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1 SYSTEM THEORY
MODELS OF DYNAMIC SYSTEMS

NL TI CT SS Model X CR"
x = g(x, u) JeR™ g:R"xR" =+ R"
y:h(x’u) yER” h:R"xR"™ — R”

LINEARIZATION & DISCRETIZATION

Taylor Expansion ACER¥N BCER™™
around operating point T —
. « — 99 99
X (first order) f(x) = X= BTl OX+ gy s ou
_ or _ y:%xséX‘f’%xséu
f(X)+8><7T_(X_X) us v T
X CeRpxn DERPXM
Exact cl_ t A(t—r
Solution X(t) — A (t to)XO + fto At )BCU(T)dT

=A
— —~
X(k+1)=1+4 TAx(k)+ TsBu(k)
y(k)=Cx(k) + Du(k)
Exact Discretization assume v constant over interval

X(ter1) = X T x(ti) + [y AT Bedr u(ty)
=A

Euler Discretiz. =B

X (t+Ts)—x(t)

s

. C
X =

B=(A¢)~1(A-T)Be

DT LTI Solution
x(k + N) = AVx(k) + SV P ABu(k+ N —1— )

LINEAR SYSTEM ANALYSIS

DT Stability x(k + 1) = Ax(k) stable iff |\;j| < 1,Vj
LTI DT Controllability can reach x* from x(0) in n steps

c=[B A1B] = rank(C) = n
DT Observability uniquely distinguish IC from output

o=][cT (CAHT]T = rank(0) = n
Stabilizability iff all uncontrollable modes stable

if rank([\T— A| B]) = n¥\; € A} = (A, B) stabilizable
Detectablitiy iff all unobservable modes stable

if rank([AT = NI CT]) = nV)\ € A} = (A, C) detect.

NONLINEAR SYSTEM ANALYSIS
Lyapunov Stability (w.r.t eq. point x of a system)

|

RECURSIVE APPROACH

- i . St P« 'DN
Idea apply DPOC ~~ solve j-step optimal cost-to-go fori— N -1
N—1 do
JF(x()) = Umin XATPXN+Z(X,T Qx;+u;" Ru;) F + f(P)
Ol i= P« f(F)
end for

Optimal Control Policy
= —(B"Pi 1B+ R)BTP 1A -x(i) = Fix;

Optimal Cost-To-Go J*(x;) = x;' Pix;
RDE - Riccati Difference Equation (P = P)

Pi=ATPi1A+Q—ATPi1B(BT Pi1B+R) BT P A

*
Ui

Numerically Safer
Alternative

COMPARISON - BATCH VS RECURSIVE

* Return

— Batch — sequence of numeric values U*

— Recursive — feedback policies v}
Control actions identical if perfect model
Disturbances — Recursive more robust to disturbances
Computational efficiency

— Recursive more efficient for large N

— Matrix inversion in Batch approach expensive
Constraints — Neither works with constraints on x; or v;
Batch Approach easier to adapt when contraints are present
constrained minimization (solving for Ji;; with constraints) hard

RHC — RECEDING HORIZON CONTROL

| P = Q-+ FTRF;+ (A+ BF,)T P(A+ BF)) |

.

Idea Compute opt.
sequence over
N-step horizon

— T N—1 T T
U* := argmin xy Pxy + >0, X' Qx; + u;' Ru;

subj. to xjy1 = Ax; + Bu; = U~*

» Extract first input in sequence: U* = {ug, ..., uy_,} = ug

* Introduce feedback to sys: x(k + 1) = Ax(k) + Bu(k) = x

Why Reoptimize Provides robustness to noise / modeling errors,

Sol’'n at k subopt. (finite horizon) ~- reopt. potentially better performance

INFINITE HORIZON LQR

» CostLet N — 0o v Joo(Xx(0)) = miny, 3°72,
» RDE satisfied with P; = P;11 = Pso

* Input Feedback matrix Foo ~ u* (k) := Foox(k)
LQR Lyapunov Function

If (A, B) stabilizable, (Q1/2, A) detectable ~» J*(x) = x| Poox is Lyap.
func. for system x™ = (A + BFo)x

X/T Qx; + u,—r Ruj

Choice of P in Finite Horizon Control

» Can choose to match co-Horizon sol'n ~~ Make P =~ Jy_, », with ARE
» Can Choose P assuming no control action after end of horizon
This P determined from solving Lyap eqn ATPA+ Q = P
Only makes sense if system asympt. stable
» Assume we want state and input both to be 0 at end of horizon ~~ no
P but extra constraint x;,y = 0

3 CONVEX OPTIMIZATION
PROBLEM FORMULATION

Lyapunov Stable Globally Asympt. Stable
for every € > 0 exists d(e) s.t. Lyap. stable & Attractive
[|x(0) = X|| < 8(e) — ||x(k) = X|| < €]] limk—oo|lx(k) — X|| = 0 ¥x(0)

Global Lyapunov Function (Candidate)

Consider eq point x = 0. V : R” — R, continuous at origin, finite Vx,
(1) [|x]] = 00 = V(x) = o0
(2) V(0)=0, V(x)>0 v¥xeR"\{0}
() V(9(x)) = V(x) £ —a(x) Vx€eR"

where « : R" — R continuous pos. def.

Global Lyapunov Stability
(1f sys admits a V(x) = x = 0 is Globally Asympt. Stable |

ACHTUNG if o pos. semidef = x = 0 is Globally Lyapunov Stable

2 UNCONSTRAINED LQR CONTROL

LINEAR QUADRATIC OPTIMAL CONTROL
Dynamics

Constraints
k) + Bu(k) | NONE for state OR input

|X/+1 = Ax(

Goal ~~ minimize Quadratic Cost subj. to dynamics

J*(x(0)) := mJn [x,\T, Pxy + YN0 Qxi + uf Ru,-)}

* N : horizon length
«P>0, P=PT

BATCH APPROACH
Idea explicitly represent x; € R” through xp & u; € R™

* x(0): current state
* x;j, uj: opt. variable

Q=QT
R=RT

+ Q=0
R >0,

.
|

x I 0 0 Up
0 0 u
= x(0) +
X : : 0
=y AN AN-1B B| |un—1
X
Sx € R(N+1)nxn Su ¢ RIN+1)nX Nm U

Cost Q := blockdiag(Q, ..., Q, P) & R := blockdiag(R, ..., R)
Optimal Input

U*(x(0)) = —((8") " @S —&-ﬁ)_l (S)TRS* x(0)

FT

H (Hessian)

Optimal Cost

J*(x(0)) = x(0) " [sT @8~ @s.(S] @S.+R) "5, @s:] x(0)

min f(x) T
xedom(f) {x €dom(f) | g;<0,hj=0}
. . feasible set
subj. to gi(x) < 0 l._ Loomi, gi : ineq constraints
hi(x)=0 i=1,...p | -« h :eq contraints

Feasibility Point x satisfies
g; <0, h; = 0 & eq contraints
Optimal Value lowest cost

Strictly Feasible Point x satisfies g; < 0
Optimizer feas. x* ~~ smallest p*

|argminX€X f(x):={xeX|f(x)=p*}

CONVEX FUNCTIONS

f(2)

Definition convex iff dom(f) convex &
FOX+(1=N)y) < AF)+(1-N)f(y)
VA e (0,1), Vx,y e dom(f)
Strictly Convex if inequality is strict

1st-Order Condition
f(x) convex iff
2nd-Order Condition
f(x) convex iff

Level Set

M(x) + (1- 2)f(y)

fly) > f(x) + VF(x)"(y = x)

_ 9*f(x)
T Oxi0x;

V2f(x) =0, V3f(x);

Sublevel Set
Cq, Of f for value « is defined by
Co = {x| x € dom(f), f(x) < a}

f convex = sublevel sets convex Vo

L of f, set for which
Lo := {x | x€dom(f), f(x)=a}

Equiv to contour lines of const ‘height’

Examples
Convex Concave
« Affine ax + bforany a,b € R « Affine ax + bforany a,b € R
« Exp. e™ forany A € R « Powers x* on domain R, ., for
* Powers x® ondomain Ry, fora > 1 0<a<l1
ora <0 * Log log x on domain R, ¢
+ Vector norms on R": » Entropy —xlog x on domain
lIxll, = (i IxIP)!/P, for p > 1, Ry,

OPTIMALITY CONDITIONS
Lagrange Dual Function

dv) = _inf [F0)+ 5T higilx) + B vii()]
N——

Aminy

L(x,\,v): Lagrange Function

P — Primal Problem D — Dual Problem

miny f(x)
. max, x d(v, \)
(P) : subj. to gi(x) <0 (D): .
subj.to A >0
hi(x) =0

» d()\, v) always concave * (D) convex even if (P) not
o d* < p* ~ d(\ v)gens lower ¢ Point (A, v) dual feas. if A > 0,
bound for p (A v) € dom(d)

Weak & Strong Duality

Weak Duality — it is always true that d* < p*

Stront Duality — it is sometimes true that d* = p*

» Strong duality usually does not hold for non-convex problems

» Can impose conditions on convex problems to guarantee that d* = p*
» Sometimes the dual much easier to solve than the primal

» LP always has strong duality
Slater Condition

If 3 at least one strictly feasible point i.e {x | Ax = b, gj(x) < 0Vi}
= p* =d*

KKT — KARUSH-KUHN-TUCKER CONDITIONS

(1) Primal Feasibility g;(x*) <0, i=1..m
(2) Dual feasibility X\* >0
(3) Complementary Slackness

hi(x*)=0,i=1..p
)\?g,‘(x*):O i=1...m

m p
(4) Stationarity VL = VF(x*) + >  A'Vg(x*) + > v/ Vh(x*) =0
i=1 i=1

General Optimization Necessary condition
[x*, A*, v* sol'n to (P), (D) with 0 duality gap = x*, \*, v* satisfy KKT ]

Convex Optimization Sufficient condition
[x*, A*, v* satisfy KKT = x*, \*, v* sol'n to (P), (D) with 0 duality gap ]

pt =f(x") = mineex f(X)| ACHTUNG NOT always unique

Redundant Contraints do not

change feasible set

Globally Optimal
lyex=rf)>f)|

Infeasible p* = 0 & X = {}

Active Contraints
when ineq const. are eq ~~ “active”
Locally Optimal

vy e x.lly —xll <R = f(1) > £

Unbounded Below p* = —oco
Unconstrained X = R”

CONVEX SETS

Definition
Convex iff |AX7L (1-Ayex, VAe[01] Vx,ye X|

Interpretation ~~ All lines starting in X’ stay within X

|

Hyperplane
| (xeR" | a7 x=b} |

Halfspace

| {xeR" | a"x< b} |

open: <, closed: <

Polyhedron " ST
P:={x|alx<b,i=..} )/‘ \\\ }\%r\

={x | Ax < b}

Polytope
bounded polyhedron

An (unbounded) polyhedron

Ellipsoid
{xl(x—x) T A (- xe) < 1]

Xc : center of ellipsoid

Norm Ball {x | |Ix—xc|| < r}|

+ p = 2 Euclidean Norm ||x||> = m
+ p=1Sum of Absolute [|x||1 = ;||
* p = oo Largest Absolute I *

Jxly =1

Intersections & Unions

Intersection — Intersection of two or more convex sets is itself convex
Union — Union of two sets is NOT convex in general

Convex Opt. + Slater Necessary & Sufficient condition
(1 Stater's cond. holds, x*, A%, v* are soPn to (P), (D) IFE KKT satisfied

Remark for convex opt. problem, KKT conditions sufficent ~ if x*, A*, v*
satisfy KKT then p* = d*

MATRIX CALCULUS

Basics Vector Derivatives
xy! =[xy xny] 2xTA=L2ATx=A
xy) =xTy = xy 2xTAx = (A+AT)x

Del-Operator
(Gradient)

Jacobian
(Gradient of
multivar func)

EXAMPLES

LP — Dual
(P): minyern c'x, subj.toAx=b, Cx<e
(D) : maxy, —b'v—eTX stATv+CTA+c=0 A>0
QP - Dual with Q > 0
(P) 1 mingern %XTQX—&- cTx, subj.toCx<e
(D):  maxy, %)\TCQ*ICT)\—&—(CQ*IC—Fe)T)\—&-%CTQ*C
subj.to A >0

QP - Lagrangian

L Z%XTHX-"- qTx+r
+AT(Gx —h) + v T (Ax — b)
Vil =Hx+q+G A+ ATv

min %XTHX+C]TX+I’
X
stGx<h

Ax=b
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4 CFTOC

CFTOC — CONSTRAINED FINITE-TIME OPT. CONTROL

Constrained Linear Optimal Control
JA(x(k)) = ming I (xn) + SN0 106, up)
subj. to xj11 = Ax; + Bu;

x; eX, u el

xy € Xr,  Xo = x(k)
* Quad. Cost / Squared Euclidian Norm:
J(x(k)) = xp Pxy + Z,N:f)l x." Qx; + u;iRu;
» p-Norm: J(x(k)) = [|Pxl]p + 3150 1 @xllo + [|Ruil],

TRANSFORM QUAD CFTOC TO QP

QP Problem min 2zTHz+q z+r
Goal — Rewrite Quad. zeR" 2

Cost CFTOC as QP subj. to Gz < h

~+ easier to solve Az — b

CONSTRUCTION WITH SUBSTITUTION |

IDEA — Sub. state eqns x;.1 = Ax; + Buj, xo = x(k)
Cost — Rewrite as

* _ ; T T
J*(x(k)) = min U™ x(k)T] |
subj. to GU < w + Ex(k)
Constraints — Rewrite as GU < w + Ex(k)

| ¥ ={x|Ax<b} U={ulAu<b} Xr={x|Ax<by}]|

HFT

HETTIUT x(K)T]"

A, 0 by

A, 0 by

- 0 ) - —A — | b
G s E i W ZX
AAB AB 0 ..X.
ArAN-IB . AB —ArAV br

Solution For a given x(k), U* can be found via QP solver

CONSTRUCTION WITHOUT SUBSTITUTION |
Idea — Keep state eqgns as eq. constraints
Costwith z = [x| ..x} uf ..uj ]’
J*(x(k)) = min [z—r x(k)T] [(F)’ g} [z—r x(k)T]
subj. to Gjnz < wj, + Einx(k)
GegZ = Eeqx (k)

T

H=diag(Q,.... Q. P,R,...,R)

Equality Constraints from System Dyn. x;.; = Ax; + Bu;

-B A
[ [}

Inequality Constraints
| ¥={x|Ax<b} U={ulAu<b)} Xr={x|Ax<by}]|

I
—-A 1
—Al

0 0 by
Ax 0 by
Ax ° b AT
Gip = Ar 0 |, Win = br |, Ein = [ O ‘|
A
0 0 ’ Ay lb)z 0
' 0 Ay b,,

QP FEEDBACK SOLUTION |

From CFTOC problem as multiparametric QP
J*(x(k)) = min [UTx(K)T] [ J[UTx(K)T]
subj. to GU < w + Ex(k)
Solution Properties
* First component of optimal solution:
ud = k(x(k)), Vx(k)e X
k: R" — R™ is cont. and pw. affine on Polyhedra
k(x)=Fx+¢ if xeCR, j=1 ..N"
» Polyhedral sets CR/ = {x e R" | H'x < K/} ,j=1,..., N’
are partition of the feasible polyhedron Aj}.

* Value func. J*(x(k)) is convex and pw quad. on polyhe-
dra.

TRANSFORM P-NORM CFTOC TO LP

£~o-Minimization

HFT T
F Y

mint
x,t

subj.to — Imt < x<1nt, Fx<g

min ||x]] o
XERM

subj.to Fx < g

Intuition —1,,t < x < 1t bounds abs value of every elem. with scalar ¢
£1-Minimization

min ||x||1 Im 't

XxXERM

min
XERM tERM

subj.to Fx < g subj.to —t<x<t Fx<g

Intuition ||x|1 =37 x| <30 =17t - —t<x<t
bounds abs value of each component of x with a component of vector t

CONSTRUCTION OF co-NORM WITH SUBSTITUTION

Cost

LX N—-1 x u
min ey > o € T €]

subj. to — 1,¢f < £Q [AiXo + Z};é AfBu,-,l,J}

1, < P [A’on + M AJBuN_l_J}
— ].mefj < Ru;
Xi € X, ui €U, xr € Xr, xo = x(k)

Substitution with z := {e5 ... €}, €4 ... €¥%_,, ug ...uy_,} € RS,
s=(mMm+1)N+N+1

min ¢’z subj. to Gz < w + Sx(k)
z

_ Ge Gu 3 _ SE - We
“lo G|t 2T st VT w
Solution for given x(k), U* can be optained via LP solver

LP STATE FEEDBACK SOLUTION

MP-LP

multiparam. LP

Properties

» First component of mp sol'n has form vy = x(x(0)),
K : R" — R™ cont. & pw affine on Polyhedra
k(x)=Fix+g ifxe CRI, j=1,...,N’

+ Polyhedral sets CR/ = {x € R" | H/x < K’} are partition of feasible
Polyhedron X,

+ In case of multiple optimizers, a pw affine control law exists

« J*(x(0)) is convex, pw linear on polyhedra

QUAD VS 1/00-NORM COST

G

min ¢z subj. to Gz < w + Sx(k)
z

VX(/() S Xo

n = # opt. var.,, FS = feas. set. Solution is either

Quadratic Cost Linear Cost
* unique & in interior of FS (no  « Unbounded
constraints active) * unique at vertex of FS (at least n
* unique & on boundary of FS active constraints)
(at least 1 const. active) » multiple optima (at least 1 active
const.)

PRACTICAL INVARIANT SET COMPUTATION
Minkowski-Weyl Theorem

For P C R¢ following statements equivalent:
* P polytope, 3A, bst P = {x | Ax < b}
« P finitely generated, 3 finite set of vectors {v;} s.t P = co({v1 ... vs})

Invariant Sets from Lyapunov Functions

Lemma If V : R” — R a Lyap. func. for sys. x(k + 1) = g(x(k)), then
Y = {x| V(x) < a} is an invariant set for all « > 0
Proof
+ V(x)>0Vx
* V(g(x)) — V(x) < 0~ once V(x(k)) < a, will remain there for all

Jj > k ~ Invariance
Example System for x(k + 1) = Ax(k) with P > 0 that satisfies
ATPA — P < 0~ then V(x(k)) = x(k)T Px(k) is Lyap. function
Goal —find largest v s.t set Y, € X

Yo i={x|xTPx<a} CX:={x|Fx<f}

Equivalent to maxq o subj. to hy, (F;) < fiVie {1...n}

Maximum Ellipsoidal Invariant Sets

Support of an ellipse: hy_ (F;) = maxy Fjx subj. to xT Px < «
Change of Variables: y := P1/2x

~ hy, (F) = maxc P12y styTy <\/a’
Maximizer found by inspection:
p=1/2FT

hy, (Fi) = FiP_l/zm\/a: IIP=Y2F T ||V

Largest ellipse now 1-dim optimization problem:
a* =maxqa st. ||[PTYV2FT|Pa < f2Vie{1...n}

f2
—_— 1 1
= MNjc{1..n} FP—1FT
!

\

6 FEASIBILITY AND STABILITY

LQR MPC COMPARISON
LQR

MPC

N—1
J*(x(k)) = min Z X, Qx; + u;" Ru

S5 (x(K)) = min >~ xT @x + ] Ru; =

=0
' subj. to xj+1 = Ax; + Bu;

u el

subj. to xj+1 = Ax; + Bu;

X,
xo = x(k) RS

xo = x(k)

5 INVARIANCE

INVARIANCE

System

Autonomous x(k + 1) = g(x(k))

Closed-Loop x(k + 1) = g(x(k), k(x(k))) for given x

Positively Invariant Set

Set O positively invariant for autonomous system if
x(k)eO=x(k+1)e0O, Vke{0,1,..}

» Quad. Cost - Linear System Dynamics -« Linear Constraints on v, x
Assume: Q= QT = 0,R=R" >0

LOSS OF FEASIBILITY & STABILITY

Infinite-Horizon Solve RHC for N = oo, OL traj. are same as CL traj.

« If problem feasible, CL trajectories always feasible

« If cost finite, states and inputs will converge asympt. to origin

Finite-Horizon RHC “short-sighted” approximating oo-horizon controller

+ Feasibility — after some steps finite horizon optimal control problem may
become infeasible (disturbances, model mismatch)

« Stability — generated inputs may not lead to traj. that converge to orgin

Solution

Maximal Positively Invariant Set
(O~ c & positively invariant and contains all other O ]

Pre-Set

Given set S, the pre-set of S is the set of states that
evolve into S in one time step

x(k+1) = g(x(k))
=pre(S) := {x | g(x) € S}

Invariant Set Conditions
Set O is positively invariant set iff
O Cpre(0) & pre(O)NO =0
Necessary if O ¢ pre(O),then3x € Ostx ¢ pre(O) ~» X € O,x ¢
pre(0), thus O not positively invariant

Sufficient if O not pos invar set, then3x € Ostg(X) ¢ O~ X € O,x ¢
pre(O) thus O ¢ pre(O)

Pre-Set Computation
SetS = {x | Fx < f},
x(k 4+ 1) = Ax(k) then
pre(S) :={x | Ax € S}
={x | FAx < f}

» For{x| Fx < f},if F L or f 1+~ Less Restrictive
* SN F ~ constraints from both sets active

CONTROL INVARIANCE
Control Invariant Set
Set C C X control invariant if
x(k) e C = Fu(k) el s.t g(x(k), u(k)) € C Vk
Maximal Control Invariant Set

Set C, maximal control invariant if it is control invariant
and contains all control invariant sets contained in X

x(k 4+ 1) = Ax(k)
=pre(S) = {x | Ax € S}

QQ — X
loop
Qjy1 pre(€2;) N Q;
if Qi1 = Q; then
return O, = Q;
end if
end loop

Intuition For all states in Co, there exists control law s.t system constraints
never violated ~~ The best any controller could ever do

Pre-Set pre(S) .= {x | Ju el st g(x,u) € S}

Control Invariant C control invariant set iff C C pre(S)
Algorithm Same, but much harder to compute pre-set
Control Invariant Set = Control Law

C control invariant set for x(k + 1) = g(x(k), u(k)) Control law x(x(k))
will guarantee that system satisfies constraints Vt if g(x, k(x)) € C Vx €
C ~ With f as any function Synthesize control law «:

K(x) := argmin{f(x, u) | g(x,u) € C}

» Does not ensure sys. will converge, but will satisfy constraints
» Don't often do because calculating control invariant sets is very hard

« MPC implicitly describes cont. invar. set s.t easy to represent/compute

Introduce terminal cost & constraints to explicitly ensure feas. & stab.

J*(x(k)) =mingy Ir(an) + ST 10, )
subj. to xj+1 = Ax; + Buy;

Xj € X,
X/\/EXf.

u el
xo = x(k)

I¢(+), X chosen to mimic infinite horizon

LYAPUNOV STABILITY

System NL, TI, DT x(k + 1) = g(x(k))
Asymptotic stability eq point x € Q (g(x) = x)

|

Asympt. Stable in pos invar set 2 C R” if Lyap. stable and attactive

lim ||x(k) = X|| =0 Vx(0) € Q
k— o0

Globally Asympt. Stable if asympt. stable & 2 = R”

FEASIBILITY & STABILITY GUARANTEES OF MPC
Proof Strategy

Recursive Feasibility show existence of feasible control sequence for
all time when starting from feasible initial point
* Assume feas. of x(k), {ug. ... uy_} {xG. - X5}
o Atx(k +1) = {uf, ..., kr(x})} should be feas.
Stability show that optimal cost is lyap function
» Ir necessary to provide cost decrease for asympt. stability

General Terminal Set X

Assumptions
1. Stage cost pos def, strictly positive, only 0 at origin
2. Terminal set invariant under local control law
All state and input constraints satisfied in X
3. Terminal cost is cont. Lyap. func. in terminal set Xr and satisfies

lr(Xiy1) = lr(x;) < =I(xi, ke(xi)) Vxi € Xr

Theorem — CL system under MPC control law v (x)
asympt. stable and set Xy is positive invariant for system
x(k+ 1) = Ax(k) + Bug(x(k))

Terminal Constraint At Zeroxy € X =0
~> need large N to approx. max. cont. invar. set
Terminal Set & Cost — LQR

J*(x(k)) = miny x, Pxy + Z,N;Ol xT Qx; + u;l Ru;

* Choose P = P from (D)ARE

+ Choose Xy to be max. invar. set for CL system (A + BFoo)xk
~ ellipsoidal inv. set with Lyap.

» All x, u constraints satisfied in X

All assumptions of Feasibility & Stability Theorem Satisfied

Useful Properties

* Xi, Xo convex invar. for Ax(k) ~ aXi @ (1 — a)Xz invar Va € [0, 1]

* X1 C X, Xo C X, X, X convex ~ aX; @ (1 —a)Xo C X Va € |[0,1]

+ Vi(x(k)) = x T (k)Pix(k) lyap. func. for x(k + 1) = Ax(k), rate of
decrease x T (k)I'x(k) ~ V(x(k)) = aVi(x(k)) + (1 — a)Va(x(k))
also lyap. func. with rate of decrease x " (k) x(k) for all o € [0, 1]




FEASIBILITY & STABILITY REMARKS

» Terminal constraint provides a Suffiecient Condition for feas. & stab.

» Region of attraction w/o term. const. may be larger than with term.
const.

« In practice: enlarge horizon and check stability by sampling. As N 1,
region of attraction appraoches max. control invariant set

» CL traj. may not follow assumptions made for OL predictions

» oo-Horizon LQR controller locally optimal ~ best choice for quad. cost

» oo-Horizon provices stab. and invariance. Finite-Horizon MPC may
not be stable & may not satisfy constraints V time

Extension to Nonlinearity

« Assumptions on terminal set/cost did not rely on linearity

« Lyapunov stability is general framework (works for NL sys)

» Results can be directly extended to NL systems

» However, computing sets Xr and function /r can be very difficult

7 PRACTICAL MPC

REFERENCE TRACKING

System x(k + 1) = Ax(k) + Bu(k), x € R™ u € R™
Constraints X = {x | Gux < h},U = {u | Gyu < h,}

STEADY-STATE TARGET PROBLEM

( g
Target Condition
Xs = Axs + Bus I-A —B| |xs 0
<~ =
Zs=Hxs=r H 0 Us r
* In presence of constraints, (xs, us) must satisfy them
+ In case of multiple feas. us, compute ‘cheapest’
min usT Rsus subj. to [Target Condition], xs € X, us € U

+ In general, asssume target problem is feasible
+ If no sol'n 3: compute reachable point ‘closest’ to r

min(Hxs — r)TQs(HxS —r) subj. to xs = Axs + Bus

MPC FOR REFERENCE TRACKING
MPC Design

minyllzy — Hxsl[p, + 3205 12 — Hxl[B, + llui — usll?

subj. to [model, constraints], xg = x(k)

Coord. Trans.

Delta Form. Set pt. tracking ——— """ Regulation Problem

Gy Ax < hy — GyXs
Au:=u—us| G,Au< h, — Gyus

+ Obtain target steady-state corresponding to reference r
« Initial state Ax(k) = x(k) — xs
* Apply reg problem to new system in A-Formulation

min |:Vf(AXN) + 5 AT QA + AuT RALI,']
subj. to Axjr1 = AAX; + BAu;,  GyAxi < hy — GyxXs
G,Auj < h, — Guus, Axy € Xr, Axg = Ax(k)

+ Find optimal sequence of AU*
* Input applied to system ug = Aug + us

AX =X — Xs

Convergence

Assume target feasible with x; € X, us € U, choose ter-
minal weight V¢(x) and constraint X as in regulation case
satisfying

c Xfr CX, Kxel VxeXr

o Vr(x(k + 1)) = Ve(x(K)) < —I(x(K), Kx(K)) VX € Xf

If in addition the target reference xs, us is such that

* Xs ®Xr C X, KAx+us €U, VAx e Xf

then CL system converges to target reference

k—o00

|

x(k) = xs, z(k) = Hx(k) ——= r

Proof
« Invariance under local ctrol law inherited from regulation case
» Constraint satisfaction provided by extra conditions
- Xs@ngX—}XGXVAEX{
- KAx+us e UVAx € Xr wueld
k— o0

» Fron asympt stability of the regulation problem: Ax(k) ——— 0

Terminal Set

+ Set of feasible targets may be significantly reduced.
Enlarge set of feasible targets by scaling terminal set for
regulation Xze@led = o.x;

* Invariance maintained if Xr invariant ~ so is aXr

» Choose «a s.t. x, u constraints still satisfied ~ scaling tar-
get dependent

+ Targets at the boundary of the constraints: xy = xs, corre-
spons to O-terminal set in regulation case

J

MPC FOR REFERENCE TRACKING WITHOUT OFFSET

Observer Steady-State

Suppose observer asympt. stable and n, = ny

A-T B] [%e] [ —Badw
C 0 Uso B yoo_Cdaoo

~+ Observer output CX,, + C,ds tracks y.. without offset
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ROBUST MPC |

UNCERTAINTY MODELS

Motivation Random Noise w changes sys. evolution, Model structure
unknown, Unknown parameters 6 impact dynamics
Uncertain Constrained System

[x(k+1)=g(x(k), u(k), w(K);:0), x,uw.0€X,UW,O|

Offset-Free Tracking

Additive Bounded Noise System

Goal Track constant r: z(k) = Hy(k) — r as k — o
Steady-State Condition

Xs = Axs + Bus + Byds, 2zs = H(Cxs + Cdaoo) =r
« Best forecast for d.. is current estimate d., = d

» Same Procedure for regulation case with r =0
Offset-Free Tracking Condition

A-T B][xs] [ —Bud
HC 0| |us| ~ |r— HCyd

| x(k+1)=Ax(k) + Bu(k) + w(k), x,u,weX,UW)|

IMPACT OF BOUNDED ADDITIVE NOISE
Goals

Design u(k) = k(x(k)) s.t the system

(a) Satisfies constraints: {x(k)} C X, {u(k)} C U for all disturbances
(b) Is Stable: converges to neighbourhood of origin

(c) Optimizes (expected/worst-case) ‘Performance’

(d) Maximizes Set {x(0) | Condition 1-3 met}

Offset-Free Tracking Procedure

1. Estimate X & d .
2. Obtain (xs, us) from steady-state tgt problem using d
3. Solve MPC problem for tracking using d X; := x; — xs, Uj = u; — us

minVe () + 050" (%) T (%) + () T R(;)

subj. to xj+1 = Ax; + Bu; + Byd;, diy1 = d;
x;ieX, u €U,
xo = X(k), do=d(k), xn—xs€ X

Offset-Free Tracking: Main Result

With uf = k(x(k), d(k), r) = k(-). Assuming ngy = n,, RHC recursively
feas., unconstrained for k > j, j € N*, CL system:

x(k + 1) = Ax(k) + Bk(:) + Byd
f(k+1) = (A+ LxO)R(k) + (Bg + Lx Cq)d(k) + Br(-) — Lxy(k)
d(k +1) = LgCx(k) + (14 LyCq)d(k) — Lgy(k)

K220 (%00, doo)), then z(k) = Hy (k) <222 ¢

converges ((X, d)

Motivation Term. constraints reduces feasible set

Goal MPC without term. constraint with guaranteed stability
Note Feasible set without term. constraint not invariant
MPC Without Terminal Set

ENLARGING FEASIBLE SET — NO TERMINAL SET

Can remove Term. constraint while maintaining stability if
« Initial state lies in sufficiently small subset of feasible set
» N sufficiently large

s.t term. state satisfies term. const. without envorcining it
in the optimization. ~~ Sol’'n of finite-horizon MPC problem
corresponds to oo-horizon sol’'n

Advantage — Controller defined in larger feasible set

Disadvantage — Characterization of region of attaction of specification of

required horizon length extremely difficult

» Term constr provides sufficient cond. for stab: RoA w/o term constr may
be larger than w/

« In practice: Enlarge horizon and check stability by sampling

* N 1 ~~ RoA approachees max control invar. set

Motivation Input constraints usually ‘hard’, state constraints
rarely ‘hard’ ~ breakable

Goal Min size & duration of violation (usually conflict!)
MPC Problem Setup

min | xy Pxy + le(en) + E,N:Bl x.' Qx; + u Ru; + Ie(ei)}
u

s.t. xj = AX[ == BLI,', HXX,' < kX+6i, HUU,' < ku, €; Z 0

ENLARGING FEASIBLE SET — SOFT CONSTRAINTS

(

Uncertain State Evolution

Cost to Minimize

¢i = Alxo + Z};é ABui_1_j+ Zji-;(l) Awi_ij

Xx; = Nominal System Disturbance Offset

c) — OPTIMIZES PERFORMANCE

Cost now func of Disturbance ~~ Need to eliminate W/
J(x0, U, W) = Ie(dn(x0, U, W)) + St 1(i(x0, U, W), up)
Several Options

+ Minimize expected value Jy(xo, U) = E{J(x0, U, W)}

+ Take worst case Jy(xo, U) := maxycyyn=1 J(x0, U, W)
» Take Nominal Case Jy(xp, U) := J(xo, U, 0)

(a) — SATISFIES CONSTRAINTS

Robust Constraint Satisfaction

» State & Input Constraints for i =0,..., N — 1,
Enforce constraints explicitly by imposing ¢, € X, u; € U, YW € WV
» Terminal Constraints for i = N, ...
Enforce constraints implicitly ¢, € robust invariant set Xr, KX € U
for ¢iv1 = (A+ BK)$i + w;

Robust Positive Invariant Set

Set O said to be robust pos. invar. for autonomous sys-
tem x(k + 1) = g(x(k), w(k)) if
xeOW = gx,w)e OV, Ywew

Robust Pre-Set

Given set ©2 and dynamic system x(k+1) = g(x(k), w(k)),
pre™(Q) :=={x | g(x, w)} € QVYw e W

Computing Robust Pre-Sets for Linear Systems
System Ax(k) + w(k), set Q :={x| Fx < f}

pre™(Q) = {x | FAx < f — max Fw} = {x | FAx < f — hy,i(F)}
we

Robust Invariant Set Conditions

Set O is robust positive invariant set iff
oV C pre(OV) & preM(OV)n OV = 0V

Robust Constraint Satisfaction

Ensure constraints are satisfied for MPC sequence
6i(x0, U, W) = {X,' YT A | W e W'} cx (1)
Assume X = {x | Fx < f} (polyhedron)
Fxi < f—hw (FE S A)

Requirement on I,

“Softened” Problem
min f(z) 4+ le(e) stg(z)<e €>0
z

Original Problem
min f(z) stg(z) <0
z

If original problem has feasible solution z*, Softened problem should
have same solution z*, and € = 0.
Note /c(¢;) = se? does not fulfill requirement

Choice of Penalty

+ Quad. Penalty /.(¢;) = ¢ Se; (.9 S = Q)

* Quad. + Linear Penalty /.(¢;) = €] Se; + v|[€i|]1 /0
Exact Penalty Function

l.(€) = v - e satisfies requirement for any v > \* > 0, where
A* is optimal Lagrange multiplier for original problem

Augmented Model

-

dir1 = dk, Yk = Cxx + Cady

A—I By _
C Cd:|) = Ny + Ny

] = [2] s ds

Xk+1 = Axk + Bug + Bgdy,
Observability of aug. system: rank ([

Inuition At steady-state [AEH ‘gﬂ [
unique

Linear State Estimation

omserverror (36411 <[ ] (0] +[]co
Model Ly

+ [Ld] (—y(k)+Cx(k)+ Cqd(k))

Error Dynamics = choose L s.t error dynamics asympt.

Stxa;i)lfl)—x(kﬂ) A Byl [l x(k) — %(k)
[=(8 ¥+ glie <) [

d(k+1) — d(k+1)

MPC FOR REFERENCE TRACKING WITHOUT OFFSET

« In practice, combined cost used for exact penalty and tuning capabilities
Tuning

1. Minimize violation over horizon:

€™ =argmin, SN T Se+ v,
Hyxi < ke +€j,  Hyui < kg,

2. Optimize Controller performance

miny Xy Pxn + Z,N;Ol X" Qx; + u;" Ru;

Hexi < ki + €™,

s.t xip1 = Ax; + Bu;
€ Z 0

S.t Xjy1 = Ax; + Bu;, Hyui < ky

Note Standard SC MPC does not provide stability guaran-
tee for OL unstable sys.

ACHTUNG Must ensure term state contained in robust invariant set
Intuition Tightening constraints on nominal system

SET OPERATORS
Minkowski Sum

Pontryagin Difference

[A@B::{x+y|x€A,y€B}][A@B::{x\x-i-eeAVeeB}]

ACHTUNGAcB®BC A
Robust Constraint Satisfaction ,
Egn. (1) can be rewritten ¢, e x; & W @ ... A7IW) C X

Enforcing this cond. requires Tightened Constraints
e xo (@5 AW)

ROBUST OPEN-LOOP MPC
Robust Open-Loop MPC

|

mJn [/,r(xN) + Z,N;Ol 1(xi, Ui)]
subj. to xj11 = Ax; + Bu;
X € X0 (B AW), uel
xo = x(k), xy € XrS (@j”zgl AW)

Xr C X robust pos invar set for system (A + BK)x(k) + w(k) with
w € W Vk for some stabilizing K, and Kx € U Vx € Xr

Intuition Nominal MPC, but with tigher state constraints

Open-Loop? Not accounting for FB during solving, just plan ahead for w

Achtung

+ Unstable systems A'~1V grows ~ use ‘pre-stabilization’ u; = Kx; + u;
» Potentially very small region of attraction, particularly for unstable sys

Robust Invariance

If U*(x(k)) is optimizer of robust OL MPC problem for x(k) € X, then
system Ax(k) + Bug(x(k)) + w(k) € X forall w € W




9 ROBUST MPC I

CLOSED-LOOP PREDICTIONS

Goal optimize over seq. of funcs {ug, 111(*), ..., un—1(+)} with
(1i(x7) : R" — R™ control policy)

Problem Can’t optimize over arbitrary functions!
Solution assume some structure on functions p;

s
Pre-Stabilization p;(x;)) = Kx; + v;
Fixed K, s.t A+ BK stable ~+ Simple, often conservative
Linear Feedback u;(x;) = Kix; + v;
Optimize over Kj, v;, ~ Non-Convex — Extremely difficult to solve
Disturbance Feedback 1;(x;) = 3-/=g M;w; + v
Optimize over M;;, v; ~» Equiv to linear feedback but Convex ~-
Effective, but computationally intense
Tube-MPC .i(x;) = v, + K(x; — X;)
Fixed K, s.t A + BK stable ~» Optimize over x;, v; ~» Simple, can
be effective

\ 7

TUBE-MPC
System

[ x(k+1) = Ax(k) + Bu(k) + w(k) xue XU weW|
Idea Seperate available control authority into 2 parts

(1) Portion that steers nominal sys to origin z(k + 1) = Az(k) + Bv(k)

(2) Portion that compensates for deviations from this system u; =
K(x; — z)) + v; (keeps real traj close to nominal), for some linear
K, which stabilizes nominal system

~~ Fix linear FB K offline and optimize over nominal trajectory
{v, ..., vy_1} ~~ convex problem
Error Dynamics

-

Define € = Xj — Zj~ €41 = (A + BK)e,' + w;
Bound maximum error, how far ‘real’ traj from nominal
€i+1 = (A + BK)EI + w; wj €W

Dynamics A + BK are stable, set W bounded ~~ Set £ s.t e stays inside
Vk ~~ want ‘minimal robust invariant set’

Tube-MPC Procedure

ROBUST STABILITY
Robust Stability of Tube-MPC
State x(k) of system x(k + 1) = Ax(k) + Bptube(x(k)) +

11

IMPLEMENTATION

w(k) converges in the limit to the set £

Proof As in standard MPC we have
(25 (x(K))) = Ie(z) + SNt 1z v)
I (z5 (x(k + 1)) < Ie(z) + M (zF v)
+1(Z3.8) — (23 8) + Ie (23) — I (2h)
= I (x(K)) = I(z5 . v§) —Ir(z) + I (zns1) + 125 155 (23))
==

<0 (/f is lyap function in X¥)

This shows lim_, o J(z} (x(k))) = 0, therefore limy_, o, z3 (x(k)) =0

ACHTUNG

» x(k) does not tend to 0! It only stays within robust invar set centered at
25 (x(k)) : lim_odist(x(k),E) =0

« Can remove constr. zy € X @ &, doesn't affect recursive stability

» &£ must be robust positive invariant for proof (so error remains bounded)

TUBE-MPC IMPLEMENTATION
Offline Design

(1)
()

(3)
(4)

Choose stabilizing controller K s.t ||A+ BK|| < 1

Compute mRPI set £ = Fo for system x(k + 1) = (A + BK)x(k) +
w(k), w € W ~ .

Compute tightened constaints X := X S £, U :=U & KE

Choose terminal weight function /r and constraint Xr satisfying as-
sumptions on tube MPC (see Robust Constraint Satisfaction)

» Assumption on Terminal set ensures Recursive Feasibility

» Assumption on terminal cost ensures Asymptotic Stability

LQR Terminal Constraint (typical choice)

+ Choose LQR terminal control law x¢(x) = Kx, (Q, R same as MPC)
« Find X invar under this controller s.t satisfies constraints

Online Design

EXPLICIT MPC

U(x)

|

N-1
U*(x(k)) = argmin x5, Pxy + Z X Qx; + u Ru;
v =0
subj. to xp = x(k)
Xjz1 = Ax; + Buj, i=0,..., N—1
X €X, uyyeU, i=0,..., N—1
Xy € Xf {

U (x(k)) Plant state x(k)

Plant .
[Output y(k)

Recall: Quadratic Cost State Feedback Solution

MP-QP — Multiparametric Quadratic Program
-
* — mi T T T T T
J(x(k)) = min [u x(k) ] [’FFY ] [u x(k) ]
subj. to GU < w + Ex(k)

Solution Properties — J*(x(k)) convex and PW Quad. on polyhedra.

Active Setfor/=1,..., m
Define active set at x, A(x), and it's complement NA(x) as
A(x) :=={j € I : Giz*(x) — Sjx = w;}

NA(x) :={j € I : Gjz"(x) — Sjx < w;}

(satisfied with eq.)
(strict inequality)

Critical Region

CRy is set of parameters x for which set A C / of constraints i active at
the optimum. For given X € £* let (A, NA) := (A(X), NA(X)). Then

CRa = {x € K* : A(x) = A}

(states share active set)

Point Location

» Sequential Search — Computationally linear, very simple, works for all
problems

» Search Tree — Potentially logarithmic, significant offline processing
(reasonable for <1k regions)

(1) Measure / Estimate state x
(2) Solve optimization problem

(V*(x0), Z*(x0)) = argminy 7 {J(Z, V) | (Z. V) € Z(x0)}
(3) Setinputto u= K(x — z§(x)) + v§(x)

(@) Compute set € that error remains inside
(b) Modify constraints on nominal traj {z;}
(c) Formulate as convex optimization problem

(a) — MINIMUM ROBUST INVARIANT SET

mRPI — Minimum

N Qo + {O}
Robust Invariant Set loop ,
; Qir1 < QAW
Foo = @72 AW if 241 = < then
. return Fc = Q;
Fo :={0} end if
If F, = Foi1 = Frh= Feo end loop

« Finite n does not always exist, ‘large’ n often good approx.
« If n not finite, other methods of computing small invariant sets, slightly
larget than Foo

(b) — MODIFY NOMINAL TRAJECTORY CONSTRAINTS

Noisy System Trajectory

Given nominal traj z; noisy sytem traj x; = z; + e; ~ will be smewhr in £
xi€z®E={zi+te|lec&}

Goal x;, u; € X, U for all {w;} € W/
State Condition

Necessary & Sufficent Condition
Z®ECX & zeXSE

Set £ known offline — can compute constraints offline!

Input Condition [ uEKEDYV, CU & viEUSKE ]

J

(c) — CONVEX OPTIMIZATION PROBLEM

Problem Formulation

min Jr(zv) + SN iz v)
s.t. ziy; = Az + By;
zie X6 &, ueUSKE
zy € Xr, x(k)€Ezo@E
Control Law : prybe(x) := K(x — 25 (x)) + v§ (x)

=: Set Z

Remarks

» Optimizing nominal system with tightened state, input constraints
+ First tube center z; is opt. var. ~ has to be within £ of xg
+ Cost is w.r.t tube centers, terminal set is w.r.t tightened constraints

ACHTUNG K(x — z#(x)) + v¢(x) NOT LINEAR in CL

ROBUST CONSTRAINT SATISFACTION
Assumptions almost the same as for nominal MPC

|

(1) Stage cost pos def, i.e strictly pos and only 0 at origin
(2) Terminal set invar for the nominal sys under local control law k¢ (z):
Az + Brr(z) € Xf Vz € Xf
All tightened state and input constraints satisfied in Xr:
Xr CXOE kf(z) EUSKE Vze X
(3) Terminal cost is continuous Lyapunov function in terminal set Xs:
I¢(Az + Brkf(2)) — Ie(z) < —I(z, ke (2)) Vz € X

Theorem: Robust Invariance of Tube-MPC

Set Z := {x | Z # 0} is robust invariant set of system x(k + 1) =
Ax(k) + Buiupe(x(k)) + w(k) subject to constraints x, u € X, U

Proof let ({vg ... vi_;}. {2} .- z}}) be optimal sol'n for x(k) At next point
in time, state x(k + 1) may have many possible values due to disturbance
By construction, state x(k + 1) inin the set zf ® £ YW
Therefore the following sequence is feasible for all x(k 4 1)
(v Vi k(20 Y {z5 o 28, Az + Bre(23)})
N e

feas. IC € Xr~feas.

.

Benefits Cons
+ Less conservative than OL robust + Sub-optimal MPC (optimal ex-
MPC (now actively compensating for tremely difficult)

* Reduced feasible set when com-
pared to nominal MPC

» We need to know what W is (usu-
ally not realistic)

noise in prediction)

» Works for unstable systems

+ Optimization problem to solve is ‘sim-
ple’

Remarks on Explicit MPC

* Linear MPC + Quad / Linear-norm cost ~~ Controller PWA func.
» Can pre-compute this function offline

» Online evaluation of PWA function very fast (ns - us)

» Can only do this for small systems (3-6 states, small horizon)

Idea compensate for noise in prediction to
ensure constraint satisfaction

Cons

» Complex (tubes easy to implement,
complex to understand)

» Must know largest noise W

+ Often conservative

» Feas set may be small

Benefits

+ Feasible set invariant — know exactly
when controller will work

+ Easier to tune — knobs to tradeoff
robustness against performance

ROBUST MPC FOR UNCERTAIN SYSTEMS — SUMMARY

ITERATIVE OPTIMIZATION METHODS

Generic Optimization Problem
convex if f : R"” — R and set Q convex

Analytical sol'n cannot be obtained except

simplest cases
Iterative Optimization Methods

Given initial guess x(©), produce sequence of iterates

) = y(x0 £, Q),

minimize f(x)
subj. tox € Q

i=0,....m—1

such that |f(x(M) — f(x*)] < e and dist(x(M, Q) <
where e and § are user defined tolerances

10 ROBUST MPC lll - EXTENSIONS

ROBUST CONSTRAINT TIGHTENING MPC

Idea Combine best of Robust OL and Tube-Based MPC
~ Use propagated error bound to tighten constraints
Error Dynamics e, = (A+ BK)e; + w; = Axe; + wj, w; € W
lfeo=0then e =31 Aw,_1_; = e E WD AW @ .. AW

r;vi\r/w Ie(zn) + NG 1z, vi)
subj. to zj11 = Az + By;
ZEXOWBAWS ... ACIW)
U EUO KW S AW S ... A'W)
INEXFO WD AW ... ARTIW)
zo = x(k)
Control Law u(k) = v§ + K(x(k) — z0) = v§

Motivation can robustly ensure constraint satisfactkon at each time step
Note need terminal set X+ that is robust invariant under tube controller K

NOMINAL MPC WITH NOISE
Standard MPC Problem for x(k+1) = Ax(k)+ Bu(k)+w(k)

J*(x0) = mUin Ie(xw) + oNG T I0, u), st xivr = Axi + Buj, x;, Ui, xy € X, U, Xr

Effect on Lyapunov Function

Assume Optimal cost J* Lipschitz continuous (|f(y) — f(x)| < ~vlly —x||)
|J(Ax+ Bu+w)—J(Ax+Bu)| <v||Ax+ Bu+w— (Ax+ Bu)|| =~||w||
Lyapunov Decrease can be bounded as
J(Ax + Bu* + w) — J*(x) =S (Ax + Bu* + w) + J*(x)
< S (Ax + Bu) = J70) +Allwll < —1(x, u™) + 7l lwl|

» Amount of decrease grows with ||x||
» Amount of increase upper bounded by max{||w|| | w € W}

Asymptotic stability ISS stability

Bound that
monotonically

Bound that
monotonically

UNCONSTRAINED MINIMIZATION
Optimality Conditions

[Assume f(-) diff'bar at x*. If f convex, then x* global min iff Vf(x*) = O]
Descent Methods
D) — () 4 (D) A ()

Input x(© € dom(f)

repeat
Compute descent dir. Ax”
Line Search: choose step size

D > 0t F(xD 4+ A AxD) < F(x1D)
Update xU* := x4 pAax")

until termination condition

(eg F(x™) — f(x*) < e1)

with £(x(UF1)) < £(x()

+ Ax: step/search direction

« h(): step size/length

o F(xUD) < F(x(D) i.e Ax(D is
descent function

« 3h0) > 0 st F(xUHD) < F(xD) if VF(x)TAx() < 0

Descent Direction

« Gradient descent x(it1) = x() — 4D £ (x()
— Assume Vf Lipschitz-continuous ||Vf(x) — Vf(y)|| < L||x — y||
— Choose constant step size h() = 1/L
+ Newton Step x(*1 = x() 4+ h() Axy,
— Axpe = —(V2F(x) =1V F(x(D)
— Exact Line Search h()* = argming o (x4 h() Axye)
Optimization in 1 var ~ solve by bisection, time consuming
— Inexact Line search: find h() that decreases f by some amount

ISS -_— decreases to zero decreases to max{|[|w|| | w € W}
Input-To-State "
Stability
time time
System converges to zero Converges to set around zero, who's
size is determined by size of the noise
Benefits Cons
» No special knowledge required — ‘just « Very difficult to determine region

works’ (sometimes)

« Often very effective in practice

« Large feasible set

» Region of attraction may be relatively
large

of attraction (set of states where
controller works)

» Hard to tune

» Only works for NL systems under
continuity assumptions

CONSTRAINED MINIMIZATION
Projected Gradient Methods

Incorporate Constraints in Gradient Step ) \zi

| XD = o () — BOTF(x0Y) |

/
Projection mg = argmin, 1||x — y[3stx € Q ‘%/7\/
» Simple input constraints: ezpz
« State constraints: hard ~~ solve for dual Q

Interior-Point Methods

System min f(x)s.t. gi(x) <0,i=1,...,m

Assumptions f, g; convex, twice cont. diff’bar. f(x*) is finite and at-
tained, stict feasiblity 3g(X) < 0, feasible set closed & compact

Idea Reformulate as unconstrained problem

Primal-Dual Interior-Point Methods

Idea - lteratively solve relaxed KKT

system leave \* as variables, linearize

and solve resulting sytem of linear egns

at each iteration

Search Direction A[x, v, A, s](v)

* v = 0 pure Newton direction
“predictor’/“affine-scaling” !

* v = k1 centering direction, approach = combine via centering
central path parameter o € (0, 1)

centering
direction A [x, y, A

$1(s1)

resulting search

_ central path C

optimal point
"
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