
Model Predictive Control

Chapter 11: Implementation

Prof. Melanie Zeilinger

ETH Zurich

Spring 2022

Coauthors: Dr. Alexander Domahidi, Embotech
Prof. Colin Jones, EPFL

Optimization in MPC

argmin
Uk

lf (xk+N) +

N−1∑
i=0

l(xk+i , uk+i)

subj. to xk = x(k)

xk+i+1 = g(xk+i , uk+i)

xk+i ∈ X , uk+i ∈ U
xk+N ∈ Xf

Plant
u?k

Plant State x(k)

Output y(k)

At each sample time:
Find the optimal input sequence for the entire planning window N:
U?k = {u?k , u?k+1, . . . , u

?
k+N−1}

Need efficient optimization solvers. Two options:

• Iterative optimization methods
• Explicit solution

MPC Lec. 11 - Implementation 2

Introduction

OFFLINE ONLINE

U?(x(k)) = argmin
U

xT
N PxN +

N−1∑
i=0

x>i Qxi + u>i Rui

subj. to x0 = x(k)

xi+1 = Axi + Bui , i = 0, . . . ,N − 1

xi ∈ X , ui ∈ U , i = 0, . . . ,N − 1

xN ∈ Xf

• Optimization problem is parameterized by state

• Pre-compute control law as function of state x

• Control law is piecewise affine for linear system/constraints

Result: Online computation dramatically reduced and real-time
Tool: Parametric programming

MPC Lec. 11 - Implementation 3

Recall: Quadratic Cost State Feedback Solution

J?(x(k)) = min
U

[U> x(k)>]
[

H F>
F Y

]
[U> x(k)>]>

subj. to GU ≤ w + Ex(k)

The CFTOC problem is a multiparametric quadratic program (mp-QP)
with the following solution properties:

• The first component of the optimal solution has the form

u?0 = κ(x(k)), ∀x(k) ∈ X0,

κ : Rn → Rm, is continuous and PieceWise Affine on Polyhedra

κ(x) = F jx + gj if x ∈ CR j , j = 1, . . . ,N r

• The polyhedral sets CR j = {x ∈ Rn|H jx ≤ K j}, j = 1, . . . ,N r are a
partition of the feasible polyhedron X0.

• The value function J?(x(k)) is convex and piecewise quadratic on
polyhedra.

MPC Lec. 11 - Implementation 4

Active Set and Critical Region

Let I := {1, . . . ,m} be the set of constraint indices.

Definition: Active Set

We define the active set at x , A(x), and its complement, NA(x), as

A(x) := {j ∈ I : Gjz∗(x)− Sjx = wj}
NA(x) := {j ∈ I : Gjz∗(x)− Sjx < wj}.

Gj , Sj and wj are the j-th row of G , S and w , respectively.

Definition: Critical Region

CRA is the set of parameters x for which the same set A ⊆ I of constraints
is active at the optimum. For a given x̄ ∈ K∗ let (A,NA) := (A(x̄),NA(x̄)).
Then,

CRA := {x ∈ K∗ : A(x) = A}.

MPC Lec. 11 - Implementation 5

Example (1/2)

Consider the following problem:

J∗(x) = min
z

J(z , x) = 1
2z

2 + 2xz + 2x2

subj. to z ≤ 1 + x ,

x ∈ R is a parameter.
The goals:

1. find z∗(x) = argminz J(z , x),
2. find all x for which the problem has a solution
3. compute the value function J∗(x)

Define Lagrangian: L(z , x , λ) = f (z , x) + λ(z − x − 1)
KKT conditions:

z + 2x + λ = 0,

z − x − 1 ≤ 0,

λ(z − x − 1) = 0,

λ ≥ 0.

MPC Lec. 11 - Implementation 6

Example (2/2)
Consider the two strictly complementary cases:

1.
z − x − 1 = 0

λ ≥ 0
⇒


z∗(x) = x + 1,

x ≤ − 1
3

J∗(x) = 9
2x

2 + 3x + 1
2

2.
z − x − 1 < 0

λ = 0
⇒


z∗(x) = −2x ,
x > − 1

3

J∗(x) = 0

• ⇒ z∗(x) =

{
x + 1, if x ≤ − 1

3

−2x , if x ≥ − 1
3

,

J∗(x) =

{
9
2x

2 + 3x + 1
2 , if x ≤ − 1

3

0, if x ≥ − 1
3

• This problem has a solution for all x .

MPC Lec. 11 - Implementation 7

Example

Consider the double integrator x(t + 1) =

[
1 1
0 1

]
x(t) +

[
0
1

]
u(t)

y(t) =
[
1 0

]
x(t)

subject to constraints

−1 ≤ u(k) ≤ 1, k = 0, . . . , 5[
−10
−10

]
≤ x(k) ≤

[
10
10

]
, k = 0, . . . , 5

Compute the state feedback optimal controller u∗(x(k)) solving the CFTOC

problem with N = 6, Q = [1 0
0 1], R = 0.1, P the solution of the ARE, Xf = R2.

MPC Lec. 11 - Implementation 8

Example

−10 −5 0 5 10
−10

−5

0

5

10

 x
1
(0)

x

2
(0

)

Figure: Partition of the state space for the affine control law u∗(x) (N r
0 = 13)

MPC Lec. 11 - Implementation 9

Example

Figure: Partition of the state space for the affine control law u∗(x) (N r
0 = 61)

MPC Lec. 11 - Implementation 10

Example

Figure: Value function for the affine control law u∗(x) (N r
0 = 61)

MPC Lec. 11 - Implementation 11

Example

-5

-1

10

0

-0.5

5

0

0

-5
5

0.5

-10

1

Figure: Optimal control input for the affine control law u∗(0) (N r
0 = 61)

MPC Lec. 11 - Implementation 12

Recall: 1- /∞-Norm State Feedback Solution

min
z

c>z

subj. to Ḡz ≤ w̄ + S̄x(k)

The CFTOC problem is a multiparametric linear program (mp-LP) with the
following solution properties:

• The first component of the multiparametric solution has the form

u?0 = κ(x(0)), ∀x(0) ∈ X0,

κ : Rn → Rm, is continuous and PieceWise Affine on Polyhedra

κ(x) = F jx + gj if x ∈ CR j , j = 1, . . . ,N r

• The polyhedral sets CR j = {x ∈ Rn|H jx ≤ K j}, j = 1, . . . ,N r are a
partition of the feasible polyhedron X0.

• In case of multiple optimizers a PieceWise Affine control law exists.

• The value function J?(x(0)) is convex and piecewise linear on polyhedra.

MPC Lec. 11 - Implementation 13

Online evaluation: Point location
Calculation of piecewise affine function:

1. Point location

2. Evaluation of affine function

1 2

MPC Lec. 11 - Implementation 14

Sequential Search

x Sequential search
for each j
if Ajx + bj ≤ 0 then
x is in region j

• Very simple
• Linear in number of regions

MPC Lec. 11 - Implementation 15

Logarithmic search (1/6)

h

Offline construction of search
tree

• Find hyperplane that
separates regions into two
equal sized sets

• Repeat for left and right
sets

MPC Lec. 11 - Implementation 16

Logarithmic search (2/6)

h

x

h

MPC Lec. 11 - Implementation 17

Logarithmic search (3/6)

h

hL

x

h

hL

hLR

MPC Lec. 11 - Implementation 18

Logarithmic search (4/6)

h

hL

x

hLR h

hL

hLR

hLLR

MPC Lec. 11 - Implementation 19

Logarithmic search (5/6)

h

hL
hLR

x

hLRR h

hL

hLR

hLLR

hLLRL

MPC Lec. 11 - Implementation 20

Logarithmic search (6/6)

h

hL

hLRRL

hLR

x

hLRR h

hL

hLR

hLLR

hLLRL

MPC Lec. 11 - Implementation 21

Explicit MPC - Summary

Point location:

• Sequential search
• Very simple
• Works for all problems

• Search tree
• Potentially logarithmic
• Significant offline processing (reasonable for < 1′000 regions)

• Many other options for special cases

Explicit MPC:

• Linear MPC + Quadratic or linear-norm cost ⇒ Controller is PWA
function

• We can pre-compute this function offline

• Online evaluation of a PWA function is very fast (ns - µs)

• We can only do this for very small systems! (3-6 states)

MPC Lec. 11 - Implementation 22

Multi-Parametric Toolbox

Modeling Optimal control

Computational
geometry

Analysis

control.ee.ethz.ch/~mpt

MPC Lec. 11 - Implementation 23

Optimization in MPC

argmin
Uk

lf (xk+N) +

N−1∑
i=0

l(xk+i , uk+i)

subj. to xk = x(k)

xk+i+1 = g(xk+i , uk+i)

xk+i ∈ X , uk+i ∈ U
xk+N ∈ Xf

Plant
u?k

Plant State x(k)

Output y(k)

At each sample time:
Find the optimal input sequence for the entire planning window N:
U?k = {u?k , u?k+1, . . . , u

?
k+N−1}

Need efficient optimization solvers. Two options:

• Iterative optimization methods
• Explicit solution

MPC Lec. 11 - Implementation 24

Recap: Convex Optimization Problems

The optimization problem

minimize f (x)
subject to x ∈ Q (P)

is said to be convex, if f : Rn → R and the set Q are convex.

Most important examples:

min cT x
s.t. Ax = b

Gx ≤ f
(LP)

min 1
2x

THx + cT x
s.t. Ax = b

Gx ≤ f
(QP)

(convex for H � 0)

MPC Lec. 11 - Implementation 25

Numerical Optimization Methods

In all but the simplest cases, an analytical solution to (P),

x∗ ∈ arg min f (x)
s.t. x ∈ Q

cannot be obtained.

⇒ Numerical computation of a solution that is “good enough” by

Iterative optimization methods:

Given an initial guess x (0), produce a sequence of iterates

x (i+1) = Ψ(x (i), f ,Q), i = 0, 1, . . . ,m − 1
such that

|f (x (m))− f (x∗)| ≤ ε and dist(x (m),Q) ≤ δ,

where ε and δ are user defined tolerances.

MPC Lec. 11 - Implementation 26

Outline

1. Unconstrained Minimization

2. Constrained Minimization

MPC Lec. 11 - Implementation 27 1 – Unconstrained Minimization

Unconstrained Minimization

min
x

f (x) with f : Rn → R

• f convex, twice continuously differentiable

• We assume optimal value p∗ = minx f (x) is finite

Optimality Conditions:

Theorem: Necessary and sufficient condition

Assume f (·) differentiable at x∗. If f is convex, then
x∗ is a global minimizer if and only if ∇f (x∗) = 0.

f (x)

�f (x�) = 0

Unconstrained minimization methods can be interpreted as iterative methods
for solving optimality condition

∇f (x∗) = 0

(nonlinear set of equations, usually no analytical solution)

MPC Lec. 11 - Implementation 28 1 – Unconstrained Minimization

Descent Methods

x (i+1) = x (i) + h(i)∆x (i) with f (x (i+1)) < f (x (i))

• ∆x is the step or search direction

• h(i) is the step size or step length

• f (x (i+1)) < f (x (i)), i.e., ∆x (i) is a descent direction

• There exists a h(i) > 0 such that f (x (i+1)) < f (x (i)) if ∇f (x (i))T ∆x (i) < 0

General descent method:

Input: starting point x (0) ∈ domain of f
repeat
1. Compute a descent direction ∆x (i)

2. Line search: Choose step size h(i) > 0 such that
f (x (i) + h(i)∆x (i)) < f (x (i))

3. Update x (i+1) := x (i) + h∆x (i)

until termination cond. (e.g. f (x (m))−f (x∗) ≤ ε1 or ‖x (m)−x (m−1)‖ ≤ ε2)

MPC Lec. 11 - Implementation 29 1 – Unconstrained Minimization

Outline

1. Unconstrained Minimization

Gradient Methods

Newton’s Method

MPC Lec. 11 - Implementation 30 1 – Unconstrained Minimization

Descent Directions: Gradient Method

• Gradient descent
Idea: Gradient ∇f gives direction of steepest local ascent
⇒ Make steps of size h into anti-gradient direction −∇f :

x (i+1) = x (i) − h(i)∇f (x (i)) (1)

Question: How to choose the step sizes h(i)?

MPC Lec. 11 - Implementation 31 1 – Unconstrained Minimization

L-smoothness and Constant Step Size

Assumption: ‖∇f (x)−∇f (y)‖ ≤ L‖x − y‖ ∀x , y ∈ Rn

⇔ ∇f is Lipschitz-continuous with constant L
⇔ f can be upper bounded by a quadratic function:

f (x) ≤ f (y) +∇f (y)T (x − y) + L
2‖x − y‖2 ∀x , y ∈ Rn

y

f (x)

⇒ Choose constant step size: h(i) = 1
L

MPC Lec. 11 - Implementation 32 1 – Unconstrained Minimization

Outline

1. Unconstrained Minimization

Gradient Methods

Newton’s Method

MPC Lec. 11 - Implementation 33 1 – Unconstrained Minimization

Descent Directions: Newton’s Method

x (i+1) = x (i) + h(i)∆x (i) with f (x (i+1)) < f (x (i))

Idea: Minimize second-order approximation of f at current iterate x (i):

x (i+1) = arg min
x

f (x (i)) +∇f (x (i))T (x − x (i)) +
1
2

(x − x (i))T∇2f (x (i))(x − x (i))︸ ︷︷ ︸
,f̃ (x ,x (i))

xi

Note: f̃ is not necessarily an upper bound on f

MPC Lec. 11 - Implementation 34 1 – Unconstrained Minimization

Descent Directions: Newton’s Method
Idea: Minimize second-order approximation of f at current iterate xi :

x (i+1) = arg min
x

f (x (i)) +∇f (x (i))T (x − x (i)) +
1
2

(x − x (i))T∇2f (xi)(x − x (i))

∇x

(
f (x (i)) +∇f (x (i))T (x − x (i)) +

1
2

(x − x (i))T∇2f (x (i))(x − x (i))

)∣∣∣∣
x=x (i+1)

= 0

⇔ ∇f (x (i)) +∇2f (x (i))(x (i+1) − x (i)) = 0

⇔ x (i+1) = x (i)−
(
∇2f (x (i))

)−1
∇f (x (i))︸ ︷︷ ︸

Newton direction ∆xnt

Since f̃ is not an upper bound on f , full Newton step does not necessarily yield
descent (i.e. f (x (i+1)) > f (x (i)) might occur)

Idea: Use step size h(i) > 0 such that Newton step yields descent

Newton step: x (i+1) = x (i) − h(i)
(
∇2f (x (i))

)−1
∇f (x (i)) (2)

MPC Lec. 11 - Implementation 35 1 – Unconstrained Minimization

Line Search

Newton step: x (i+1) = x (i) + h(i)∆xnt

Problem: Find h(i) > 0 s.t. f (x (i) + h(i)∆xnt) < f (x (i))

Line search (LS) methods:

• Exact: Compute best h(i):

h(i)∗ = arg min
h>0

f (x (i) + h(i)∆xnt)

Optimization in 1 variable → solve by bisection
Time consuming (requires many evaluations of f)

• Inexact: Find h(i) that decreases f by some amount.
Example: Backtracking1 line search.
For α ∈ (0, 0.5) and β ∈ (0, 1):

Initialize h(i) = 1.
while f (x (i) + h(i)∆xnt) > f (x (i)) + αh(i)∇f (x (i))T ∆xnt do h(i) ← βh(i)

1More details in e.g. [Boyd & Vandenberghe, Convex Optimization, 2004]

MPC Lec. 11 - Implementation 36 1 – Unconstrained Minimization

Equality constraints in Newton’s method

Consider the equality constrained problem (with matrix A ∈ Rm×n)

minimize f (x)

subject to Ax = b

Newton: Minimize quadratic model of f around x (i) to obtain descent direction

∆xnt(xi) ∈ arg min
∆x

1
2

∆xT∇2f (x (i))∆x +∇f (x (i))∆x

s.t. A∆x = −Ax (i) + b
(**)

Notice that if Ax (i) = b, then ∆xnt ∈ Null(A)

⇒ Ax (i+1) = Ax (i) + h(i)A∆xnt(x (i)) = b + 0 ∀h(i)

Hence if initial iterate satisfies Ax (0) = b, then Ax (i) = b ∀i
Computation: Amounts to solving a linear system.
Optimality conditions of (**) (with multipliers λ ∈ Rm):

∇2f (x (i))∆x +∇f (x (i)) + ATλ = 0

A∆x = 0
⇔

[
∇2f (x (i)) AT

A 0

] [
∆x
λ

]
=

[
−∇f (x (i))

0

]
MPC Lec. 11 - Implementation 37 1 – Unconstrained Minimization

Outline

1. Unconstrained Minimization

2. Constrained Minimization

MPC Lec. 11 - Implementation 38 2 – Constrained Minimization

Common Classes of Constrained Optimization
Methods

• Gradient descent methods:

Idea: Gradient gives direction of steepest local ascent
→ Make steps into anti-gradient direction

• Interior-point methods:

Idea: Solve relaxed KKT system using Newton’s method

• Active set methods:

Idea: Iteratively identify set of active constraints

MPC Lec. 11 - Implementation 39 2 – Constrained Minimization

Outline

2. Constrained Minimization

Projected Gradient Method

Interior-Point Methods

Software

MPC Lec. 11 - Implementation 40 2 – Constrained Minimization

Constrained Minimization Using Gradient Methods

Consider the following constrained convex optimization problem:

minimize f (x)
subject to x ∈ Q (P)

where Q is convex and f is convex and L-smooth.

⇒ Incorporate constraints in gradient step:

x (i+1) = πQ (x (i) − h(i)∇f (x (i)))

where πQ is a projection:

πQ(y) , arg min
x

1
2
‖x − y‖22

s.t. x ∈ Q

Can similarly choose h(i) = 1/L,
convergence rates are as in the unconstrained case.

MPC Lec. 11 - Implementation 41 2 – Constrained Minimization

Implications for MPC

• MPC with simple input constraint set U (using “condensed” formulation,
i.e. eliminate states):

min
1
2
uTHu + xT

0 Fu

s.t. u ∈ U

• MPC with state constraints: Individual projections are easy, projection on
intersection is not → dualize

min 1/2

(
N−1∑
i=0

xT
i Qxi + uT

i Rui + xT
N PxN

)
s.t. xi+1 = Axi + Bui

ui ∈ Ui , xi ∈ Xi

Illustration: z , (x , u), K , X× U

MPC Lec. 11 - Implementation 42 2 – Constrained Minimization

Outline

2. Constrained Minimization

Projected Gradient Method

Interior-Point Methods

Software

MPC Lec. 11 - Implementation 43 2 – Constrained Minimization

Constrained Minimization Problem
Consider the following problem with inequality constraints

min f (x)

s.t. gi (x) ≤ 0, i = 1, . . . ,m

Assumptions:

• f , gi convex, twice continuously differentiable

• f (x∗) is finite and attained

• strict feasibility: there exists a x̃ with

x̃ ∈ dom f , gi (x̃) < 0, i = 1, . . . ,m

• feasible set is closed and compact

Idea: There exist many methods for unconstrained minimization

⇒ Reformulate problem as an unconstrained problem

MPC Lec. 11 - Implementation 44 2 – Constrained Minimization

Primal-Dual Interior-point Methods

Idea: Iteratively solve the relaxed KKT system

Cx∗ = d
gi (x∗) + s∗i = 0, i = 1, . . . ,m

∇f (x∗) +
∑m

i=1 λ
∗
i ∇gi (x∗) + CTν∗ = 0

λ∗i gi (x∗) = −κ, i = 1, . . . ,m
λ∗i , s

∗
i ≥ 0, i = 1, . . . ,m

(**)

where we introduced slack s ∈ Rm.

Idea: leave dual multipliers λ∗i as variables (before, they were implicitly defined
by primal log barrier)2:

• Solve the primal and dual problem simultaneously via (**)

• Primal-dual central path , {(x , ν, λ, s) | (**) holds}
• Follow central path to solution by reducing κ to zero

• Solve (**) by Newton method (with additional “safeguards” & line search)

2See e.g. [Stephen Wright, Primal-dual Interior-point Methods, SIAM 1997]

MPC Lec. 11 - Implementation 45 2 – Constrained Minimization

Primal-Dual Search Direction Computation

At each iteration, linearize (**) and solve
H(x , λ) CT G (x)T 0

C 0 0 0
G (x) 0 0 I
0 0 S Λ




∆x
∆ν
∆λ
∆s

 = −


∇f (x) + CTν + G (x)Tλ

Cx − d
g(x) + s
Sλ− v


where S , diag(s1, . . . , sm) and Λ , diag(λ1, . . . , λm), the (1,1) block in the
coefficient matrix is

H(x , λ) , ∇2f (x) +

m∑
i=1

λi∇2gi (x)

and the vector v ∈ Rm allows for a modification of the right-hand side. Call
resulting direction ∆ [x , ν, λ, s] (v).

MPC Lec. 11 - Implementation 46 2 – Constrained Minimization

Search Directions in Primal-Dual Methods
Can generate different directions ∆ [x , ν, λ, s] (v) depending on v :

C

s1

λ1

(x, y , λ, s)

∆ [x, y , λ, s] (0)

∆ [x, y , λ, s] (κ1)

σ ∈ (0, 1)

∆ [x, y , λ, s] (σκ1)

• v = 0: pure Newton direction (“predictor” or “affine-scaling”)
• v = κ1: centering direction, approach central path

⇒ Using linear combination via centering parameter σ ∈ (0, 1) ensures fast
convergence in theory & practice by tracking central path to solution
MPC Lec. 11 - Implementation 47 2 – Constrained Minimization

Outline

2. Constrained Minimization

Projected Gradient Method

Interior-Point Methods

Software

MPC Lec. 11 - Implementation 48 2 – Constrained Minimization

Software for Modeling Optimization Problems

Formulate optimization problem in mathematical language and pass to solver:

• CVX (cvxr.com/cvx): Matlab software for modeling convex problems

• YALMIP (users.isy.liu.se/johanl/yalmip): Matlab software for modeling
convex and some non-convex optimization problems. MPC-Example:

u = sdpvar(repmat(nu,1,N),repmat(1,1,N));
constraints = []; objective = 0; x = x0;
for k = 1:N

x = A*x + B*u{k};
objective = objective + norm(Q*x,1) + norm(R*u{k},1);
constraints = [constraints, -1 <= u{k}<= 1, -5<=x<=5];

end

• AMPL (www.ampl.com): industry standard, proprietary software.
Supports basically all solvers.

• GAMS (www.gams.com): commercial high-level modeling system for
large-scale optimization. Supports many different types of problems (LPs,
QCQPs, MILPs, MINLPs, ...) and solvers

MPC Lec. 11 - Implementation 49 2 – Constrained Minimization

Software for Solving Convex Problems on Desktop
PCs
General purpose solvers

• SeDuMi (sedumi.ie.lehigh.edu): widely used free solver, with Matlab
interface

• SDPT3 (www.math.nus.edu.sg/~mattohkc/sdpt3): Matlab software,
free (GPL)

• CVXOPT (abel.ee.ucla.edu/cvxopt): free Python solver, allows
customization of linear system solvers

• IBM CPLEX: industry standard for (MI)LPs and (MI)QCQPs
(commercial)

• Gurobi (www.gurobi.com): commercial (MI)SOCP solver, by creators of
CPLEX, strong Python support

• MOSEK (www.mosek.com): fastest commercial solver for second-order
cone programs

• OOQP (pages.cs.wisc.edu/~swright/ooqp): object-oriented QP
solver (needs LAPACK/BLAS)

All listed solvers are based on interior-point methods (6 out of 7 primal-dual)
MPC Lec. 11 - Implementation 50 2 – Constrained Minimization

sedumi.ie.lehigh.edu
www.math.nus.edu.sg/~mattohkc/sdpt3
abel.ee.ucla.edu/cvxopt
www.gurobi.com
www.mosek.com
pages.cs.wisc.edu/~swright/ooqp

Convex Optimization Solvers for Embedded
Platforms

• qpOASES (www.kuleuven.be/optec/software/qpOASES): active set
solver (LGPL)

• HPIPM (https://github.com/giaf/hpipm): structure-exploiting
primal-dual IPM (BSD)

• ECOS (github.com/embotech/ecos): Sparse SOCP solver, 800 lines of
library free C code, Python & Matlab interface

Code generation: – generate problem-specific C-code:

• CVXGEN (cvxgen.com): code generation for small QPs, extremely fast,
code can get large

• FORCES PRO (www.embotech.com): Code generation for interior-point,
gradient methods, ADMM, non-convex solvers (NLPs), problems with
binary variables

MPC Lec. 11 - Implementation 51 2 – Constrained Minimization

www.kuleuven.be/optec/software/qpOASES
https://github.com/giaf/hpipm
github.com/embotech/ecos
cvxgen.com
www.embotech.com

	Unconstrained Minimization
	Gradient Methods
	Newton's Method

	Constrained Minimization
	Projected Gradient Method
	Interior-Point Methods
	Software

