(x - xc) 1}

Semi-axis lengths are square
roots of eigenvalues of A

2

1

The Euclidean ball B(xc , r) is a special case of the ellipsoid, for which
A = r2I , so that B(xc , r) := {x | ||x − xc ||2 ≤ r}.
MPC Lec. 3 - Introduction to Convex Optimization 20 2 – Convex Sets

Norm Ball {x | ||x−xc|| ≤ r}

• p = 2 Euclidean Norm ||x||2 =
√∑

i x
2
i

• p = 1 Sum of Absolute ||x||1 =
∑

i|xi|
• p =∞ Largest Absolute

Convex Sets: Norm Balls
The norm ball, defined by {x | ||x − xc || ≤ r} where xc is the centre of the ball
and r ≥ 0 is the radius, is always convex for any norm.

By far the most common `p norms are:

• p = 2 (Euclidean norm):

||x ||2 =

√∑

i

x2i

• p = 1 (Sum of absolute values):

||x ||1 =
∑

i

|xi |

• p =∞ (Largest absolute value):

||x ||∞ = max
i
|xi |

x

x

1

2

1

2

8

x = 1

x = 1

x = 1

MPC Lec. 3 - Introduction to Convex Optimization 21 2 – Convex Sets

Intersection
⋂

of two convex sets is convex itself
Union

⋃
of two convex sets is NOT convex in general

3.3 Convex Functions
Definition A function f : D → R is convex if and only if its domain
D = dom(f) is a convex set and
f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀ x, y ∈ D, λ ∈ [0, 1]
f : D → R is strictly convex if the inequality is strict.
f is concave if −f is convex.
First order condition
A differentiable function f : D → R with a convex domain D is convex if
and only if

f(y) ≥ f(x) +∇f(x)⊤(y − x), ∀ x, y ∈ D

Gradient is given by: ∇f(x) =
[
∂f(x)
∂x1

, . . . ,
∂f(x)
∂xn

]⊤
Second order condition
A twice-differentiable function f : D → R with a convex domain D is
convex if and only if

∇2f(x) ⪰ 0, ∀ x ∈ D, ∇2f(x)ij =
∂2f(x)
∂xi∂xj

Strictly convex if ∇2f(x) ≻ 0.
Examples
Convex
Affine ax + b for any a, b ∈ R
Exp. eax for any A ∈ R
Powers xα, x∈R++, α≥1, α≤0

Vector norms on Rn:
∥x∥ p=(

∑n
i=1 |x|

p)1/p, ∀ p ≥ 1

Concave
Affine ax + b for any a, b ∈ R
Powers xα, x∈R++, for 0≤α≤1
Log log x on domain R++
Entropy −x log x on domain R++

Convextiy Preserving Operations
- Nonnegative weighted sum: f(x) =

∑n
i=1 θifi(x), θi ≥ 0

- Composition with an affine mapping: f(x) = g(Ax + b)
- Pointwise maximum: f(x) = max{f1(x), . . . , fm(x)}
- Partial minimization: f(x, y) = minz g(x, y, z)

3.3.1 Level and sublevel sets

Levelset
Definition The level set Lα of a function f : D → R is the set of points in
the domain D which f(x) = α.

Lα = {x ∈ D | f(x) = α}
For f : R2 → R, these are contour lines of constant height.
Sublevelset
Definition The sublevel set Cα of a function f : D → R is the set of points
in the domain D which f(x) ≤ α.

Cα = {x ∈ D | f(x) ≤ α}
If f is convex, then Cα is convex for all α.
3.4 Convex Optimization Problem
A convex optimization problem in standard form:

minx∈dom(f) f(x), subj. to gi(x) ≤ 0 i = 1, . . . ,m

hi(x) =a
⊤
i x = bi i = 1, . . . , p

f, gi are convex, hi are affine.
Affine constraints are typically written in matrix form as Ax = b.
Important Property: Feasible set of a convex optimization problem is convex.
Local and Global Optimality: For a convex optimization problem, any local
optimal solution is also a global optimal solution.
Equivalent Optimization Problems
Two problems are called equivalent if the solution from one can be inferred
easily from the solution of the other.
Example: minx f(Aox+b) subj. to gi(Aix+bi) ≤ 0, i = 1, . . . ,m
is equal to
min
x,yi

f(y0) subj. to gi(yi) ≤ 0, Aix + bi = yi, i = 0, . . . ,m

3.4.1 Linear Program

Problem

min
x∈Rn

c
⊤
x

subj. to Gx ≤ h, Ax = b

Solutions
Case 1: LP unbounded: p⋆ = −∞
Case 2: Bounded and unique

Case 3: LP bounded but not unique
3.4.2 Quadratic Program
Problem→ solution is unique

min
x∈Rn

1

2
x
⊤
Hx + q

⊤
x + r

subj. to Gx ≤ h, Ax = b

r not needed (does not change optimal x), Convex if H ≻ 0
Case 1: optimizer lies strictly inside the feasible polyhedron
Case 2: optimizer lies on the boundary of the feasible polyhedron
3.5 Optimality Conditions

3.5.1 Lagrang Dual Problem

Lagrangian Function

L(x, λ, ν) = f(x) +
∑m

i=1 λigi(x) +
∑p

i=1 νihi(x)

Lagrange Dual Function (concave)

d(λ, ν) = inf
x∈dom(f)

L(x, λ, ν) ≤ p⋆

inf = infimum, the greatest lower bound of a set.

Primal and Dual Problem

(P) :

minx f(x)

subj. to gi(x) ≤ 0

hi(x) = 0

∣∣∣∣∣∣∣ (D) :
maxν,λ d(ν, λ)

subj. to λ ≥ 0

• d(λ, ν) always concave

• d⋆ ≤ p⋆ ⇝ d(λ, ν) gens
lower bound for p

• (D) convex even if (P) not

• Point (λ, ν) dual feas. if λ ≥ 0,
(λ, ν) ∈ dom(d)

LP – Dual
(P) :minx∈Rn c

⊤x subj. to Ax = b, Cx ≤ e

(D) :maxλ,ν −b⊤ν − e⊤λ, s.t A⊤ν + C⊤λ + c = 0, λ ≥ 0

QP – Dual with Q ≻ 0

(P) :minx∈Rn
1
2
x⊤Qx + c⊤x, subj. to Cx ≤ e

(D) :maxλ,ν
1
2
λ⊤CQ−1C⊤λ+(CQ−1c+e)⊤λ+ 1

2
c⊤Q−1c

subj. to λ ≥ 0

QP – Lagrangian

min
x

1
2
x⊤Hx + q⊤x + r

s.t Gx ≤ h
Ax = b

∣∣∣∣∣∣∣∣
L = 1

2
x⊤Hx + q⊤x + r

+ λ
⊤
(Gx− h) + ν

⊤
(Ax− b)

∇xL = Hx + q +G
⊤
λ + A

⊤
ν

Weak & Strong Duality

Weak Duality – it is always true that d⋆ ≤ p⋆
Stront Duality – it is sometimes true that d⋆ = p⋆

• Strong duality usually does not hold for non-convex problems
• Can impose conditions on convex prob. to guarantee d⋆ = p⋆

• Sometimes the dual much easier to solve than the primal
• LP always has strong duality

1

3.5.2 Slater Condition
If ∃ at least one strictly feasible point i.e

{x | Ax = b, gi(x) < 0 ∀ i} ≠ ∅ ⇒ p
⋆

= d
⋆

3.5.3 KKT Conditions

(1) Primal Feasibility
gi(x

⋆) ≤ 0, i = 1 . . .m hi(x
⋆) = 0, i = 1 . . . p

(2) Dual feasibility λ⋆ ≥ 0
(3) Complementary Slackness

λ⋆
i gi(x

⋆) = 0 i = 1 . . .m
(4) Stationarity

∇L = ∇f(x∗) +
m∑

i=1

λ
∗
i∇gi(x

∗
) +

p∑
i=1

ν
∗
i ∇hi(x

∗
) = 0

General Optimization Necessary condition
x⋆, λ⋆, ν⋆ sol’n to (P), (D) with 0 duality gap ⇒ x⋆, λ⋆, ν⋆ satisfy
KKT
Convex Optimization Sufficient condition
x⋆, λ⋆, ν⋆ satisfy KKT ⇒ x⋆, λ⋆, ν⋆ sol’n to (P), (D) with 0 duality
gap
Convex Opt. + Slater, Necessary & Sufficient condition
If Slater’s cond. holds, x⋆, λ⋆, ν⋆ are sol’n to (P), (D) IFF KKT satisfied
Remark for convex opt. problem, KKT conditions sufficent⇝ if x⋆, λ⋆, ν⋆

satisfy KKT then p⋆ = d⋆

4 CFTOC

Constrained Finite Time Optimal Control
J
⋆
(x(k)) = min

U
lf (xN) +

∑N−1
i=0 l(xi, ui)

subj. to xi+1 = Axi + Bui

xi ∈ X , ui ∈ U

xN ∈ Xf , x0 = x(k)

• Quad. Cost / Squared Euclidian Norm:

J(x(k)) = x
⊤
NPxN +

∑N−1
i=0 x⊤i Qxi + uiRui

• p-Norm: J(x(k)) = ||PxN ||p +
∑N−1

i=0 ||Qxi||p + ||Rui||p
4.1 Transform CFTOC to QP

QP Problem
Goal – Rewrite Quad. Cost CF-
TOC as QP
⇝ easier to solve

min
z∈Rn

1
2
z⊤Hz + q⊤z + r

subj. to Gz ≤ h, Az = b
4.1.1 Construction with Substitution, dense (good for large n)
Idea – Sub. state eqns xi+1 = Axi + Bui, x0 = x(k)

Cost – Rewrite as (see Batch Approach for H and F)

J
⋆
(x(k)) = min

U

[
U⊤ x(k)⊤

] [
H F⊤
F Y

] [
U⊤ x(k)⊤

]⊤
subj. to GU ≤ w + Ex(k)

Constraints – Rewrite as GU ≤ w + Ex(k)
X ={x|Axx≤bx} U={u|Auu≤bu} Xf ={x|Afx≤bf}

G =

Au
···

Au

0 ··· 0
AxB

AxAB AxB 0

AfAN−1B ··· AfB

 , E =

0
···
0

−Ax
−AxA
···

−AfAN

 , w =

bu
···
bu

bx
bx
···
bf

Solution For a given x(k), U⋆ can be found via QP solver
4.1.2 Construction without Substitution, sparse (good for large N)
Idea – Keep state eqns as eq. constraints

Cost with z =
[
x⊤1 . . . x⊤N u⊤0 . . . u⊤N−1

]⊤
J
⋆
(x(k)) = min

z

[
z
⊤
x(k)

⊤
] [

H̄ 0
0 Q

] [
z
⊤
x(k)

⊤
]⊤

subj. to Ginz ≤ win + Einx(k)

Geqz = Eeqx(k)

H̄ = diag(Q, . . . , Q, P,R, . . . , R)
Equality Constraints from System Dyn. xi+1 = Axi + Bui

Geq =

[I
−A I
−A I
··· ···

∣∣∣∣∣
−B
−B
−B
···

]
, Eeq =

[
A
0
···
0

]
Inequality Constraints
X ={x|Axx≤bx} U={u|Auu≤bu} Xf ={x|Afx≤bf}

Gin =

0

Ax
Ax
···

Af

0
0
···

0

∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0
0
···

0

Au
Au
···

Au

, win =

bx

bx
bx
···
bf

bu
bu
···
bu

,

Ein =
[
−AT

x ,0,··· ,0
]⊤

4.1.3 QP Feedback Solution

CFTOC problem as multiparametric QP

J
⋆
(x(k)) = min

U

[
U
⊤
x(k)

⊤
] [

H F⊤
F Y

] [
U
⊤
x(k)

⊤
]⊤

subj. to GU ≤ w + Ex(k)
Solution Properties
• First component of optimal solution:

u
⋆
0 = κ(x(k)), ∀ x(k) ∈ X0

κ : Rn → Rm is cont. and pw. affine on Polyhedra

κ(x) = F
j
x + g

j if x ∈ CRj
, j = 1, . . . , N

r

• Polyhedral sets CRj =
{
x ∈ Rn | Hjx ≤ Kj

}
, j = 1, . . . , Nr

are partition of the feasible polyhedron X0.

• Value func. J⋆(x(k)) is convex and pw quad. on polyhedra.

4.1.4 Transform p-norm CFTOC to LP

ℓ∞-Minimization
min

x∈Rm
||x||∞

subj. to Fx ≤ g
⇐⇒

min
x,t

t

subj. to − 1t ≤ x ≤ 1t, Fx ≤ g
−1t ≤ x ≤ 1t bounds abs value of every elem. with scalar t
ℓ1-Minimization

min
x∈Rm

||x||1

subj. to Fx ≤ g
⇐⇒

min
x∈Rm,t∈Rm

1
⊤
t

subj. to − t ≤ x ≤ t, Fx ≤ g
∥x∥1 =

∑n
i=1|xi| ≤

∑n
i=1 ti = 1⊤n t ⇝ −t ≤ x ≤ t

bounds abs value of each component of x with a component of t

4.1.5 Consturction of ∞-norm

Cost (with substitution)

min
z

ϵ
x
N +

∑N−1
i−0 ϵxi + ϵui

subj. to − 1nϵ
x
i ≤ ±Q

[
A

i
x0 +

∑i−1
j=0 A

jBui−1−j

]
− 1rϵ

x
N ≤ ±P

[
A

N
x0 +

∑N−1
j=0 AjBuN−1−j

]
− 1mϵ

u
i ≤ Rui

xi ∈ X , ui ∈ U, xf ∈ Xf , x0 = x(k)

Substitution: z := {ϵx0 . . . ϵ
x
N , ϵ

u
0 . . . ϵ

u
N−1, u

⊤
0 . . . u⊤N−1} ∈ Rs

s := (m + 1)N +N + 1 results in:

min
z

c
⊤
z subj. to Ḡz ≤ w̄ + S̄x(k)

Ḡ =

[
Gϵ Gu
0 G

]
, S̄ =

[
Sϵ
S

]
, w̄ =

[
wϵ
w

]
Solution for given x(k), U⋆ can be optained via LP solver
4.1.6 LP State Feedback Solution

Multiparam-LP minz c
⊤
z subj. to Ḡz ≤ w̄ + S̄x(k)

Properties
-First component of sol’n has form: u⋆

0 = κ(x(0)), ∀ x(k) ∈ X0

κ : Rn → Rm is cont. & pw affine on Polyhedra

κ(x) = F jx + gj if x ∈ CRj , j = 1, . . . , Nr

-Polyhedral sets CRj = {x ∈ Rn | Hjx ≤ Kj} are partition of X0
-In case of multiple optimizers, a pw affine control law exists
-J⋆(x(0)) is convex, pw linear on polyhedra
Quad vs 1/∞-norm cost
Solution is either (n = # opt. var., FS = feas. set.)
Quadratic Cost
-unique & in interior of FS (no
constraints active)
-unique & on boundary of FS
(at least 1 const. active)

Linear Cost
-Unbounded
-unique at vertex of FS (at least n active cons-
traints)
-multiple optima (min. 1 active const.)

5 MPC vs Classical Controll

5.1 Difference to Classical Control

Classical Control main issues: MPC main issues:
Distrubance rejections Control constraints (input limits)
Noise insensitivity Process/state constraints

(saftey and physical constraints)Model uncertainty
Usually in frequency domain Usually in time domain

MPC can better handle constraints as they are implemented into the control
scheme. Classical controllers usually us ad hoc constraint management or
suboptimal operation.
5.2 Advantages & Challenges

Advantages:
• Systematic and propper handling of constraints
• High performance controller
Challenges:
• Implementation:→ real-time solving is challenging
• Feasibility: Oprimization problem may become infeasible in the future
• Stability: Closed-loop stability is not automatically guaranteed
• Robustness: Closed-loop system is not nessecarily robust against uncer-

tainties or disturbances

6 Invariance

System

Autonomous x(k + 1) = g(x(k))
Closed-Loop x(k + 1) = g(x(k), κ(x(k))) for given κ

Positively Invariant Set (Minkowski sum of invariant sets is also invariant)

Set O positively invariant for autonomous system if
x(k) ∈ O ⇒ x(k + 1) ∈ O, ∀ k ∈ {0, 1, . . . }

Maximal Positively Invariant Set

O∞ ⊂ X positively invariant and
contains all other O

Initialize: Ω0 ← X
Do: Ωi+1 ← pre(Ωi) ∩ Ωi
Until: Ωi+1 = Ωi → O∞ = Ωi

Pre-Set

Given set S, the pre-set of S is the set of states that evolve into S in 1 k:

x(k + 1) = g(x(k))

⇒pre(S) := {x | g(x) ∈ S}

∣∣∣∣∣ x(k + 1) = Ax(k)

⇒pre(S) := {x | Ax ∈ S}

Pre-Set Computation Linear System
Set S := {x | Fx ≤ f}, x(k + 1) = Ax(k) then

pre(S) :={x | Ax ∈ S} = {x | FAx ≤ f}
• For {x | Fx ≤ f}, if F ↓ or f ↑ ⇝ Less Restrictive
• S ∩ F ⇝ constraints from both sets active

Invariant Set Conditions

Given set S, the pre-set of S is the set of states that evolve into S in one
time step. Set O is positively invariant set iff

O ⊆ pre(O) ⇔ pre(O) ∩ O = O
Necessary if O ⊈ pre(O), then ∃x̄ ∈ O s.t x̄ /∈ pre(O) ⇝ x̄ ∈
O, g(x̄) /∈ (O), thus O not positively invariant

Sufficient if O not pos invar set, then ∃x̄ ∈ O s.t g(x̄) /∈ O
⇝ x̄ ∈ O, x̄ /∈ pre(O) thus O /∈ pre(O)

6.1 Control Invariance

Control Invariant Set

Set C ⊆ X control invariant if

x(k) ∈ C ⇒ ∃u(k) ∈ U s.t g(x(k), u(k)) ∈ C ∀ k ∈ N+

Maximal Control Invariant Set

Set C∞ maximal control invariant if it is control invariant and contains all
control invariant sets contained in X
For all states in C∞, there exists control law s.t system constraints never
violated ⇝ The best any controller could ever do
Pre-Set pre(S) := {x | ∃u ∈ U s.t g(x, u) ∈ S}

Control Invariant Set⇒ Control Law

Let C be the control invariant set for x(k + 1) = g(x(k), u(k))
The control law κ(x(k)) will guarantee that the system satisfies cons-
traints ∀ t if g(x, κ(x)) ∈ C ∀ x ∈ C ⇝ With f as any function,
synthesize control law κ: κ(x) := argmin{f(x, u) | g(x, u) ∈ C}

• Does not ensure sys. will converge, but will satisfy constraints
• Don’t often do because calculating control invariant sets is very hard
• MPC implicitly describes cont. invar. set s.t easy to represent/compute
6.2 Practical Invariant Set Computation

Minkowski-Weyl Theorem

For P ⊆ Rd following statements equivalent:
• P polytope, ∃A, b s.t P = {x | Ax ≤ b}
• P finitely generated, ∃ finite set of {vi} s.t P = co({v1 . . . vs})

6.2.1 Invariant Sets from Lyapunov Functions

Lemma If V : Rn → R a Lyap. func. for sys. x(k + 1) = g(x(k)), then
Y := {x | V (x) ≤ α} is an invariant set for all α ≥ 0
Proof: V (g(x))−V (x) < 0⇝ once V (x(k)) ≤ α, stays there ∀ j ≥ k
6.2.2 Maximum Ellipsoidal Invariant Sets

For x(k + 1) = Ax(k) with P ≻ 0 with A⊤PA − P ≺ 0 then

V (x(k)) = x(k)⊤Px(k) is Lyap. function. Find largest α s.t set Yα ∈ X
Yα := {x | x⊤Px ≤ α} ⊂ X := {x | Fx ≤ f}
Equivalent to maxα α subj. to hYα (Fi) ≤ fi ∀ i ∈ {1 . . . n}
Support of an ellipse: hYα (Fi) = maxx Fix subj. to x⊤Px ≤ α
Fi and fi are the rows of the polytopic description of X and U
Change of Variables: y := P1/2x

⇝ hYα (Fi) = maxx FiP
−1/2y s.t y⊤y ≤

√
α2

Maximizer found by inspection:

hYα (Fi) = FiP
−1/2 P−1/2F⊤i

||P−1/2F⊤
i
||

√
α = ||P−1/2F⊤i ||

√
α

Largest ellipse now 1-dim optimization problem:

α
⋆

= maxα α s.t. ||P−1/2F⊤i ||
2α ≤ f2i ∀ i ∈ {1 . . . n}

= mini∈{1...n}
f2
i

FiP
−1F⊤

i

7 MPC Formulation
System: x(k + 1) = Ax(k) + Bu(k), x(k) ∈ Rn, u(k) ∈ Rm

Control Law is defined by: u = u⋆(0)

J
⋆
(x(k)) =minU lf (xN) +

∑N−1
i=1 l(xi, ui)

subj. to xi+1 = Axi + Bui

xi ∈ X , ui ∈ U

xN ∈ Xf , x0 = x(k)

Assumptions that need to be met:
1. Stage cost pos def, strictly positive, only 0 at origin
2. (a) Terminal set invariant under local control law κf (X):

xi+1 = Axi + Bκf (xi)
(b) All state and input constraints satisfied in Xf

3. Terminal cost is cont. Lyap. func. in terminal set Xf and satisfies

lf (xi+1)− lf (xi) ≤ −l(xi, κf (xi)) ∀ xi ∈ Xf

If 1-3 are met: CL system under MPC control law u⋆
0(x) asympt. stable and

set XN is positive invariant for system x(k+1) = Ax(k) +Bu⋆
0(x(k))

Often Quadratic Cost:

J
⋆
(x(k)) = min xTNPxN

∑N−1
i=0 x⊤i Qxi + u⊤i Rui

subj. to xi+1 = Axi + Bui

xi ∈ X , ui ∈ U, xN ∈ Xf , x0 = x(k)

Q = Q
⊤ ⪰ 0, R = R

⊤ ≻ 0
For 3. this implies: Acl = A + BK

A
T
clPAcl − P ⪯ −Q(−KT

RK), A
T
clPBcl − P ⪯ 0

7.1 Loss Of Feasibility & Stability
Infinite-Horizon Solve RHC for N =∞, OL traj. are same as CL traj.
• If problem feasible, CL trajectories always feasible
• If cost finite, states and inputs will converge asympt. to origin
Finite-Horizon RHC “short-sighted” approximating∞-horizon controller
• Feasibility – after some steps finite horizon optimal control problem may

become infeasible (disturbances, model mismatch)
• Stability – generated inputs may not lead to traj. that converge to orgin
Solution Introduce terminal cost & constraints to ensure feas. & stab.
7.2 Feasibility & Stability Guarantees

Proof Strategy
Recursive Feasibility show existence of feasible control sequence for all time

when starting from feasible initial point

• Assume feas. of x(k), {u⋆
0 , . . . , u

⋆
N−1}, {x

⋆
0 , . . . , x

⋆
N}

• At x(k + 1)⇒ {u⋆
1 , . . . , κf (x⋆N)} should be feas.

Stability show that optimal cost is Lyapunov function
• lf necessary to provide cost decrease for asympt. stability

Terminal Constraint At Zero xN ∈ Xf = 0

If at 0 and no input is given system stays there ⇝ stable and feasibly point.
need large N to approximate maximum control invariant set
General Terminal Set Xf
Need assumptions 1-3 for stability guarantees. Cost decrease proof:

Terminal Set & Cost – LQR
• Choose P = P∞ from (D)ARE
• Choose Xf to be max. invar. set for CL system (A + BF∞)xk
⇝ ellipsoidal inv. set with Lyap.

• All x, u constraints satisfied in Xf

All assumptions of Feasibility & Stability Theorem Satisfied
Useful Properties
-X1, X2 convex invar. forAx(k)⇝ αX1⊕(1−α)X2 invar ∀α ∈ [0, 1]
-X1⊆X , X2⊆X , Xi,X convex→αX1⊕(1−α)X2⊆X ∀α∈ [0, 1]

-Vi(x(k)) = x⊤(k)Pix(k) lyap. func. for x(k + 1) = Ax(k), rate of

decrease x⊤(k)Γx(k) ⇝ V (x(k)) = αV1(x(k)) + (1− α)V2(x(k))

also lyap. func. with rate of decrease x⊤(k)Γx(k) for all α ∈ [0, 1]
7.2.1 Feasibility & Stability Remarks
• Terminal constraint provides a Suffiecient Condition for feas. & stab.
• Region of attraction w/o term. const. may be larger than with term. const.
• In practice: enlarge horizon and check stability by sampling. AsN ↑, region

of attraction appraoches max. control invariant set
• CL traj. may not follow assumptions made for OL predictions
• ∞-Horizon LQR controller locally optimal ⇝ best choice for quad. cost
• ∞-Horizon provides stab. and invariance. Finite-Horizon MPC may not

be stable & may not satisfy constraints ∀ time
Extension to Nonlinearity
• Assumptions on terminal set/cost did not rely on linearity
• Lyapunov stability is general framework (works for NL sys)
• Results can be directly extended to NL systems
• However, computing sets Xf and function lf can be very difficult

2

8 Practical MPC
8.1 MPC Reference Tracking

8.1.1 Steady-State Target Tracking
Target Condition

xs = Axs + Bus

zs = Hxs = r
⇐⇒

[
I− A −B
H 0

]
︸ ︷︷ ︸

(nx+nr)×(nx+nu)

[
xs
us

]
=

[
0
r

]

• In presence of constraints, (xs, us) must satisfy them
• In case of multiple feas. us, compute ‘cheapest’

minu
⊤
s Rsus, subj. to [Target Condition], xs ∈ X , us ∈ U

• In general, asssume target problem is feasible
• If no sol’n ∃: compute reachable point ‘closest’ to r

min(Hxs − r)⊤Qs(Hxs − r), subj. to xs = Axs + Bus

8.1.2 Referenece Tracking

MPC Design
min
U
||zN −Hxs||

2
Pz

+
∑N−1

i=1 ||zi −Hxs||
2
Qz

+ ||ui − us||2R

subj. to [model, constraints], x0 = x(k)

Delta Formulation

Set pt. tracking
Coord.Trans.−−−−−−−−−−→ Regulation Problem

∆x :=x− xs
∆u :=u− us

∣∣∣∣ Gx∆x ≤ hx −Gxxs

Gu∆u ≤ hu −Guus

• Obtain target steady-state corresponding to reference r
• Initial state ∆x(k) = x(k)− xs
• Apply reg problem to new system in ∆-Formulation

min
[
Vf (∆xN) +

∑N=1
i=1 ∆x⊤i Q∆xi + ∆u⊤i R∆ui

]
subj. to ∆xi+1 = A∆xi + B∆ui, Gx∆xi ≤ hx −Gxxs

Gu∆ui ≤ hu −Guus, ∆xN ∈ Xf , ∆x0 = ∆x(k)

• Find optimal sequence of ∆U⋆

• Input applied to system u⋆
0 = ∆u⋆

0 + us

Convergence
Assume target feasible with xs ∈ X , us ∈ U , choose terminal weight
Vf (x) and constraint Xf as in regulation case satisfying

• Xf ⊆ X , Kx ∈ U ∀ x ∈ Xf

• Vf (x(k + 1))− Vf (x(k)) ≤ −l(x(k), Kx(k)) ∀ x ∈ Xf
If in addition the target reference xs, us is such that
• xs ⊕ Xf ⊆ X , K∆x + us ∈ U, ∀∆x ∈ Xf
then CL system converges to target reference

x(k)→ xs, z(k) = Hx(k)
k→∞−−−−→ r

Proof
• Invariance under local ctrol law inherited from regulation case
• Constraint satisfaction provided by extra conditions

– xs ⊕ Xf ⊆ X → x ∈ X ∀∆ ∈ X{
– K∆x + us ∈ U ∀∆x ∈ Xf → u ∈ U
– Fron asympt stability of the regulation problem: ∆x(k)

k→∞−−−−→ 0

Terminal Set
• Set of feasible targets may be significantly reduced.
• Enlarge set of feasible targets by scaling terminal set for regulation

X scaled
f = αXf

• Invariance maintained if Xf invariant ⇝ so is αXf
• Choose α s.t. x, u constraints still satisfied ⇝ scaling target dependent
• Targets at the boundary of the constraints: xN = xs, correspons to

0-terminal set in regulation case
8.2 Disturbance Rejection

Augmented Model

xk+1 = Axk + Buk + Bddk

dk+1 = dk, yk = Cxk + Cddk

Observability of aug. system: rank
([

A−I Bd
C Cd

])
!
= nx + nd

Inuition At steady-state
[
A−I Bd
C Cd

] [
xs
ds

]
=

[
0
ys

]
and given ys, ds must

be uniquely defined
Linear State Estimation
Observer For Augmented Model:[

x̂(k+1)

d̂(k+1)

]
=

[
A Bd
0 I

] [
x̂(k)

d̂(k)

]
+

[
B
0

]
u(k)

+

[
Lx
Ld

]
(−y(k)+Cx̂(k)+Cdd̂(k))

Error Dynamics⇒ choose L s.t error dynamics asympt. stable[
x(k+1)− x̂(k+1)

d(k+1)− d̂(k+1)

]
=

[
A Bd
0 I

] [
x(k)− x̂(k)
d(k)− d̂(k)

]
−

[
Lx
Ld

]
(Cx̂(k) + Cdd̂(k)− Cx(k)− Cdd(k))

=

([
A Bd
0 I

]
+

[
Lx
Ld

]
[C Cd]

)[
x(k)− x̂(k)
d(k)− d̂(k)

]

Observer Steady-State
Suppose observer asympt. stable and ny = nd[

A− I B
C 0

] [
x̂∞
u∞

]
=

[
−Bdd̂∞

y∞ − Cdd̂∞

]
⇝ Observer output Cx̂∞ + Cdd̂∞ tracks y∞ without offset
Offset-Free Tracking
Goal Track constant r: z(k) = Hy(k)→ r as k →∞
Steady-State Condition

xs = Axs + Bus + Bdd̂∞, zs = H(Cxs + Cdd̂∞) = r

• Best forecast for d∞ is current estimate d̂∞ = d̂
• Same Procedure for regulation case with r = 0

Offset-Free Tracking Condition:

[
A− I B
HC 0

] [
xs
us

]
=

[
−Bdd̂

r −HCdd̂

]
Offset-Free Tracking Procedure

1. Estimate x̂ & d̂
2. Obtain (xs, us) from steady-state tgt problem using d̂
3. Solve MPC problem for tracking using d̂, x̃i := xi−xs, ũi = ui−us

min
U
Vf (x̃N) +

∑N−1
i=0 (x̃i)

⊤Q(x̃i) + (ũi)
⊤R(ũi)

subj. to xi+1 = Axi + Bui + Bddi, di+1 = di

xi ∈ X , ui ∈ U, x0 = x̂(k), d0 = d̂(k), xn − xs ∈ Xf

Offset-Free Tracking: Main Result

With u⋆
0 = κ(x̂(k), d̂(k), r). Assuming nd = ny , RHC recursively fea-

sable and unconstrained for k ≥ j, j ∈ N+ and the CL system:

x(k + 1) = Ax(k) + Bκ(x̂(k), d̂(k), r) + Bdd

x̂(k + 1) = (A + LxC)x̂(k) + (Bd + LxCd)d̂(k)

+ Bκ(x̂(k), d̂(k), r)− Lxy(k)

d̂(k + 1) = LdCx̂(k) + (I + LdCd)d̂(k)− Ldy(k)

converging, i.e. ((x̂, d̂)
k→∞−−−−→ (x∞, d∞))

Then z(k) = Hy(k)
k→∞−−−−→ r

8.3 Enlarging Feasible Set
8.3.1 No Terminal Set
Motivation Terminal constraints reduce feasible set, Stability guarantees can
add large number of constraints and adds state constraints to problems with
only input constraints.
Goal MPC without terminal constraints with guaranteed stability
Note Feasible set without terminal constraint not invariant
MPC Without Terminal Set
Can remove terminal constraint while maintaining stability if
• Initial state lies in sufficiently small subset of feasible set
• N sufficiently large
s.t term. state satisfies term. const. without envorcining it in the optimizati-
on. ⇝ Sol’n of finite-horizon MPC problem corresponds to∞-horizon sol’n
Advantage – Controller defined in larger feasible set
Disadvantage – Characterization of region of attaction of specification of
required horizon length extremely difficult
• Term constraint provides sufficient condition for stab: Region of attraction

without term constraint may be larger than with
• In practice: Enlarge horizon and check stability by sampling
• N ↑ ⇝ RoA approachees max control invar. set
8.3.2 Soft constraints
Motivation Input constraints usually ‘hard’ due to physical limits, state cons-
traints rarely ‘hard’ (more safety and comfort reasons)
Goal Min size & duration of violation (usually conflict!)
MPC Problem Setup

min
u
x
⊤
NPxN + lϵ(ϵN) +

∑N−1
i=0 x⊤i Qxi + u⊤i Rui + lϵ(ϵi)

s.t. xi = Axi + Bui, Hxxi ≤ kx+ϵi, Huui ≤ ku, ϵi ≥ 0

Requirement on lϵ
Original Problem “Softened” Problem

min
z

f(z) s.t g(z) ≤ 0 min
z

f(z)+lϵ(ϵ) s.t g(z) ≤ ϵ, ϵ ≥ 0

If original problem has feasible solution z⋆, Softened problem should have
same solution z⋆, and ϵ = 0.
Note lϵ(ϵi) = sϵ2i does not fulfill requirement

Choice of Penalty

• Quad. Penalty lϵ(ϵi) = ϵ⊤i Sϵi (e.g S = Q)

• Quad. + Linear Penalty lϵ(ϵi) = ϵ⊤i Sϵi + v||ϵi||1/∞
Exact Penalty Function
lϵ(ϵ) = v · ϵ satisfies requirement for any v > λ⋆ ≥ 0, where λ⋆ is
optimal Lagrange multiplier for original problem.
In practice combined cost→ exact penalty and tuning capabilities

lϵ(ϵ) = v · ϵ + ϵ
⊤
Sϵ

with v > λ⋆ and S ≻ 0.
Tuning
• Increasing S leads to hardeing of constraints→ reduced violation size but

longer duration
• Increasing v leads to constraint satisfaction if possible→ larger but shorter

violation

Objective Seperation

1. Minimize violation over horizon:

ϵ
min

= argminu,ϵ
∑N−1

i=0 ϵ⊤i Sϵi + v⊤ϵi

s.t xi+1 = Axi + BuiHxxi ≤ kx + ϵi

Huui ≤ ku, ϵi ≥ 0
2. Optimize Controller performance

minu x
⊤
NPxN +

∑N−1
i=0 x⊤i Qxi + u⊤i Rui

s.t xi+1 = Axi + Bui, Hxxi ≤ kx + ϵ
min
i , Huui ≤ ku

Simplifies tuning and constraint satisfied if possible, but two optimization
problems have to be solved.
Note SC MPC does not provide stability guarantee for OL unstable sys.

9 Robust MPC for Linear Systems

9.1 Robust Open-Loop MPC

9.1.1 Uncertainty Models

Motivation: Random noise w influences system evolution, Model structure is
unknown, Unknown parameters θ impact dynamics.
Uncertain Constrained System

x(k + 1) = g(x(k), u(k), w(k); θ),

x, u, w, θ ∈ X ,U,W,Θ
9.1.2 Robust Invariance

Robust Positive Invariant Set

Set OW said to be robust positive invariant for the autonomous system
x(k + 1) = g(x(k), w(k)) if

x ∈ OW ⇒ g(x,w) ∈ OW , ∀w ∈ W, ∀ k

Robust Pre Set

Given set Ω and dynamic system x(k + 1) = g(x(k), w(k)),

pre
W

(Ω) := {x | g(x,w) ∈ Ω ∀w ∈ W}

Maximal Robust Positively Invariant Set

OW∞ ⊂ X positively invariant and contains all other OW :
Calculation using the algorithm for the nominal case.

Computing Robust Pre-Sets for Linear Systems

System Ax(k) + w(k), set Ω := {x | Fx ≤ f}
pre
W

(Ω) = {x | FAx ≤ f − max
w∈W

Fw}

= {x | FAx ≤ f − hWi (F)}
hW is the support function

Robust Invariant Set Conditions

Set OW is a robust positive invariant set iff

OW ⊆ pre
W

(OW) ⇔ pre
W

(OW) ∩ OW = OW

9.1.3 Impact of Additive Bounded Noise

Additive Bounded Noise System:
x(k + 1) = Ax(k) + Bu(k) + w(k),

x, u, w ∈ X ,U,W
Uncertain State Evolution:

ϕi = A
i
x0 +

∑i−1
j=0 A

jBui−1−j︸ ︷︷ ︸
xi ≡ Nominal System

+
∑i−1

j=0 A
jwi−1−j︸ ︷︷ ︸

Disturbance Offset

Robust Open-Loop MPC

Robust Open-Loop MPC

min
U
lf (xN) +

∑N−1
i=0 l(xi, ui)

subj. to xi+1 = Axi + Bui

xi ∈ X ⊖ (
⊕i−1

j=0 A
jW), ui ∈ U

x0 = x(k), xN ∈ Xf ⊖ (
⊕N−1

j=0 AjW)

where Xf ⊆ X robust positive invariant set for system (A+BK)x(k)+

w(k) with w ∈ W ∀ k for some stabilizingK, andKx ∈ U ∀ x ∈ Xf

Intuition Nominal MPC, but with tigher state constraints
Open-Loop: Not accounting for FB during solving, just plan ahead for w
Caution:
Unstable systems Ai−1W grows→ use ‘pre-stabilization’ ui = Kxi+ui
Potentially very small region of attraction, particularly for unstable sys

9.1.4 Robust Constrained Control

Goals: Design u(k) = κ(x(k)) such that the system
(a) Satisfies constraints: {x(k)} ⊂ X , {u(k)} ⊂ U for all disturbances
(b) Is Stable: converges to a neighborhood of the origin
(c) Optimizes (expected/worst-case) ‘Performance’
(d) Maximizes Set {x(0) | Condition 1-3 met}

(a) Robust Constraint Satisfaction

Ensure all states ϕi(x0, U,W) satisfy system constraints X :
• State & Input Constraints for i = 0, . . . , N − 1,

Enforce constraints explicitly by imposing:

ϕi ∈ X , ui ∈ U, ∀W ∈ WN

• Terminal Constraints for i = N, . . .
Enforce constraints implicitly by:
Constraining ϕN ∈ robust invariant set Xf andKXf ∈ U for ϕi+1 =

(A + BK)ϕi + wi
We want for all i = 0, . . . , N :

ϕi(x0, U,W) =
{
xi +

∑i−1
j=0 A

jwi−1−j | W ∈ Wi
}
⊆ X

Assume X = {x | Fx ≤ f} (polyhedron)

Fxi ≤ f − hWi

(
F

∑i−1
j=0 A

j
)

→ tightening constrains on the nominal system.
Support function hWi can be pre-computed offline.

Same goes for i = N, . . . ,∞, i.e. ϕN (x0, U,W) ⊆ Xf .
Requirement can be rewritten as:

ϕi ∈ xi ⊕ (W ⊕ AW . . . A
i−1W) ⊆ X

or

xi ∈ X ⊖
(⊕i−1

j=0 A
jW

)
Fi =

⊕i−1
j=0 A

jW is called disturbance reachable set.

Note: Fi+1 = AFi ⊕W
Caution: Must ensure term state contained in robust invariant set
Intuition: Tightening constraints on the nominal system
(b) Is stable: To show stability more general stability theory is needed.

(c) – Optimizes Performance

Cost to Minimize:

J(x0, U,W) := lf (ϕN (x0, U,W)) +
∑N−1

i=0 l(ϕi(x0, U,W), ui)

Several options to eliminate dependence on W :
• Minimize expected value: JN (x0, U) = E{J(x0, U,W)}
• Take the worst case: JN (x0, U) := max

W∈WN=1 J(x0, U,W)

• Take the Nominal Case JN (x0, U) := J(x0, U, 0)

(d) Maximizes Set: potentially very small region of attraction

9.2 Robust Closed Loop MPC

Increase the feasibly set using closed-loop feedback.
9.2.1 Closed-Loop Predictions
Goal optimize over seq. of funcs {u0, µ1(·), . . . , µN−1(·)}
where µi(xi) : Rn → Rm is called control policy
Problem Can’t optimize over arbitrary functions!
Solution assume some structure on functions µi
Pre-Stabilization µi(xi) = Kxi + vi

Fixed K, s.t A + BK stable→ Simple, often conservative
Linear Feedback µi(xi) = Kixi + vi

Optimize over Ki, vi, Non-Convex – Extremely difficult to solve

Disturbance Feedback µi(xi) =
∑i−1

j=0Mijwj + vi
Optimize over Mij , vi → Equiv to linear feedback but Convex → Ef-
fective, but computationally intense

Tube-MPC µi(xi) = vi +K(xi − x̄i)
Fixed K, s.t A + BK stable → Optimize over x̄i, vi → Simple, can
be effective

9.2.2 Tube-MPC

System: x(k+1) = Ax(k) +Bu(k) +w(k) x, u ∈ X ,U w ∈ W
Idea Seperate available control authority into 2 parts
(1) Portion that steers nominal system to origin:

z(k + 1) = Az(k) + Bv(k)
(2) Portion that compensates for deviations from this system ui = K(xi−

zi) + vi (keeps real traj close to nominal), for some linear K, which
stabilizes nominal system

→ Fix linear feedback K offline and optimize over nominal trajectory
{v0, . . . , vN−1} → convex problem
Error Dynamics
Define ei := xi − zi ⇝ ei+1 = (A + BK)ei + wi
Bound maximum error, how far ‘real’ traj from nominal

ei+1 = (A + BK)ei + wi wi ∈ W
Dynamics A + BK are stable, set W bounded ⇝ Set E s.t e stays inside
∀ k → ‘minimal robust invariant set’
Tube-MPC Procedure

(a) Compute set E that error remains inside
(b) Modify constraints on nominal traj {zi}
(c) Formulate as convex optimization problem

(a) Minimum Robust Invariant Set (mRPI)

Minimum Robust Invariant Set

F∞ =
∞⊕
j=0

A
jW

F0 :={0}
If Fn = Fn+1 ⇒ Fn = F∞

Algorithm to Compute F∞
Ω0 ← {0}
loop

Ωi+1 ← Ωi ⊕ AiW
if Ωi+1 = Ωi then

return F∞ = Ωi
end if

end loop

-Finite n does not always exist, ‘large’ n often good approximation.
-If n not finite, other methods for small invariant sets, bit larger than F∞

3

(b) Modify Nominal Trajectory Constraints
Noisy System Trajectory:
Given nominal trajectory zi noisy system trajectory xi = zi + ei will be
somewhere in E

xi ∈ zi ⊕ E = {zi + e | e ∈ E}
Goal xi, ui ∈ X ,U for all {wi} ∈ Wj

State Condition Necessary & Sufficent Condition
zi ⊕ E ⊆ X ⇔ zi ∈ X ⊖ E

Input Condition:
ui ∈ KE ⊕ vi ⊂ U ⇔ vi ∈ U ⊖KE

Set E known offline – can compute constraints offline!

Ideally E is the minimum RPI set F∞ =
⊕∞

j=0 A
jW

(c) Convex Optimization Problem
Problem Formulation:

min
Z,V

lf (zN) +
∑N−1

i=0 l(zi, vi)

s.t. zi+1 = Azi + Bvi

zi ∈ X ⊖ E, ui ∈ U ⊖KE

zN ∈ Xf , x(k) ∈ z0 ⊕ E

 =: Set Z

Control Law : µtube(x) := K(x− z⋆0 (x)) + v
⋆
0 (x)

• Optimizing nominal system with tightened state, input constraints
• First tube center z0 is opt. var. ⇝ has to be within E of x0
• Cost is w.r.t tube centers, terminal set is w.r.t tightened constraints
Caution: K(x− z⋆0 (x)) + v⋆0 (x) NOT LINEAR in CL

Robust Invariance

Suppose the terminal ingredients (lf ,Xct
f , πf) are designed such that

Xct
f ⊂ X and for all z ∈ Xct

f :

• πf (z) ∈ U
• Az + Bπf (z) + w ∈ Xct

f ∀w ∈ W
• lf (Az + Bπf (z))− lf (z) ≤ −l(z, πf (z))

Let XN be the feasible set and V ⋆(x(k)) be the optimizer of the robust
constraint-tightening MPC problem.
Then Ax(k) + Bv⋆0 (x(k)) + w(k) ∈ XN ∀w(k) ∈ W
→ problem is recursively feasible

Robust Constraint Satisfaction
Tube-MPC Assumptions: almost the same as for nominal MPC
(1) Stage cost pos def, i.e strictly pos and only 0 at origin
(2) Terminal set is invariant for the nominal system under local control law

κf (z): Az + Bκf (z) ∈ Xf ∀ z ∈ Xf
All tightened state and input constraints satisfied in Xf :

Xf ⊆ X ⊖ E, κf (z) ∈ U ⊖KE ∀ z ∈ Xf

(3) Terminal cost is cont. Lyapunov function in terminal set Xf :

lf (Az + Bκf (z))− lf (z) ≤ −l(z, κf (z)) ∀ z ∈ Xf

Theorem: Robust Invariance of Tube-MPC

Set Z := {x | Z ≠ ∅} is robust invariant set of system x(k + 1) =
Ax(k) + Bµtube(x(k)) + w(k) subject to constraints x, u ∈ X ,U

Proof let ({v⋆0 . . . v
⋆
N−1}, {z

⋆
0 . . . z

⋆
N}) be optimal sol’n for x(k) At

next point in time, state x(k + 1) may have many possible values due to
disturbance
By construction, state x(k + 1) in in the set z⋆1 ⊕ E ∀W
Therefore the following sequence is feasible for all x(k + 1)

({v⋆1 . . . v
⋆
N−1, κf (z

⋆
N)}, {z⋆1 . . . z

⋆
N︸ ︷︷ ︸

feas. IC

, Az
⋆
N + Bκf (z

⋆
N)︸ ︷︷ ︸

∈Xf⇝feas.

})

Robust Stability

Robust Stability of Tube-MPC

State x(k) of system x(k + 1) = Ax(k) + Bµtube(x(k)) + w(k)
converges in the limit to the set E

Proof As in standard MPC we have

J
⋆
(z

⋆
0 (x(k))) = lf (z

⋆
N) +

∑N−1
i=0 l(z⋆i , v

⋆
i)

J
⋆
(z

⋆
0 (x(k + 1))) ≤ lf (z

⋆
N) +

∑N−1
i=1 l(z⋆i , v

⋆
i)

+l(z
⋆
0 , v

⋆
0)− l(z⋆0 , v

⋆
0) + lf (z

⋆
N)− lf (z

⋆
N)

= J
⋆
(x(k))− l(z⋆0 , v

⋆
0)︸ ︷︷ ︸

≥0

−lf (z
⋆
N)+lf (zN+1)+l(z

⋆
N , κf (z

⋆
N))︸ ︷︷ ︸

≤0 (lf is lyap function in Xf)

This shows lim
k→∞

J(z
⋆
0 (x(k))) = 0, therefore lim

k→∞
z
⋆
0 (x(k)) = 0

Caution:
• x(k) does not tend to 0! It only stays within robust invar set centered at
z⋆0 (x(k)) : limk→0 dist(x(k), E) = 0

• E must be robust positive invariant for proof (so error remains bounded)

9.3 Tube-MPC Implementation

Offline Design

(1) Choose stabilizing controller K s.t ||A + BK|| < 1
(2) Compute mRPI set E = F∞ for system x(k+1) = (A+BK)x(k)+

w(k), w ∈ W
(3) Compute tightened constaints X̃ := X ⊖ E, Ũ := U ⊖KE
(4) Choose terminal weight function lf and constraint Xf satisfying ass-

umptions on tube MPC

LQR Terminal Constraint (typical choice)

• Choose LQR terminal control law κf (x) = Kx, (Q,R same as MPC)

• Find Xf invar under this controller s.t satisfies constraints

Online Design

(1) Measure / Estimate state x
(2) Solve optimization problem:

(V ⋆(x0), Z
⋆(x0)) = argminV,Z{J(Z, V) | (Z, V) ∈ Z(x0)}

(3) Set input to u = K(x− z⋆0 (x)) + v⋆0 (x)

Tube-MPC Summary

Benefits
• Less conservative than OL robust

MPC (now actively compensating
for noise in prediction)

• Works for unstable systems

• Optimization problem to solve is
‘simple’

Cons
• Sub-optimal MPC (optimal extre-

mely difficult)

• Reduced feasible set when com-
pared to nominal MPC

• We need to know what W is
(usually not realistic)

9.4 Robust MPC for Uncertain Systems - Summary

Idea compensate for noise in prediction to ensure constraint satisfaction

Benefits
• Feasible set invariant – know exactly

when controller will work

• Easier to tune – knobs to tradeoff
robustness against performance

Cons
• Complex (tubes easy to imple-

ment, complex to understand)

• Must know largest noiseW
• Often conservative

• Feas set may be small
9.5 Robust MPC - Extensions

9.5.1 Robust Constraint Tightening MPC

Idea Combine best of Robust OL and Tube-Based MPC
→ Use propagated error bound to tighten constraints
Error Dynamics:
ei+1 = (A + BK)ei + wi = AKei + wi, wi ∈ W

If e0 = 0 then ei =

i−1∑
j=0

A
j
wi−1−j ∈ W ⊕ AKW ⊕ . . . A

i−1
K W

Problem Setup:

min
Z,V

lf (zN) +
∑N−1

i=0 l(zi, vi)

subj. to zi+1 = Azi + Bvi

zi ∈ X ⊖ (W ⊕ AKW ⊕ . . . A
i−1
K W)

ui ∈ U ⊖K(W ⊕ AKW ⊕ . . . A
i−1
K W)

zN ∈ Xf ⊖ (W ⊕ AKW ⊕ . . . A
N−1
K W)

z0 = x(k)

Control Law u(k) = v
⋆
0 +K(x(k)− z0) = v

⋆
0

Motivation can robustly ensure constraint satisfaction at each time step
Note need terminal set Xf that is robust invariant under tube controller K

9.5.2 Nominal MPC with Noise

Standard MPC Problem for x(k + 1) = Ax(k) + Bu(k) + w(k)

J⋆(x0) = min
U

lf (xN) +

N−1∑
i=0

l(xi, ui)

s.t xi+1 = Axi + Bui, xi, ui, xN ∈ X ,U,Xf

Effect on Lyapunov Function

Assume Optimal cost J⋆ Lipschitz continuous

|J⋆
(Ax + Bu

⋆
(x) + w)− J⋆

(Ax + Bu
⋆
(x))|

≤ γ||Ax + Bu
⋆
(X) + w − (Ax + Bu

⋆
(x))|| = γ||w||

Lyapunov Decrease can be bounded as

J
⋆
(Ax + Bu

⋆
+ w)− J⋆

(x) −J⋆
(Ax + Bu

⋆
+ w) + J

⋆
(x)

≤ J⋆
(Ax + Bu

⋆
)− J⋆

(x) + γ||w|| ≤ −l(x, u⋆
) + γ||w||

• Amount of decrease grows with ∥x∥
• Amount of increase upper bounded by max{∥w∥ | w ∈ W}
Benefits
• No special knowledge required –

‘just works’ (sometimes)

• Often very effective in practice

• Large feasible set

• Region of attraction may be relative-
ly large

Cons
• Very difficult to determine region

of attraction (set of states where
controller works)

• Hard to tune

• Only works for NL systems under
continuity assumptions

ISS – Input-To-State Stability

Input-to-State Stability

What we have shown is that our system is Input-to-State Stable.

Much more general theory than what is given here2

Asymptotic stability

Bound that !
monotonically !
decreases to zero

�xi�

time
System converges to zero

ISS stability

Bound that !
monotonically !
decreases to

�xi�

time

max{�w� |w �W}

Converges to set around zero, who’s
size is determined by size of the noise

2Limon, D., Alamo, T., Raimondo, D. M., Muñoz de la Peña, D., Bravo, J. M., Ferramosca, A., and Camacho, E. F. (2009). Input-to-State
Stability: A Unifying Framework for Robust Model Predictive Control. In L. Magni, D. M. Raimondo, & F. Allgöwer (Eds.), Nonlinear Model
Predictive Control (Vol. 384, pp. 1-26). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-01094-1

MPC Lec. 10 - Robust MPC - Extensions 12 2 – Robustness of Nominal MPC

10 Implementation
10.1 Explicit MPC

Introduction

OFFLINE ONLINE

U?(x(k)) = argmin
U

xT
N PxN +

N−1∑

i=0

x>i Qxi + u>i Rui

subj. to x0 = x(k)

xi+1 = Axi + Bui , i = 0, . . . ,N − 1

xi ∈ X , ui ∈ U , i = 0, . . . ,N − 1

xN ∈ Xf

• Optimization problem is parameterized by state

• Pre-compute control law as function of state x

• Control law is piecewise affine for linear system/constraints

Result: Online computation dramatically reduced and real-time
Tool: Parametric programming

MPC Lec. 11 - Implementation 3

Recall: Quadratic Cost State Feedback Solution
MP-QP – Multiparametric Quadratic Program

J
⋆
(x(k)) = min

U

[
U
⊤
x(k)

⊤
] [

H F⊤
F Y

] [
U
⊤
x(k)

⊤
]⊤

subj. to GU ≤ w + Ex(k)

Solution Properties – J⋆(x(k)) convex and PW Quad. on polyhedra.

Active Set for l = 1, . . . ,m
Define active set at x, A(x), and it’s complement NA(x) as

A(x) :={j ∈ l : Gjz
⋆
(x)− Sjx = wj} (satisfied with eq.)

NA(x) :={j ∈ l : Gjz
⋆
(x)− Sjx < wj} (strict inequality)

Critical Region
CRA is set of parameters x for which set A ⊆ l of constraints i active at
the optimum. For given x̄ ∈ K⋆ let (A,NA) := (A(x̄), NA(X̄)). Then

CRA := {x ∈ K⋆
: A(x) = A} (states share active set)

Point Location
• Sequential Search – Computationally linear, very simple, works for all pro-

blems
• Search Tree – Potentially logarithmic, significant offline processing (reaso-

nable for < 1k regions)

Remarks on Explicit MPC
• Linear MPC + Quad / Linear-norm cost ⇝ Controller PWA func.
• Can pre-compute this function offline
• Online evaluation of PWA function very fast (ns - µs)
• Can only do this for small systems (3-6 states, small horizon)
10.2 Iterative Optimization Methods
Generic Optimization Problem:
convex if f : Rn → R and set Q convex
Analytical sol’n cannot be obtained except simplest cases

minimize f(x)

subj. to x ∈ Q
Iterative Optimization Methods Given initial guess x(0), produce sequence
of iterates

x
(i+1)

= ψ(x
(i)
, f,Q), i = 0, . . . ,m− 1

such that |f(x(m))− f(x⋆)| ≤ ϵ and dist(x(m),Q) ≤ δ
where ϵ and δ are user defined tolerances
10.3 Unconstrained Minimization

Optimality Conditions

Assume f(·) diff’bar at x⋆. If f convex, then x⋆ global min iff∇f(x⋆) =
0

Descent Methods

x
(i+1)

= x
(i)

+ h
(i)

∆x
(i)

with f(x(i+1)) < f(x(i))
• ∆x: step/search direction

• h(i): step size/length

• f(x(i+1)) < f(x(i)) i.e

∆x(i) is descent function

Input x(0) ∈ dom(f)
repeat

Compute descent dir. ∆x(i)

Line Search: choose step size h(i) > 0

s.t f(x(i) + h(i)∆x(i)) < f(x(i))

Update x(i+1) := x(i) + h∆x(i)

until termination condition
(e.g f(x(m)) − f(x⋆) ≤ ϵ1)

• ∃h(i) > 0 s.t f(x(i+1)) < f(x(i)) if ∇f(x(i))⊤∆x(i) < 0

Descent Direction

• Gradient descent x(i+1) = x(i) − h(i)∇f(x(i))
– Assume ∇f Lipschitz-continuous ||∇f(x)−∇f(y)|| ≤ L||x− y||
– Choose constant step size h(i) = 1/L

• Newton Step x(i+1) = x(i) + h(i)∆xnt

– ∆xnt = −(∇2f(x(i)))−1∇f(x(i))
– Exact Line Search h(i)⋆ = argminh>0 f(x

(i) + h(i)∆xnt)
Optimization in 1 var ⇝ solve by bisection, time consuming

– Inexact Line search: find h(i) that decreases f by some amount

10.4 Constrained Minimization

Projected Gradient Methods

Incorporate Constraints in Gradient Step

x
(i+1)

= πQ(x
(i) − h(i)∇f(x(i)))

Projection πQ = argminx
1
2
∥x−y∥22 s.t x ∈ Q

• Simple input constraints

• State constraints: hard ⇝ solve for dual

Constrained Minimization Using Gradient Methods

Consider the following constrained convex optimization problem:

minimize f (x)
subject to x ∈ Q (P)

where Q is convex and f is convex and L-smooth.

⇒ Incorporate constraints in gradient step:

x (i+1) = πQ (x (i) − h(i)∇f (x (i)))

where πQ is a projection:

πQ(y) , arg min
x

1
2
‖x − y‖22

s.t. x ∈ Q

Can similarly choose h(i) = 1/L,
convergence rates are as in the unconstrained case.

MPC Lec. 11 - Implementation 41 2 – Constrained Minimization

Interior-Point Methods
System min f(x) s.t. gi(x) ≤ 0, i = 1, . . . ,m Assumptions f, gi
convex, twice cont. diff’bar. f(x⋆) is finite and attained, stict feasiblity
∃g(x̃) < 0, feasible set closed & compact Idea Reformulate as uncons-
trained problem
Primal-Dual Interior-Point Methods

Idea – Iteratively solve relaxed KKT sys-
tem leave λ⋆

i as variables, linearize and
solve resulting sytem of linear eqns at each
iteration
Search Direction ∆[x, ν, λ, s](v)
• v = 0 pure Newton direction

“predictor”/“affine-scaling”

• v = κ1 centering direction, approach
central path

Search Directions in Primal-Dual Methods
Can generate different directions ∆ [x , ν, λ, s] (v) depending on v :

C

s1

λ1

(x, y ,λ, s)

∆ [x, y ,λ, s] (0)

∆ [x, y ,λ, s] (κ1)

σ ∈ (0, 1)

∆ [x, y ,λ, s] (σκ1)

• v = 0: pure Newton direction (“predictor” or “affine-scaling”)
• v = κ1: centering direction, approach central path

⇒ Using linear combination via centering parameter σ ∈ (0, 1) ensures fast
convergence in theory & practice by tracking central path to solution
MPC Lec. 11 - Implementation 47 2 – Constrained Minimization

⇒ combine via centering para-
meter σ ∈ (0, 1)

11 Appendix
11.1 Set Operations
Minkowski Sum: A⊕ B := {x + y | x ∈ A, y ∈ B}
Pontryagin Difference: A⊖ B := {x | x + e ∈ A ∀ e ∈ B}
Caution: A⊖ B ⊕ B ⊆ A
11.2 Exercises

4

