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Receding Horizon Control: The Motivation

x(k +1) = g(x(k), u(k)) x , u ∈ X ,U

Design control law u(k) = κ(x(k)) such that the system:

1. Satifies constraints : {x(k)} ⊂ X , {u(k)} ⊂ U
2. Is stable: limk→∞ x(k) = 0

3. Optimizes “performance”

4. Maximizes the set {x(0) | Conditions 1-3 are met}

In this lecture, we will demonstrate that these objectives can be met in a
predictive control framework.
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Learning Objectives

• Contrast stability properties of LQR and MPC for constrained problems

• Understand why MPC by itself does not provide guarantees on stability
and constraint satisfaction

• Pose sufficient conditions and prove guarantees on stability and constraint
satisfaction
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1. MPC: Key Points Illustrated

2. Loss of Feasibility and Stability in MPC

3. Feasibility and Stability Guarantees in MPC

4. Extension to Nonlinear MPC
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Constrained Infinite Time Optimal Control
(what we would like to solve)

J?∞(x(0)) = min
u(·)

∞∑
i=0

l(xi , ui )

subj. to xi+1 = Axi + Bui , i = 0, . . . ,∞
xi ∈ X , ui ∈ U , i = 0, . . . ,∞
x0 = x(0)

• Stage cost l(x , u): “cost” of being in state x and applying input u

• Optimizing over a trajectory provides a tradeoff between short- and
long-term benefits of actions

• We’ll see that such a control law has many beneficial properties...
... but we can’t compute it: there are an infinite number of variables
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Constrained Finite Time Optimal Control
(what we can sometimes solve)

J?k→k+N|k(x(k)) = min
Uk→k+N|k

lf (xk+N|k) +

N−1∑
i=0

l(xk+i |k , uk+i |k)

subj. to xk+i+1|k = Axk+i |k + Buk+i |k , i = 0, . . . ,N − 1

xk+i |k ∈ X , uk+i |k ∈ U , i = 0, . . . ,N − 1

xk+N|k ∈ Xf

xk|k = x(k)

(1)

where Uk→k+N|k = {uk|k , . . . , uk+N−1|k}.

Truncate after a finite horizon:

• lf (xk+N|k) : Approximates the ‘tail’ of the cost
• Xf : Approximates the ‘tail’ of the constraints
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MPC: Mathematical Formulation

argmin
U

lf (xN) +

N−1∑
i=0

l(xi , ui )

subj. to x0 = x(k)

xi+1 = Axi + Bui

xi ∈ X , ui ∈ U
xN ∈ Xf

Plant
u?0

Plant State x(k)

Output y(k)

At each sample time:

• Measure / estimate current state x(k)

• Find the optimal input sequence for the entire planning window N:
U? = {u?0, u?1, . . . , u?N−1}

• Implement only the first control action u?0
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Example: Cessna Citation Aircraft

Linearized continuous-time model:
(at altitude of 5000m and a speed of 128.2 m/sec)

ẋ =


−1.2822 0 0.98 0

0 0 1 0
−5.4293 0 −1.8366 0
−128.2 128.2 0 0

 x +


−0.3
0
−17
0

 u

y =

[
0 1 0 0
0 0 0 1

]
x

horizon


V


Pitch angle


Angle of attack


• Input: elevator angle
• States: x1: angle of attack, x2: pitch angle, x3: pitch rate, x4: altitude
• Outputs: pitch angle and altitude
• Constraints: elevator angle ±0.262rad (±15◦), elevator rate ±0.524rad/s
(±60◦/s), pitch angle ±0.349 (±39◦)

Open-loop response is unstable (open-loop poles: 0, 0, −1.5594± 2.29i)
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LQR and Linear MPC with Quadratic Cost

• Quadratic cost

• Linear system dynamics

• Linear constraints on inputs and states

LQR

J?∞(x(k)) = min

∞∑
i=0

xT
i Qxi + uT

i Rui

subj. to xi+1 = Axi + Bui

x0 = x(k)

MPC

J?(x(k)) = min
U

N−1∑
i=0

x>i Qxi + u>i Rui

subj. to xi+1 = Axi + Bui

xi ∈ X , ui ∈ U
x0 = x(k)

Assume: Q = QT � 0, R = RT � 0
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Example: LQR with saturation
Linear quadratic regulator with saturated inputs.

At time t = 0 the plane is flying with a deviation of
10m of the desired altitude, i.e. x0 = [0; 0; 0; 10]

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10
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• Closed-loop system is
unstable

• Applying LQR control
and saturating the
controller can lead to
instability!
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Example: MPC with Bound Constraints on Inputs
MPC controller with input constraints |uk | ≤ 0.262 Problem parameters:

Sampling time 0.25sec,
Q = I , R = 10, N = 10
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The MPC controller uses
the knowledge that the
elevator will saturate, but it
does not consider the rate
constraints.

⇒ System does not
converge to desired
steady-state but to a
limit cycle
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Example: MPC with all Input Constraints
MPC controller with input constraints |uk | ≤ 0.262
and rate constraints |u̇k | ≤ 0.349
approximated by |ui − ui−1| ≤ 0.349Ts

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10, N = 10
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The MPC controller
considers all constraints on
the actuator

• Closed-loop system is
stable

• Efficient use of the
control authority
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Example: Inclusion of state constraints
MPC controller with input constraints |uk | ≤ 0.262
and rate constraints |u̇k | ≤ 0.349
approximated by |ui − ui−1| ≤ 0.349Ts

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10, N = 10
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Pitch angle -0.9, i.e. -50  

Increase step:
At time t = 0 the plane is
flying with a deviation of
100m of the desired
altitude, i.e.
x0 = [0; 0; 0; 100]

• Pitch angle too large
during transient
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Example: Inclusion of state constraints
MPC controller with input constraints |uk | ≤ 0.262
and rate constraints |u̇k | ≤ 0.349
approximated by |ui − ui−1| ≤ 0.349Ts

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10, N = 10
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Constraint on pitch angle active
Add state constraints for
passenger comfort:

|x2| ≤ 0.349
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Example: Short horizon
MPC controller with input constraints |uk | ≤ 0.262
and rate constraints |u̇k | ≤ 0.349
approximated by |ui − ui−1| ≤ 0.349Ts

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10, N = 4
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Decrease in the prediction
horizon causes loss of the
stability properties
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3. Feasibility and Stability Guarantees in MPC

4. Extension to Nonlinear MPC
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Loss of Feasibility and Stability

What can go wrong with “standard” MPC?

• No feasibility guarantee, i.e., the MPC problem may not have a solution

• No stability guarantee, i.e., trajectories may not converge to the origin
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Example: Loss of feasibility - Double Integrator

Consider the double integrator x(k +1) =

[
1 1
0 1

]
x(k) +

[
0
1

]
u(k)

y(k) =
[
1 0

]
x(k)

subject to the input constraints

−0.5 ≤ u(k) ≤ 0.5

and the state constraints [
−5
−5

]
≤ x(k) ≤

[
5
5

]
.

Compute a receding horizon controller with quadratic objective with

N = 3, P = Q =

[
1 0
0 1

]
, R = 10.
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Example: Loss of feasibility - Double Integrator

The QP problem associated with the RHC is

H =
[ 13.50 −10.00 −0.50
−10.00 22.00 −10.00
−0.50 −10.00 31.50

]
, F =

[−10.50 10.00 −0.50
−20.50 10.00 9.50

]
, Y = [ 14.50 23.50

23.50 54.50 ]

G =



0.50 −1.00 0.50
−0.50 1.00 −0.50
−0.50 0.00 0.50
−0.50 0.00 −0.50
0.50 0.00 −0.50
0.50 0.00 0.50
−1.00 0.00 0.00
0.00 −1.00 0.00
1.00 0.00 0.00
0.00 1.00 0.00
0.00 0.00 −1.00
0.00 0.00 1.00
0.00 0.00 0.00
−0.50 0.00 0.50
0.00 0.00 0.00
0.50 0.00 −0.50
−0.50 0.00 0.50
0.50 0.00 −0.50
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00



, E =


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0.00 −1.00
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, w =


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Example: Loss of feasibility - Double Integrator

1) MEASURE the state x(k) at time instance k
2) OBTAIN U?(x(k)) by solving the CFTOC
3) IF U?(x(k)) = ∅ THEN ‘problem infeasible’ STOP
4) APPLY the first element u?0 of U? to the system
5) WAIT for the new sampling time k +1, GOTO 1)

Time step 1:
x0 = [−4; 3], u?0(x(0)) = −0.5

Time step 2:
x0 = [−1; 2.5], u?0(x(1)) = −0.5

Time step 3:
x0 = [1.5; 2], Problem infeasible

Set of initial 
feasible states

(feasible set)


−5 0 5
0

0.5

1

1.5

2

2.5

3

3.5

4

x1

x 2

x(0) 
x(1) 

x(2) 

Depending on initial condition, closed loop trajectory may lead to states for
which optimization problem is infeasible.
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Example: Loss of feasibility - Double Integrator

−5 0 5
−5

0

5

 x
1

 
x

2

Boxes (Circles) are initial points leading (not leading) to feasible closed-loop
trajectories
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Example: Feasibility and stability are function of
tuning

Unstable system x(k +1) =

[
2 1
0 0.5

]
x(k) +

[
1
0

]
u(k)

Input constraints −1 ≤ u(k) ≤ 1

State constraints
[
−10
−10

]
≤ x(k) ≤

[
10
10

]
, Parameters: Q =

[
1 0
0 1

]

Investigate the stability properties for different horizons N and weights R by
solving the finite-horizon MPC problem in a receding horizon fashion...
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Example: Feasibility and stability are function of
tuning

1. R = 10, N = 2: all trajectories unstable.

2. R = 2, N = 3: some trajectories stable.

3. R = 1, N = 4: more stable trajectories.

* Initial points with convergent trajectories

◦ Initial points that diverge

�   


−10 −5 0 5 10
−10

−5

0

5

10

x1

x 2

�   


−10 −5 0 5 10
−10

−5

0

5

10

x1

x 2

�   


−10 −5 0 5 10
−10

−5

0

5

10

x1

x 2

Green lines denote the set of all feasible initial points. They depend on the
horizon N but not on the cost R =⇒ Parameters have complex effect and
trajectories.
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Summary: Feasibility and Stability

Problems originate from the use of a ‘short sighted’ strategy

⇒ Finite horizon causes deviation between the open-loop prediction and the
closed-loop system:

Set of feasible 
initial states for 
open-loop 
prediction


Set of initial 
states leading to 
feasible closed-
loop trajectories
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Open-loop 
predictions


Closed-loop 
trajectories


Ideally we would solve the MPC problem with an infinite horizon, but that is
computationally intractable

⇒ Design finite horizon problem such that it approximates the infinite horizon
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Summary: Feasibility and Stability

• Infinite-Horizon
If we solve the RHC problem for N =∞ (as done for LQR), then the
open loop trajectories are the same as the closed loop trajectories. Hence

• If problem is feasible, the closed loop trajectories will be always feasible
• If the cost is finite, then states and inputs will converge asymptotically to
the origin

• Finite-Horizon
RHC is “short-sighted” strategy approximating infinite horizon controller.
But

• Feasibility. After some steps the finite horizon optimal control problem
may become infeasible. (Infeasibility occurs without disturbances and
model mismatch!)

• Stability. The generated control inputs may not lead to trajectories that
converge to the origin.
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Feasibility and stability in MPC - Solution

Main idea: Introduce terminal cost and constraints to explicitly ensure
feasibility and stability:

J?(x(k)) = min
U

lf (xN) +

N−1∑
i=0

l(xi , ui ) Terminal Cost

subj. to
xi+1 = Axi + Bui , i = 0, . . . ,N − 1
xi ∈ X , ui ∈ U , i = 0, . . . ,N − 1
xN ∈ Xf Terminal Constraint
x0 = x(k)

lf (·) and Xf are chosen to mimic an infinite horizon.
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Lyapunov Stability (1/2)

Consider the nonlinear, time-invariant, discrete-time system

x(k + 1) = g(x(k)) (2)

with an equilibrium point at x̄ , i.e., g(x̄) = x̄ .

Asymptotic stability

An equilibrium point x̄ ∈ Ω of system (2) is

• asymptotically stable in the positive invariant set Ω ⊆ Rn if it is
Lyapunov stable and attractive, i.e.

lim
k→∞

‖x(k)− x̄‖ = 0, ∀ x(0) ∈ Ω

• globally asymptotically stable if it is asymptotically stable and Ω = Rn
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Lyapunov Stability (2/2)
Definition: Lyapunov function

Consider the equilibrium point x̄ = 0 of system (2). Let Ω ⊂ Rn be a closed
and bounded positive invariant set for the system (2) containing the origin. A
function V : Rn → R, continuous at the origin, finite for every x ∈ Ω, and
such that

V (0) = 0 and V (x) > 0, ∀x ∈ Ω \ {0}
V (g(x))− V (x) ≤ −α(x) ∀x ∈ Ω \ {0}

where α : Rn → R is continuous positive definite,

is called a Lyapunov function.

Theorem: Lyapunov stability (asymptotic stability)

If a system admits a Lyapunov function V (x), then x = 0 is asymptotically
stable in Ω.
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Feasibility and Stability of MPC: Proof

Main steps:

• Prove recursive feasibility by showing the existence of a feasible control
sequence at all time instants when starting from a feasible initial point

• Prove stability by showing that the optimal cost function is a Lyapunov
function
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Feasibility and Stability of MPC: Proof

Main steps:

• Prove recursive feasibility by showing the existence of a feasible control
sequence at all time instants when starting from a feasible initial point

• Prove stability by showing that the optimal cost function is a Lyapunov
function

Two cases:

1. Terminal constraint at zero: xN = 0

2. Terminal constraint in some (convex) set: xN ∈ Xf

General notation:

J?(x(k)) = min
U

lf (xN)︸ ︷︷ ︸
terminal cost

+

N−1∑
i=0

l(xi , ui )︸ ︷︷ ︸
stage cost
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Outline

3. Feasibility and Stability Guarantees in MPC

Proof for Xf = 0

General Terminal Sets

Example
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Stability of MPC - Zero terminal state constraint

Terminal constraint: xN ∈ Xf = 0

• Assume feasibility of x(k) and let
{u?0, u?1, . . . , u?N−1} be the optimal control
sequence computed at x(k) and let
{x(k), x∗1 , . . . , x∗N} be the corresponding state
trajectory

• Apply u(k) = u?0 and let system evolve to
x(k +1) = Ax(k) + Bu(k)

• At x(k +1) = x?1 the control sequence
Ũ = {u?1, u?2, . . . , u?N−1, 0} is feasible
(apply 0 control input ⇒ A x?N︸︷︷︸

=0

+B · 0 = 0)

⇒ Recursive feasibility 4

fea
sib

le 
se

t


x∗0 = x

x∗1

x∗4

x∗5 = 0

⇒ J?(x) is a Lyapunov function → (Lyapunov) Stability 4
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Stability of MPC - Zero terminal state constraint

Terminal constraint: xN ∈ Xf = 0

• Assume feasibility of x(k) and let
{u?0, u?1, . . . , u?N−1} be the optimal control
sequence computed at x(k) and let
{x(k), x∗1 , . . . , x∗N} be the corresponding state
trajectory

• Apply u(k) = u?0 and let system evolve to
x(k +1) = Ax(k) + Bu(k)

• At x(k +1) = x?1 the control sequence
Ũ = {u?1, u?2, . . . , u?N−1, 0} is feasible
(apply 0 control input ⇒ A x?N︸︷︷︸

=0

+B · 0 = 0)

⇒ Recursive feasibility 4

fea
sib

le 
se

t


x∗0 = x

x∗4

x∗5 = 0

⇒ J?(x) is a Lyapunov function → (Lyapunov) Stability 4
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Stability of MPC - Zero terminal state constraint

Terminal constraint: xN ∈ Xf = 0

Goal: Show J?(x(k +1)) < J?(x(k)) ∀x(k) 6= 0

J?(x(k)) = lf (x?N)︸ ︷︷ ︸
=0

+

N−1∑
i=0

l(x?i , u
?
i )

J?(x(k +1)) ≤ J̃(x(k +1)) =

N−1∑
i=1

l(x?i , u
?
i ) + l(x?N , 0)

=

N−1∑
i=0

l(x?i , u
?
i )− l(x?0 , u

?
0) + l(x?N , 0)

= J?(x(k))− l(x(k), u?0)︸ ︷︷ ︸
Subtract cost

at stage k

+ l(0, 0)︸ ︷︷ ︸
Add cost for

staying at 0=0

fea
sib

le 
se

t


x∗0 = x

x∗4

x∗5 = 0

⇒ J?(x) is a Lyapunov function → (Lyapunov) Stability 4
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Example: Impact of Horizon with Zero Terminal
Constraint

System dynamics:

x(k +1) =

[
1.2 1
0 1

]
x(k) +

[
1
0.5

]
u(k)

Constraints:

X := {x | −50 ≤ x1 ≤ 50, −10 ≤ x2 ≤ 10} = {x |Axx ≤ bx}
U := {u | ‖u‖∞ ≤ 1} = {u |Auu ≤ bu}

Stage cost:

l(xi , ui ) := x>i

[
1 0
0 1

]
xi + u>i ui
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Example: Impact of Horizon with Zero Terminal
Constraint

Maximum !
Control-Invariant !
Set


−50 0 50
−10

−5

0

5

10

N = 5


N = 10


N = 20


The horizon can have a strong impact on the region of attraction.
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Outline

3. Feasibility and Stability Guarantees in MPC

Proof for Xf = 0

General Terminal Sets

Example
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Extension to More General Terminal Sets
Problem: The terminal constraint xN = 0 reduces the size of the feasible set
Goal: Use convex set Xf to increase the region of attraction

−6 −4 −2 0 2 4 6
−3

−2

−1

0

1

2

3

x1

x 2

Feasible set for xN= 0  




Feasible set for xN ∈ X�   




X�


Double integrator

x(k +1) =

[
1 1
0 1

]
x(k) +

[
0
1

]
u(k)[

−5
−5

]
≤ x(k) ≤

[
5
5

]
−0.5 ≤ u(k) ≤ 0.5

N = 5,Q =

[
1 0
0 1

]
,R = 10

Goal: Generalize proof to the constraint xN ∈ Xf
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Invariant sets
Definition: Invariant set

A set O is called positively invariant for system x(k +1) = gcl(x(k)), if

x(0) ∈ O ⇒ x(k) ∈ O, ∀k ∈ N+

The positively invariant set that contains every closed positively invariant set is
called the maximal positively invariant set O∞.

Invariant

! Recursively

     feasible



O1

Infeasible after 
one step


Infeasible after 
two steps
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Stability of MPC - Main Result

Assumptions

1. Stage cost is positive definite, i.e. it is strictly positive and only zero at
the origin

2. Terminal set is invariant under the local control law κf (xi ):

xi+1 = Axi + Bκf (xi ) ∈ Xf , for all xi ∈ Xf

All state and input constraints are satisfied in Xf :

Xf ⊆ X , κf (xi ) ∈ U , for all xi ∈ Xf

3. Terminal cost is a continuous Lyapunov function in the terminal set Xf

and satisfies:

lf (xi+1)− lf (xi ) ≤ −l(xi , κf (xi )), for all xi ∈ Xf

MPC Lec. 6 - Feasibility and Stability 42 3 – Feasibility and Stability Guarantees in MPC



Under those 3 assumptions:

Theorem

The closed-loop system under the MPC control law u?0(x) is asymptotically
stable and the set XN is positive invariant for the system

x(k +1) = Ax(k) + Bu?0(x(k)).
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Stability of MPC - Outline of the Proof

• Assume feasibility of x(k) and let
{u?0, u?1, . . . , u?N−1} be the optimal control
sequence computed at x(k) and
{x(k), x?1 , . . . , x?N} the corresponding state
trajectory

• At x(k +1) = x?1 , the control sequence
Ũ = {u?1, u?2, . . . , κf (x?N)} is feasible:

x?N is in Xf → κf (x?N) is feasible

and Ax?N + Bκf (x?N) in Xf

⇒ Terminal constraint provides recursive
feasibility

fea
sib

le 
se

t


x∗1

x∗4

x∗0 = x

x∗5

Xf
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Stability of MPC - Outline of the Proof

• Assume feasibility of x(k) and let
{u?0, u?1, . . . , u?N−1} be the optimal control
sequence computed at x(k) and
{x(k), x?1 , . . . , x?N} the corresponding state
trajectory

• At x(k +1) = x?1 , the control sequence
Ũ = {u?1, u?2, . . . , κf (x?N)} is feasible:

x?N is in Xf → κf (x?N) is feasible

and Ax?N + Bκf (x?N) in Xf

⇒ Terminal constraint provides recursive
feasibility

fea
sib

le 
se

t


x∗0 = x

x∗4

x∗5

x̃6 Xf
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Asymptotic Stability of MPC - Outline of the Proof

J?(x(k)) =

N−1∑
i=0

l(x?i , u
?
i ) + lf (x?N)

At x(k +1) = x?1 , Ũ = {u?1, u?2, . . . , κf (x?N)} is feasible & sub-optimal

J?(x(k+1)) ≤
N−1∑
i=1

l(x?i , u
?
i ) + l(x?N , κf (x

?
N)) + lf (Ax?N + Bκf (x

?
N))

=

N−1∑
i=0

l(x?i , u
?
i )︸ ︷︷ ︸

J?(x(k))−lf (x?N )

−l(x?0 , u
?
0) + l(x?N , κf (x

?
N)) + lf (Ax?N + Bκf (x

?
N))

= J?(x(k))− l(x(k), u?0) + lf (Ax?N + Bκf (x
?
N))− lf (x

?
N) + l(x?N , κf (x

?
N))︸ ︷︷ ︸

≤0 by Assumption 3

=⇒ J?(x(k+1))− J?(x(k)) ≤ −l(x(k), u?0), l(x , u) > 0 for x , u 6= 0

J?(x) is a Lyapunov function
⇒ The closed-loop system under the MPC control law is asymptotically stable
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Choice of Terminal Sets and Cost - Linear System,
Quadratic Cost

J?(x(k)) = min
U

x>N PxN +

N−1∑
i=0

x>i Qxi + u>i Rui Terminal Cost

subj. to
xi+1 = Axi + Bui , i = 0, . . . ,N − 1
xi ∈ X , uk ∈ U , i = 0, . . . ,N − 1
xN ∈ Xf Terminal Constraint
x0 = x(k)
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Choice of Terminal Sets and Cost - Linear System,
Quadratic Cost

• Design unconstrained LQR control law

F∞ = −(B>P∞B + R)−1B>P∞A

where P∞ is the solution to the discrete-time algebraic Riccati equation:

P∞ = A>P∞A + Q − A>P∞B(B>P∞B + R)−1B>P∞A

• Choose the terminal weight P = P∞
• Choose the terminal set Xf to be the maximum invariant set for the
closed-loop system xk+1 = (A + BF∞)xk :

xk+1 = Axk + BF∞(xk) ∈ Xf , for all xk ∈ Xf

All state and input constraints are satisfied in Xf :

Xf ⊆ X , F∞xk ∈ U , for all xk ∈ Xf
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Choice of Terminal Sets and Cost - Linear System,
Quadratic Cost

1. The stage cost is a positive definite function

2. By construction the terminal set is invariant under the local control law
κf (x) = F∞x

3. Terminal cost is a continuous Lyapunov function in the terminal set Xf

and satisfies:

x>k+1Pxk+1 − x>k Pxk

= x>k (−P∞ + A>P∞A + F>∞B>P∞A− F>∞RF∞)xk

= x>k (−P∞ + A>P∞A− A>P∞B(B>P∞B + R)−1B>P∞A− F>∞RF∞)xk

= −x>k (Q + F>∞RF∞)xk

All the Assumptions of the Feasibility and Stability Theorem are verified.
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Example: Unstable Linear System
System dynamics:

x(k +1) =

[
1.2 1
0 1

]
x(k) +

[
1
0.5

]
uk

Constraints:

X := {x | −50 ≤ x1 ≤ 50, −10 ≤ x2 ≤ 10} = {x |Axx ≤ bx}
U := {u | ‖u‖∞ ≤ 1} = {u |Auu ≤ bu}

Stage cost:

l(xi , ui ) := x>i

[
1 0
0 1

]
xi + u>i ui

Horizon: N = 10
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Example: Designing MPC Problem

1. Compute the optimal LQR controller and cost matrices: F∞, P∞
2. Compute the maximal invariant set Xf for the closed-loop linear system

xk+1 = (A + BF∞)xk subject to the constraints

Xcl :=

{
x
∣∣∣∣ [ Ax

AuF∞

]
x ≤

[
bx

bu

]}

−50 0 50
−10

−5

0

5

10
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Example: Closed-loop behaviour
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Example: Closed-loop behaviour
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Example: Closed-loop behaviour
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Example: Closed-loop behaviour

−15 −10 −5 0 5
−2

−1

0

1

2

3

4

5

6

MPC Lec. 6 - Feasibility and Stability 55 3 – Feasibility and Stability Guarantees in MPC



Example: Closed-loop behaviour
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Example: Lyapunov Decrease of Optimal Cost

0 5 10 15
0

1000

2000

3000

4000

5000

6000

7000
J* (x

i)
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Choice of Terminal Set and Cost: Summary

• Terminal constraint provides a sufficient condition for feasibility and
stability

• Region of attraction without terminal constraint may be larger than for
MPC with terminal constraint but characterization of region of attraction
extremely difficult

• Xf = 0 simplest choice but small region of attraction for small N

• Solutions available for linear systems with quadratic cost

• In practice: Enlarge horizon and check stability by sampling

• With larger horizon length N, region of attraction approaches maximum
control invariant set
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Outline

3. Feasibility and Stability Guarantees in MPC

Proof for Xf = 0

General Terminal Sets

Example
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Example: Short horizon
MPC controller with input constraints |uk | ≤ 0.262
and rate constraints |u̇k | ≤ 0.349
approximated by |ui − ui−1| ≤ 0.349Ts

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10, N = 4
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Decrease in the prediction
horizon causes loss of the
stability properties
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Example: Short horizon
MPC controller with input constraints |uk | ≤ 0.262
and rate constraints |u̇k | ≤ 0.349
approximated by |ui − ui−1| ≤ 0.349Ts

Problem parameters:
Sampling time 0.25sec,
Q = I , R = 10, N = 4
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Inclusion of terminal cost
and constraint provides sta-
bility
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Outline

1. MPC: Key Points Illustrated

2. Loss of Feasibility and Stability in MPC

3. Feasibility and Stability Guarantees in MPC

4. Extension to Nonlinear MPC
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Extension to Nonlinear MPC
Consider the nonlinear system dynamics: x(k +1) = g(x(k), u(k))

J?(x(k)) = min
U

lf (xN) +

N−1∑
i=0

l(xi , ui )

subj. to xi+1 = g(xi , ui ), i = 0, . . . ,N − 1
xi ∈ X , ui ∈ U , i = 0, . . . ,N − 1
xN ∈ Xf

x0 = x(k)

• Presented assumptions on the terminal set and cost did not rely on
linearity

• Lyapunov stability is a general framework to analyze stability of nonlinear
dynamic systems

→ Results can be directly extended to nonlinear systems.

However, computing the sets Xf and function lf can be very difficult!
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Summary

Finite-horizon MPC may not be stable!

Finite-horizon MPC may not satisfy constraints for all time!

• An infinite-horizon provides stability and invariance.

• We ‘fake’ infinite-horizon by forcing the final state to be in an invariant
set for which there exists an invariance-inducing controller, whose
infinite-horizon cost can be expressed in closed-form.

• These ideas extend to non-linear systems, but the sets are difficult to
compute.
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