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1 SYSTEM THEORY

MODELS OF DYNAMIC SYSTEMS

NL TI CT SS Model
ẋ = g(x , u)

y = h(x , u)

x ∈ Rn

u ∈ Rm

y ∈ Rp

g : Rn × Rm → Rn

h : Rn × Rm → Rp

LINEARIZATION & DISCRETIZATION

Taylor Expansion
around operating point
x̄ (first order) f (x) ≈

f (x̄) +
∂f

∂x>

∣∣∣∣
x̄

(x − x̄)

ẋ =

Ac∈Rn×n︷ ︸︸ ︷
∂g
∂x>

∣∣xs
us
δx +

Bc∈Rn×m︷ ︸︸ ︷
∂g
∂u>

∣∣xs
us
δu

y = ∂h
∂x>

∣∣xs
us︸ ︷︷ ︸

C∈Rp×n

δx + ∂h
∂u>

∣∣xs
us︸ ︷︷ ︸

D∈Rp×m

δu

Exact
Solution x(t) = eA

c (t−t0)x0 +
∫ t
t0
eA

c (t−τ)Bcu(τ)dτ

Euler Discretiz.

ẋc≈ x
c (t+Ts )−xc (t)

Ts

x(k+1)=

=A︷ ︸︸ ︷
I+TsA

cx(k)+

=B︷ ︸︸ ︷
TsB

cu(k)

y(k)=Cx(k) +Du(k)

Exact Discretization assume u constant over interval

x(tk+1) = eA
cTs︸ ︷︷ ︸

=A

x(tk) +
∫ Ts

0
eA

c (Ts−τ)Bcdτ
︸ ︷︷ ︸
B=(Ac )−1(A−I)Bc

u(tk)

DT LTI Solution

x(k + N) = ANx(k) +
∑N−1
i=0 A

iBu(k + N − 1− i)

LINEAR SYSTEM ANALYSIS

DT Stability x(k + 1) = Ax(k) stable iff |λj | < 1,∀j
LTI DT Controllability can reach x∗ from x(0) in n steps

C =
[
B · · · An−1B

]
⇒ rank(C)

!
= n

DT Observability uniquely distinguish IC from output

O =
[
C> · · · (CAn−1)>

]> ⇒ rank(O)
!

= n

Stabilizability iff all uncontrollable modes stable

if rank([λjI− A | B]) = n ∀λj ∈ Λ+
A ⇒ (A,B) stabilizable

Detectablitiy iff all unobservable modes stable

if rank([A> − λjI | C>]) = n ∀λj ∈ Λ+
A ⇒ (A,C) detect.

NONLINEAR SYSTEM ANALYSIS

Lyapunov Stability (w.r.t eq. point x̄ of a system)
Lyapunov Stable
for every ε > 0 exists δ(ε) s.t.
||x(0)− x̄ || < δ(ε)→ ||x(k)− x̄ || < ε

Globally Asympt. Stable
Lyap. stable & Attractive
limk→∞||x(k)− x̄ || = 0 ∀x(0)

Global Lyapunov Function (Candidate)
Consider eq point x̄ = 0. V : Rn → R, continuous at origin, finite ∀x ,

(1) ||x || → ∞ ⇒ V (x)→∞
(2) V (0) = 0, V (x) > 0 ∀x ∈ Rn \ {0}
(3) V (g(x))− V (x) ≤ −α(x) ∀x ∈ Rn

where α : Rn → R continuous pos. def.

Global Lyapunov Stability
If sys admits a V (x)⇒ x = 0 is Globally Asympt. Stable

ACHTUNG if α pos. semidef⇒ x = 0 is Globally Lyapunov Stable

2 UNCONSTRAINED LQR CONTROL

LINEAR QUADRATIC OPTIMAL CONTROL

Dynamics

xi+1 = Ax(k) + Bu(k)

Constraints
NONE for state OR input

Goal minimize Quadratic Cost subj. to dynamics

J?(x(0)) := min
U

[
x>N PxN +

∑N−1
i=0 (x>i Qxi + u>i Rui)

]

• N : horizon length
• P � 0, P = P>

• Q � 0, Q = Q>

• R � 0, R = R>
• x(0): current state
• xi , ui : opt. variable

BATCH APPROACH

Idea explicitly represent xi ∈ Rn through x0 & ui ∈ Rm



x0
...
xN




︸ ︷︷ ︸
X

=




I
A
...
AN




︸ ︷︷ ︸
Sx ∈ R(N+1)n×n

x(0) +




0 · · · 0
B · · · 0
...

. . . 0
AN−1B · · · B




︸ ︷︷ ︸
Su ∈ R(N+1)n×Nm




u0

u1

...
uN−1




︸ ︷︷ ︸
U

Cost Q := blockdiag(Q, ... ,Q,P) & R := blockdiag(R, ... ,R)
Optimal Input

U?(x(0)) = −
(

(Su)>QSu + R
)

︸ ︷︷ ︸
H (Hessian)

−1
(Su)>QSx︸ ︷︷ ︸

F>

x(0)

Optimal Cost

J?(x(0)) = x(0)>
[
S>x QSx−S

>
x QSu(S

>
u QSu+R)

−1S>u QSx
]
x(0)

RECURSIVE APPROACH

Idea apply DPOC solve j-step optimal cost-to-go

J?j (x(j)) := min
Uj→N

x>N PxN+

N−1∑

i=j

(x>i Qxi+u
>
i Rui )

P ← PN
for i = N : 1
do
F ← f (P)
P ← f (F )

end for
Optimal Control Policy

u?i = −(B>Pi+1B + R)−1B>Pi+1A · x(i) := Fixi

Optimal Cost-To-Go J?i (xi) = x>i Pixi
RDE – Riccati Difference Equation (PN = P)

Pi = A>Pi+1A+Q−A>Pi+1B(B>Pi+1B+R)−1B>Pi+1A

Numerically Safer
Alternative Pi = Q + F>i RFi + (A+ BFi )

>P(A+ BFi )

COMPARISON – BATCH VS RECURSIVE
• Return

– Batch – sequence of numeric values U?
– Recursive – feedback policies u?i

• Control actions identical if perfect model
• Disturbances – Recursive more robust to disturbances
• Computational efficiency

– Recursive more efficient for large N
– Matrix inversion in Batch approach expensive

• Constraints – Neither works with constraints on xi or ui
• Batch Approach easier to adapt when contraints are present

constrained minimization (solving for Ji+1 with constraints) hard

RHC – RECEDING HORIZON CONTROL

Idea Compute opt.
sequence over
N-step horizon

U? := argmin x>N PxN +
∑N−1
i=0 x

>
i Qxi + u>i Rui

subj. to xi+1 = Axi + Bui ⇒ U?

• Extract first input in sequence: U? = {u?0 , ... , u?N−1} ⇒ u
?
0

• Introduce feedback to sys: x(k + 1) = Ax(k) + Bu(k)⇒ x
Why Reoptimize Provides robustness to noise / modeling errors,
Sol’n at k subopt. (finite horizon) reopt. potentially better performance

INFINITE HORIZON LQR

• Cost Let N →∞ J∞(x(0)) = minu
∑∞
i=0 x

>
i Qxi + u>i Rui

• RDE satisfied with Pi = Pi+1 = P∞
• Input Feedback matrix F∞  u?(k) := F∞x(k)
LQR Lyapunov Function

If (A,B) stabilizable, (Q1/2,A) detectable J?(x) = x>P∞x is Lyap.
func. for system x+ = (A+ BF∞)x

Choice of P in Finite Horizon Control

• Can choose to match∞-Horizon sol’n Make P ≈ JN→∞ with ARE
• Can Choose P assuming no control action after end of horizon

This P determined from solving Lyap eqn A>PA+Q = P
Only makes sense if system asympt. stable

• Assume we want state and input both to be 0 at end of horizon no
P but extra constraint xi+N = 0

3 CONVEX OPTIMIZATION

PROBLEM FORMULATION

min
x∈dom(f )

f (x)

subj. to gi (x) ≤ 0 i = 1, ... ,m

hi (x) = 0 i = 1, ... , p

• X :
{x ∈ dom(f ) | gi ≤ 0, hi = 0 }
feasible set

• gi : ineq constraints
• hi : eq contraints

Feasibility Point x satisfies
gi ≤ 0, hi = 0 & eq contraints
Optimal Value lowest cost

p∗ = f (x?) = minx∈X f (x)

Strictly Feasible Point x satisfies gi < 0
Optimizer feas. x?  smallest p∗

argminx∈X f (x) :={x ∈X|f (x)=p∗}

ACHTUNG NOT always unique
Active Contraints
when ineq const. are eq “active”
Locally Optimal

y ∈ X , ||y − x || ≤ R ⇒ f (y) ≥ f (x)

Unbounded Below p∗ = −∞
Unconstrained X = Rn

Redundant Contraints do not
change feasible set
Globally Optimal

y ∈ X ⇒ f (y) ≥ f (x)

Infeasible p∗ =∞⇔ X = {}

CONVEX SETS

Definition
Convex iff λx + (1− λ)y ∈ X , ∀λ ∈ [0, 1], ∀x , y ∈ X
Interpretation All lines starting in X stay within X
Hyperplane

{x ∈Rn | a>x=b}

Halfspace

{x ∈Rn | a>x≤b}

open: <, closed: ≤

Convex Sets: Hyperplanes and Halfspaces
Definitions: Hyperplanes and halfspaces

A hyperplane is defined by
{
x ∈ Rn

∣∣ a>x = b
}
for a 6= 0, where a ∈ Rn is the

normal vector to the hyperplane.

A halfspace is everything on one side of a hyperplane
{
x ∈ Rn

∣∣ a>x ≤ b
}
for

a 6= 0. It can either be open (strict inequality) or closed (non-strict inequality).

For n = 2, hyperplanes define lines. For n = 3, hyperplanes define planes.

Hyperplanes are affine and convex, halfspaces are convex.

{x | aTx = b}

x1

x2

a

A hyperplane

{x | aTx  b}

x1

x2

a

A closed halfspace
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Polyhedron

P :={x | a>i x ≤ bi , i = ... }
:={x | Ax ≤ b}

Polytope
bounded polyhedron

Convex Sets: Polyhedra and Polytopes
Definitions: Polyhedra and polytopes

A polyhedron is the intersection of a finite number of closed halfspaces:

P :=
{
x
∣∣ a>i x ≤ bi , i = 1, . . . , n

}
= {x |Ax ≤ b}

where A := [a1, a2, . . . , am]> and b := [b1, b2, . . . , bm]>.

A polytope is a bounded polyhedron.

Polyhedra and polytopes are always convex.

x1

x2

An (unbounded) polyhedron

x1

x2
ak

A polytope
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Ellipsoid

{x |(x−xc)>A−1(x−xc) ≤ 1}

xc : center of ellipsoid

Convex Sets: Ellipsoids
Definition: Ellipsoid

An ellipsoid is a set defined as
{
x
∣∣ (x − xc)>A−1(x − xc) ≤ 1

}
,

where xc is the centre of the ellipsoid, and A � 0 (i.e. A is positive definite).

x1

x2

xc

{x | (x - xc)TA-1(x - xc)  1}

Semi-axis lengths are square 
roots of eigenvalues of A


2


1

The Euclidean ball B(xc , r) is a special case of the ellipsoid, for which
A = r2I , so that B(xc , r) := {x | ||x − xc ||2 ≤ r}.
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Norm Ball {x | ||x−xc || ≤ r}

• p = 2 Euclidean Norm ||x ||2 =
√∑

i x
2
i

• p = 1 Sum of Absolute ||x ||1 =
∑
i |xi |

• p =∞ Largest Absolute

Convex Sets: Norm Balls
The norm ball, defined by {x | ||x − xc || ≤ r} where xc is the centre of the ball
and r ≥ 0 is the radius, is always convex for any norm.

By far the most common `p norms are:

• p = 2 (Euclidean norm):

||x ||2 =

√∑

i

x2i

• p = 1 (Sum of absolute values):

||x ||1 =
∑

i

|xi |

• p =∞ (Largest absolute value):

||x ||∞ = max
i
|xi |

x

x

1

2

1

2

8

x = 1

x = 1

x = 1
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Intersections & Unions
Intersection – Intersection of two or more convex sets is itself convex
Union – Union of two sets is NOT convex in general

CONVEX FUNCTIONS

Definition convex iff dom(f ) convex &

f (λx+(1−λ)y) ≤ λf (x)+(1−λ)f (y)

∀λ ∈ (0, 1), ∀x , y ∈ dom(f )

Strictly Convex if inequality is strict

Convex Functions
Definitions: Convex Function

A function f : dom (f )→ R is convex iff dom (f ) is convex and

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y), ∀λ ∈ (0, 1), ∀x , y ∈ dom (f )

The function f : dom (f )→ R is strictly convex if this inequality is strict.

f (x + (1 - )y)

f (x) + (1 - )f (y)

z

f (z)

x y

The function f is concave iff dom (f ) is convex and −f is convex.
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1st-Order Condition
f (x) convex iff f (y) ≥ f (x) +∇f (x)>(y − x)

2nd-Order Condition
f (x) convex iff ∇2f (x) � 0, ∇2f (x)ij = ∂2f (x)

∂xi∂xj

Level Set

Lα of f , set for which

Lα := {x | x ∈dom(f ), f (x)=α}

Equiv to contour lines of const ‘height’

Sublevel Set

Cα of f for value α is defined by

Cα := {x | x ∈ dom(f ), f (x) ≤ α}

f convex⇒ sublevel sets convex ∀α

Examples
Convex
• Affine ax + b for any a, b ∈ R
• Exp. eax for any A ∈ R
• Powers xα on domain R++, for α ≥ 1

or α ≤ 0
• Vector norms on Rn :
‖x‖p = (

∑n
i=1 |x|

p)1/p , for p ≥ 1,

Concave
• Affine ax + b for any a, b ∈ R
• Powers xα on domain R++, for

0 ≤ α ≤ 1
• Log log x on domain R++

• Entropy −x log x on domain
R++

OPTIMALITY CONDITIONS

Lagrange Dual Function

d(λ, ν) = inf
x∈dom(f )︸ ︷︷ ︸
≈minx

[
f (x) +

∑m
i=1 λigi(x) +

∑p
i=1 νihi(x)

]
︸ ︷︷ ︸

L(x ,λ,ν): Lagrange Function

P – Primal Problem D – Dual Problem

(P) :

minx f (x)

subj. to gi(x) ≤ 0

hi(x) = 0

∣∣∣∣∣∣∣
(D) :

maxν,λ d(ν,λ)

subj. to λ ≥ 0

• d(λ, ν) always concave
• d? ≤ p?  d(λ, ν) gens lower

bound for p

• (D) convex even if (P) not
• Point (λ, ν) dual feas. if λ ≥ 0,

(λ, ν) ∈ dom(d)

Weak & Strong Duality

Weak Duality – it is always true that d? ≤ p?
Stront Duality – it is sometimes true that d? = p?

• Strong duality usually does not hold for non-convex problems
• Can impose conditions on convex problems to guarantee that d? = p?

• Sometimes the dual much easier to solve than the primal

• LP always has strong duality
Slater Condition
If ∃ at least one strictly feasible point i.e {x | Ax = b, gi (x) < 0 ∀i}
⇒ p? = d?

KKT – KARUSH-KUHN-TUCKER CONDITIONS

(1) Primal Feasibility gi (x?) ≤ 0, i = 1 ...m hi (x
?) = 0, i = 1 ... p

(2) Dual feasibility λ? ≥ 0
(3) Complementary Slackness λ?i gi (x

?) = 0 i = 1 ...m

(4) Stationarity ∇L = ∇f (x∗) +

m∑

i=1

λ∗i ∇gi (x
∗) +

p∑

i=1

ν∗i ∇hi (x
∗) = 0

General Optimization Necessary condition

x?,λ?, ν? sol’n to (P), (D) with 0 duality gap⇒ x?,λ?, ν? satisfy KKT

Convex Optimization Sufficient condition

x?,λ?, ν? satisfy KKT⇒ x?,λ?, ν? sol’n to (P), (D) with 0 duality gap

Convex Opt. + Slater Necessary & Sufficient condition

If Slater’s cond. holds, x?,λ?, ν? are sol’n to (P), (D) IFF KKT satisfied

Remark for convex opt. problem, KKT conditions sufficent if x?,λ?, ν?

satisfy KKT then p? = d?

MATRIX CALCULUS
Basics

xy> =
[
x1y ... xny

]

〈x , y〉 = x>y =
∑
xiyi

Vector Derivatives

∂
∂x
x>A = ∂

∂x
A>x = A

∂
∂x
x>Ax = (A+ A>)x

Del-Operator
(Gradient) ∇x f (x) =

[
∂
∂x1
f (x) · · · ∂

∂xn
f (x)

]>

Jacobian
(Gradient of
multivar func)

∂f

∂x>
=

[
∂f1
∂x1

... ∂f1
∂xn

∂fn
∂x1

... ∂fn
∂xn

]

EXAMPLES

LP – Dual

(P) : minx∈Rn c>x , subj. to Ax = b, Cx ≤ e

(D) : maxλ,ν −b>ν − e>λ, s.t A>ν + C>λ + c = 0, λ ≥ 0

QP – Dual with Q � 0

(P) : minx∈Rn
1
2
x>Qx + c>x , subj. to Cx ≤ e

(D) : maxλ,ν
1
2
λ>CQ−1C>λ + (CQ−1c + e)>λ + 1

2
c>Q−1c

subj. to λ ≥ 0

QP – Lagrangian

min
x

1
2
x>Hx + q>x + r

s.t Gx ≤ h
Ax = b

∣∣∣∣∣∣∣∣

L = 1
2
x>Hx + q>x + r

+ λ>(Gx − h) + ν>(Ax − b)

∇xL =Hx + q + G>λ + A>ν
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4 CFTOC

CFTOC – CONSTRAINED FINITE-TIME OPT. CONTROL

Constrained Linear Optimal Control

J?(x(k)) = minU lf (xN) +
∑N−1
i=0 l(xi , ui)

subj. to xi+1 = Axi + Bui

xi ∈ X , ui ∈ U
xN ∈ Xf , x0 = x(k)

• Quad. Cost / Squared Euclidian Norm:

J(x(k)) = x>N PxN +
∑N−1
i=0 x

>
i Qxi + uiRui

• p-Norm: J(x(k)) = ||PxN ||p +
∑N−1
i=0 ||Qxi ||p + ||Rui ||p

TRANSFORM QUAD CFTOC TO QP

QP Problem
Goal – Rewrite Quad.
Cost CFTOC as QP
 easier to solve

min
z∈Rn

1
2
z>Hz + q>z + r

subj. to Gz ≤ h
Az = b

CONSTRUCTION WITH SUBSTITUTION

IDEA – Sub. state eqns xi+1 = Axi + Bui , x0 = x(k)
Cost – Rewrite as

J?(x(k)) = min
U

[
U> x(k)>

] [
H F>

F Y

] [
U> x(k)>

]>

subj. to GU ≤ w + Ex(k)

Constraints – Rewrite as GU ≤ w + Ex(k)

X ={x |Axx≤bx} U={u|Auu≤bu} Xf ={x |Af x≤bf }

G =




Au
···

Au

0 ··· 0
AxB
AxAB AxB 0

Af A
N−1B ··· Af B


 ,E =




0
···
0

−Ax
−AxA
···

−Af AN


 ,w =




bu
···
bu

bx
bx
···
bf




Solution For a given x(k), U? can be found via QP solver

CONSTRUCTION WITHOUT SUBSTITUTION

Idea – Keep state eqns as eq. constraints
Cost with z =

[
x>1 ... x>N u>0 ... u>N−1

]>

J?(x(k)) = min
z

[
z> x(k)>

] [
H̄ 0
0 Q

] [
z> x(k)>

]>

subj. to Ginz ≤ win + Einx(k)

Geqz = Eeqx(k)

H̄ = diag(Q, ... ,Q,P,R, ... ,R)

Equality Constraints from System Dyn. xi+1 = Axi + Bui

Geq =

[ I
−A I
−A I
··· ···

∣∣∣∣
−B
−B
−B
···

]
,Eeq =

[
A
0
···
0

]

Inequality Constraints

X ={x |Axx≤bx} U={u|Auu≤bu} Xf ={x |Af x≤bf }

Gin =




0

Ax
Ax
···
Af

0
0
···

0

∣∣∣∣∣∣∣∣∣∣

0

0
0
···

0

Au
Au
···
Au




,win =




bx

bx
bx
···
bf

bu
bu
···
bu




,Ein =

[
−ATx

0
···
0

]

QP FEEDBACK SOLUTION

From CFTOC problem as multiparametric QP

J?(x(k)) = min
U

[
U>x(k)>

] [
H F>

F Y

] [
U>x(k)>

]>

subj. to GU ≤ w + Ex(k)

Solution Properties
• First component of optimal solution:

u?0 = κ(x(k)), ∀x(k) ∈ X0

κ : Rn → Rm is cont. and pw. affine on Polyhedra
κ(x) = F jx + gj if x ∈ CR j , j = 1, ... ,N r

• Polyhedral sets CR j =
{
x ∈ Rn | H jx ≤ K j

}
, j = 1, ... ,N r

are partition of the feasible polyhedron X0.
• Value func. J?(x(k)) is convex and pw quad. on polyhe-

dra.

TRANSFORM P-NORM CFTOC TO LP
`∞-Minimization

min
x∈Rm

||x ||∞

subj. to Fx ≤ g
⇐⇒

min
x ,t
t

subj. to − 1mt ≤ x ≤ 1mt, Fx ≤ g

Intuition −1mt ≤ x ≤ 1mt bounds abs value of every elem. with scalar t
`1-Minimization

min
x∈Rm

||x ||1

subj. to Fx ≤ g
⇐⇒

min
x∈Rm ,t∈Rm

1m
>t

subj. to − t ≤ x ≤ t, Fx ≤ g

Intuition ‖x‖1 =
∑n
i=1|xi | ≤

∑n
i=1 ti = 1>n t  −t ≤ x ≤ t

bounds abs value of each component of x with a component of vector t

CONSTRUCTION OF∞-NORM WITH SUBSTITUTION

Cost

min
z
εxN
∑N−1
i−0 εxi + εui

subj. to − 1nεxi ≤ ±Q
[
Aix0 +

∑i−1
j=0 A

jBui−1−j

]

− 1r εxN ≤ ±P
[
ANx0 +

∑N−1
j=0 A

jBuN−1−j

]

− 1mεui ≤ Rui
xi ∈ X , ui ∈ U , xf ∈ Xf , x0 = x(k)

Substitution with z := {εx0 ... εxN , εu0 ... εuN−1, u>0 ... u>N−1} ∈ Rs ,
s := (m + 1)N + N + 1

min
z
c>z subj. to Ḡz ≤ w̄ + S̄x(k)

Ḡ =

[
Gε Gu
0 G

]
, S̄ =

[
Sε
S

]
, w̄ =

[
wε
w

]

Solution for given x(k), U? can be optained via LP solver

LP STATE FEEDBACK SOLUTION

MP-LP
multiparam. LP min

z
c>z subj. to Ḡz ≤ w̄ + S̄x(k)

Properties
• First component of mp sol’n has form u?0 = κ(x(0)), ∀x(k) ∈ X0

κ : Rn → Rm cont. & pw affine on Polyhedra
κ(x) = F jx + gj if x ∈ CR j , j = 1, ... ,Nr

• Polyhedral sets CR j = {x ∈ Rn | H jx ≤ K j} are partition of feasible
Polyhedron X0

• In case of multiple optimizers, a pw affine control law exists
• J?(x(0)) is convex, pw linear on polyhedra

QUAD VS 1/∞-NORM COST

n = # opt. var., FS = feas. set. Solution is either
Quadratic Cost
• unique & in interior of FS (no

constraints active)
• unique & on boundary of FS

(at least 1 const. active)

Linear Cost
• Unbounded
• unique at vertex of FS (at least n

active constraints)
• multiple optima (at least 1 active

const.)

5 INVARIANCE

INVARIANCE

System
Autonomous x(k + 1) = g(x(k))
Closed-Loop x(k + 1) = g(x(k),κ(x(k))) for given κ
Positively Invariant Set
Set O positively invariant for autonomous system if

x(k) ∈ O ⇒ x(k + 1) ∈ O, ∀k ∈ {0, 1, ... }

Maximal Positively Invariant Set
O∞ ⊂ X positively invariant and contains all other O

Pre-Set
Given set S , the pre-set of S is the set of states that
evolve into S in one time step

x(k + 1) = g(x(k))

⇒pre(S) := {x | g(x) ∈ S}

∣∣∣∣∣
x(k + 1) = Ax(k)

⇒pre(S) := {x | Ax ∈ S}

Invariant Set Conditions
Set O is positively invariant set iff

O ⊆ pre(O) ⇔ pre(O) ∩ O = O

Necessary if O * pre(O), then ∃x̄ ∈ O s.t x̄ /∈ pre(O) x̄ ∈ O, x̄ /∈
pre(O), thus O not positively invariant

Sufficient if O not pos invar set, then ∃x̄ ∈ O s.t g(x̄) /∈ O  x̄ ∈ O, x̄ /∈
pre(O) thus O /∈ pre(O)

Pre-Set Computation
Set S := {x | Fx ≤ f },
x(k + 1) = Ax(k) then

pre(S) :={x | Ax ∈ S}
={x | FAx ≤ f }

Ω0 ← X
loop

Ωi+1 ← pre(Ωi ) ∩Ωi
if Ωi+1 = Ωi then

return O∞ = Ωi
end if

end loop

• For {x | Fx ≤ f }, if F ↓ or f ↑ Less Restrictive
• S ∩ F  constraints from both sets active

CONTROL INVARIANCE

Control Invariant Set
Set C ⊆ X control invariant if

x(k) ∈ C ⇒ ∃u(k) ∈ U s.t g(x(k), u(k)) ∈ C ∀k

Maximal Control Invariant Set
Set C∞ maximal control invariant if it is control invariant
and contains all control invariant sets contained in X

Intuition For all states in C∞, there exists control law s.t system constraints
never violated The best any controller could ever do
Pre-Set pre(S) := {x | ∃u ∈ U s.t g(x , u) ∈ S}
Control Invariant C control invariant set iff C ⊆ pre(S)
Algorithm Same, but much harder to compute pre-set
Control Invariant Set⇒ Control Law

C control invariant set for x(k + 1) = g(x(k), u(k)) Control law κ(x(k))
will guarantee that system satisfies constraints ∀t if g(x ,κ(x)) ∈ C ∀x ∈
C  With f as any function Synthesize control law κ:

κ(x) := argmin{f (x , u) | g(x , u) ∈ C}

• Does not ensure sys. will converge, but will satisfy constraints
• Don’t often do because calculating control invariant sets is very hard
• MPC implicitly describes cont. invar. set s.t easy to represent/compute

PRACTICAL INVARIANT SET COMPUTATION

Minkowski-Weyl Theorem

For P ⊆ Rd following statements equivalent:
• P polytope, ∃A, b s.t P = {x | Ax ≤ b}
• P finitely generated, ∃ finite set of vectors {vi} s.t P = co({v1 ... vs})

Invariant Sets from Lyapunov Functions
Lemma If V : Rn → R a Lyap. func. for sys. x(k + 1) = g(x(k)), then
Y := {x | V (x) ≤ α} is an invariant set for all α ≥ 0
Proof
• V (x) ≥ 0 ∀x
• V (g(x)) − V (x) < 0 once V (x(k)) ≤ α, will remain there for all
j ≥ k  Invariance

Example System for x(k + 1) = Ax(k) with P � 0 that satisfies
A>PA− P ≺ 0 then V (x(k)) = x(k)>Px(k) is Lyap. function
Goal – find largest α s.t set Yα ∈ X

Yα := {x | x>Px ≤ α} ⊂ X := {x | Fx ≤ f }
Equivalent to maxα α subj. to hYα(Fi ) ≤ fi ∀i ∈ {1 ... n}

Maximum Ellipsoidal Invariant Sets

Support of an ellipse: hYα(Fi ) = maxx Fix subj. to x>Px ≤ α
Change of Variables: y := P1/2x

 hYα(Fi ) = maxx FiP
−1/2y s.t y>y ≤

√
α

2

Maximizer found by inspection:

hYα(Fi ) = FiP
−1/2 P−1/2F>i

||P−1/2F>
i
||
√
α = ||P−1/2F>i ||

√
α

Largest ellipse now 1-dim optimization problem:

α? = maxα α s.t. ||P−1/2F>i ||
2α ≤ f 2

i ∀i ∈ {1 ... n}

= mini∈{1...n}
f 2
i

FiP
−1F>

i

6 FEASIBILITY AND STABILITY

LQR MPC COMPARISON

LQR MPC

J
?
∞(x(k)) = min

∞∑
i=0

x
>
i Qxi + u

>
i Rui

subj. to xi+1 = Axi + Bui

x0 = x(k)

∣∣∣∣∣∣∣∣∣

J
?

(x(k)) = min

N−1∑
i=0

x
>
i Qxi + u

>
i Rui

subj. to xi+1 = Axi + Bui

xi ∈ X , ui ∈ U

x0 = x(k)

• Quad. Cost • Linear System Dynamics • Linear Constraints on u, x

Assume: Q = Q> � 0,R = R> � 0

LOSS OF FEASIBILITY & STABILITY
Infinite-Horizon Solve RHC for N =∞, OL traj. are same as CL traj.
• If problem feasible, CL trajectories always feasible
• If cost finite, states and inputs will converge asympt. to origin
Finite-Horizon RHC “short-sighted” approximating∞-horizon controller
• Feasibility – after some steps finite horizon optimal control problem may

become infeasible (disturbances, model mismatch)
• Stability – generated inputs may not lead to traj. that converge to orgin
Solution
Introduce terminal cost & constraints to explicitly ensure feas. & stab.

J?(x(k)) = minU lf (xN) +
∑N−1
i=1 l(xi , ui )

subj. to xi+1 = Axi + Bui

∣∣∣∣∣
xi ∈ X , ui ∈ U
xN ∈ Xf , x0 = x(k)

lf (·),Xf chosen to mimic infinite horizon

LYAPUNOV STABILITY

System NL, TI, DT x(k + 1) = g(x(k))
Asymptotic stability eq point x̄ ∈ Ω (g(x̄) = x̄)

Asympt. Stable in pos invar set Ω ⊆ Rn if Lyap. stable and attactive

lim
k→∞

||x(k)− x̄ || = 0 ∀x(0) ∈ Ω

Globally Asympt. Stable if asympt. stable & Ω = Rn

FEASIBILITY & STABILITY GUARANTEES OF MPC

Proof Strategy

Recursive Feasibility show existence of feasible control sequence for
all time when starting from feasible initial point
• Assume feas. of x(k), {u?0 , ... , u?N−1}, {x

?
0 , ... , x?N}

• At x(k + 1)⇒ {u?1 , ... ,κf (x
?
N)} should be feas.

Stability show that optimal cost is lyap function
• lf necessary to provide cost decrease for asympt. stability

General Terminal Set Xf

Assumptions
1. Stage cost pos def, strictly positive, only 0 at origin
2. Terminal set invariant under local control law

All state and input constraints satisfied in Xf
3. Terminal cost is cont. Lyap. func. in terminal set Xf and satisfies

lf (xi+1)− lf (xi ) ≤ −l(xi ,κf (xi )) ∀xi ∈ Xf

Theorem – CL system under MPC control law u?0 (x)
asympt. stable and set XN is positive invariant for system
x(k + 1) = Ax(k) + Bu?0 (x(k))

Terminal Constraint At Zero xN ∈ Xf = 0
 need large N to approx. max. cont. invar. set
Terminal Set & Cost – LQR

J?(x(k)) = minU x
>
N PxN +

∑N−1
i=0 x

>
i Qxi + u>i Rui

• Choose P = P∞ from (D)ARE
• Choose Xf to be max. invar. set for CL system (A+ BF∞)xk
 ellipsoidal inv. set with Lyap.

• All x , u constraints satisfied in Xf
All assumptions of Feasibility & Stability Theorem Satisfied

Useful Properties

• X1,X2 convex invar. for Ax(k) αX1 ⊕ (1− α)X2 invar ∀α ∈ [0, 1]
• X1 ⊆ X ,X2 ⊆ X , Xi ,X convex αX1 ⊕ (1− α)X2 ⊆ X ∀α ∈ [0, 1]
• Vi (x(k)) = x>(k)Pix(k) lyap. func. for x(k + 1) = Ax(k), rate of

decrease x>(k)Γx(k) V (x(k)) = αV1(x(k)) + (1 − α)V2(x(k))
also lyap. func. with rate of decrease x>(k)Γx(k) for all α ∈ [0, 1]
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FEASIBILITY & STABILITY REMARKS
• Terminal constraint provides a Suffiecient Condition for feas. & stab.
• Region of attraction w/o term. const. may be larger than with term.

const.
• In practice: enlarge horizon and check stability by sampling. As N ↑,

region of attraction appraoches max. control invariant set
• CL traj. may not follow assumptions made for OL predictions
• ∞-Horizon LQR controller locally optimal best choice for quad. cost
• ∞-Horizon provices stab. and invariance. Finite-Horizon MPC may

not be stable & may not satisfy constraints ∀ time
Extension to Nonlinearity
• Assumptions on terminal set/cost did not rely on linearity
• Lyapunov stability is general framework (works for NL sys)
• Results can be directly extended to NL systems
• However, computing sets Xf and function lf can be very difficult

7 PRACTICAL MPC

REFERENCE TRACKING

System x(k + 1) = Ax(k) + Bu(k), x ∈ Rnx , u ∈ Rnu
Constraints X = {x | Gxx ≤ hx},U = {u | Guu ≤ hu}

STEADY-STATE TARGET PROBLEM

Target Condition
xs = Axs + Bus

zs = Hxs = r
⇐⇒

[
I− A −B
H 0

] [
xs
us

]
=

[
0
r

]

• In presence of constraints, (xs , us) must satisfy them
• In case of multiple feas. us , compute ‘cheapest’

min u>s Rsus subj. to [Target Condition], xs ∈ X , us ∈ U

• In general, asssume target problem is feasible
• If no sol’n ∃: compute reachable point ‘closest’ to r

min(Hxs − r)>Qs(Hxs − r) subj. to xs = Axs + Bus

MPC FOR REFERENCE TRACKING

MPC Design

minU ||zN − Hxs ||2Pz +
∑N−1
i=1 ||zi − Hxs ||2Qz + ||ui − us ||2R

subj. to [model, constraints], x0 = x(k)

Delta Form. Set pt. tracking Coord.Trans.−−−−−−−→ Regulation Problem

∆x :=x − xs
∆u :=u − us

∣∣∣∣∣
Gx∆x ≤ hx − Gxxs
Gu∆u ≤ hu − Guus

• Obtain target steady-state corresponding to reference r
• Initial state ∆x(k) = x(k)− xs
• Apply reg problem to new system in ∆-Formulation

min
[
Vf (∆xN) +

∑N=1
i=1 ∆x>i Q∆xi + ∆u>i R∆ui

]

subj. to ∆xi+1 = A∆xi + B∆ui , Gx∆xi ≤ hx − Gxxs
Gu∆ui ≤ hu − Guus , ∆xN ∈ Xf , ∆x0 = ∆x(k)

• Find optimal sequence of ∆U?

• Input applied to system u?0 = ∆u?0 + us

Convergence
Assume target feasible with xs ∈ X , us ∈ U , choose ter-
minal weight Vf (x) and constraint Xf as in regulation case
satisfying
• Xf ⊆ X ,Kx ∈ U ∀x ∈ Xf
• Vf (x(k + 1))− Vf (x(k)) ≤ −l(x(k),Kx(k)) ∀x ∈ Xf
If in addition the target reference xs , us is such that
• xs ⊕Xf ⊆ X ,K∆x + us ∈ U , ∀∆x ∈ Xf
then CL system converges to target reference

x(k)→ xs , z(k) = Hx(k)
k→∞−−−→ r

Proof
• Invariance under local ctrol law inherited from regulation case
• Constraint satisfaction provided by extra conditions

– xs ⊕Xf ⊆ X → x ∈ X∀∆ ∈ X{
– K∆x + us ∈ U∀∆x ∈ Xf → u ∈ U

• Fron asympt stability of the regulation problem: ∆x(k)
k→∞−−−−→ 0

Terminal Set
• Set of feasible targets may be significantly reduced.

Enlarge set of feasible targets by scaling terminal set for
regulation X scaled

f = αXf
• Invariance maintained if Xf invariant so is αXf
• Choose α s.t. x , u constraints still satisfied scaling tar-

get dependent
• Targets at the boundary of the constraints: xN = xs , corre-

spons to 0-terminal set in regulation case

MPC FOR REFERENCE TRACKING WITHOUT OFFSET

Augmented Model

xk+1 = Axk + Buk + Bddk , dk+1 = dk , yk = Cxk + Cddk

Observability of aug. system: rank
([
A−I Bd
C Cd

])
= nx + nd

Inuition At steady-state
[
A−I Bd
C Cd

] [ xs
ds

]
=
[

0
ys

]
, ys , ds

unique

Linear State Estimation

Observer For
Augmented
Model

[
x̂(k+1)

d̂(k+1)

]
=

[
A Bd
0 I

] [
x̂(k)

d̂(k)

]
+

[
B
0

]
u(k)

+

[
Lx
Ld

]
(−y(k)+Cx̂(k)+Cd d̂(k))

Error Dynamics⇒ choose L s.t error dynamics asympt.
stable[
x(k+1)− x̂(k+1)

d(k+1)− d̂(k+1)

]
=
([
A Bd
0 I

]
+
[
Lx
Ld

]
[C Cd ]

) [
x(k)− x̂(k)

d(k)− d̂(k)

]

MPC FOR REFERENCE TRACKING WITHOUT OFFSET

Observer Steady-State

Suppose observer asympt. stable and ny = nd[
A− I B
C 0

] [
x̂∞
u∞

]
=

[
−Bd d̂∞
y∞ − Cd d̂∞

]

 Observer output Cx̂∞ + Cd d̂∞ tracks y∞ without offset

Offset-Free Tracking

Goal Track constant r : z(k) = Hy(k)→ r as k →∞
Steady-State Condition
xs = Axs + Bus + Bd d̂∞, zs = H(Cxs + Cd d̂∞) = r

• Best forecast for d∞ is current estimate d̂∞ = d̂
• Same Procedure for regulation case with r = 0
Offset-Free Tracking Condition[

A− I B
HC 0

] [
xs
us

]
=

[
−Bd d̂
r − HCd d̂

]

Offset-Free Tracking Procedure

1. Estimate x̂ & d̂
2. Obtain (xs , us) from steady-state tgt problem using d̂
3. Solve MPC problem for tracking using d̂ x̃i := xi − xs , ũi = ui − us

min
U
Vf (x̃N) +

∑N−1
i=0 (x̃i )

>Q(x̃i ) + (ũi )
>R(ũi )

subj. to xi+1 = Axi + Bui + Bddi , di+1 = di

xi ∈ X , ui ∈ U ,

x0 = x̂(k), d0 = d̂(k), xn − xs ∈ Xf

Offset-Free Tracking: Main Result
With u?0 = κ(x̂(k), d̂(k), r) = κ(·). Assuming nd = ny , RHC recursively
feas., unconstrained for k ≥ j , j ∈ N+, CL system:

x(k + 1) = Ax(k) + Bκ(·) + Bdd

x̂(k + 1) = (A+ LxC)x̂(k) + (Bd + LxCd )d̂(k) + Bκ(·)− Lxy(k)

d̂(k + 1) = LdCx̂(k) + (I + LdCd )d̂(k)− Ldy(k)

converges ((x̂ , d̂)
k→∞−−−−→ (x∞, d∞)), then z(k) = Hy(k)

k→∞−−−−→ r

ENLARGING FEASIBLE SET – NO TERMINAL SET

Motivation Term. constraints reduces feasible set
Goal MPC without term. constraint with guaranteed stability
Note Feasible set without term. constraint not invariant
MPC Without Terminal Set
Can remove Term. constraint while maintaining stability if
• Initial state lies in sufficiently small subset of feasible set
• N sufficiently large
s.t term. state satisfies term. const. without envorcining it
in the optimization.  Sol’n of finite-horizon MPC problem
corresponds to∞-horizon sol’n

Advantage – Controller defined in larger feasible set
Disadvantage – Characterization of region of attaction of specification of
required horizon length extremely difficult
• Term constr provides sufficient cond. for stab: RoA w/o term constr may

be larger than w/
• In practice: Enlarge horizon and check stability by sampling
• N ↑ RoA approachees max control invar. set

ENLARGING FEASIBLE SET – SOFT CONSTRAINTS

Motivation Input constraints usually ‘hard’, state constraints
rarely ‘hard’ breakable
Goal Min size & duration of violation (usually conflict!)
MPC Problem Setup

min
u

[
x>N PxN + lε(εN)+

∑N−1
i=0 x

>
i Qxi + u>i Rui + lε(εi)

]

s.t. xi = Axi + Bui , Hxxi ≤ kx+εi, Huui ≤ ku, εi ≥ 0
Requirement on lε

Original Problem “Softened” Problem
min
z
f (z) s.t g(z) ≤ 0 min

z
f (z) + lε(ε) s.t g(z) ≤ ε, ε ≥ 0

If original problem has feasible solution z?, Softened problem should
have same solution z?, and ε = 0.
Note lε(εi ) = sε2

i does not fulfill requirement

Choice of Penalty
• Quad. Penalty lε(εi) = ε>i Sεi (e.g S = Q)
• Quad. + Linear Penalty lε(εi) = ε>i Sεi + v ||εi ||1/∞
Exact Penalty Function
lε(ε) = v · ε satisfies requirement for any v > λ? ≥ 0, where
λ? is optimal Lagrange multiplier for original problem

• In practice, combined cost used for exact penalty and tuning capabilities
Tuning

1. Minimize violation over horizon:
εmin = argminu,ε

∑N−1
i=0 ε>i Sεi + v>εi , s.t xi+1 = Axi + Bui

Hxxi ≤ kx + εi , Huui ≤ ku, εi ≥ 0

2. Optimize Controller performance
minu x

>
N PxN +

∑N−1
i=0 x

>
i Qxi + u>i Rui

s.t xi+1 = Axi + Bui , Hxxi ≤ kx + εmin
i , Huui ≤ ku

Note Standard SC MPC does not provide stability guaran-
tee for OL unstable sys.

8 ROBUST MPC I

UNCERTAINTY MODELS

Motivation Random Noise w changes sys. evolution, Model structure
unknown, Unknown parameters θ impact dynamics
Uncertain Constrained System

x(k+1)=g(x(k), u(k),w(k); θ), x , u,w , θ ∈ X ,U ,W, Θ

Additive Bounded Noise System

x(k+1)=Ax(k) + Bu(k) + w(k), x , u,w ∈ X ,U ,W

IMPACT OF BOUNDED ADDITIVE NOISE

Goals
Design u(k) = κ(x(k)) s.t the system
(a) Satisfies constraints: {x(k)} ⊂ X , {u(k)} ⊂ U for all disturbances
(b) Is Stable: converges to neighbourhood of origin
(c) Optimizes (expected/worst-case) ‘Performance’
(d) Maximizes Set {x(0) | Condition 1-3 met}

Uncertain State Evolution

φi = Aix0 +
∑i−1
j=0 A

jBui−1−j︸ ︷︷ ︸
xi ≡ Nominal System

+
∑i−1
j=0 A

jwi−1−j︸ ︷︷ ︸
Disturbance Offset

(c) – OPTIMIZES PERFORMANCE

Cost to Minimize
Cost now func of Disturbance Need to eliminateW
J(x0,U,W ) := lf (φN(x0,U,W )) +

∑N−1
i=0 l(φi(x0,U,W ), ui)

Several Options
• Minimize expected value JN(x0,U) = E{J(x0,U,W )}
• Take worst case JN(x0,U) := maxW∈WN=1 J(x0,U,W )
• Take Nominal Case JN(x0,U) := J(x0,U, 0)

(a) – SATISFIES CONSTRAINTS

Robust Constraint Satisfaction

• State & Input Constraints for i = 0, ... ,N − 1,
Enforce constraints explicitly by imposing φi ∈ X , ui ∈ U , ∀W ∈ WN

• Terminal Constraints for i = N, ...
Enforce constraints implicitly φN ∈ robust invariant set Xf , KXf ∈ U
for φi+1 = (A+ BK)φi + wi

Robust Positive Invariant Set

Set OW said to be robust pos. invar. for autonomous sys-
tem x(k + 1) = g(x(k),w(k)) if

x ∈ OW ⇒ g(x ,w) ∈ OW , ∀w ∈ W

Robust Pre-Set
Given set Ω and dynamic system x(k+1) = g(x(k),w(k)),

preW(Ω) :={x | g(x ,w)} ∈ Ω ∀w ∈ W

Computing Robust Pre-Sets for Linear Systems
System Ax(k) + w(k), set Ω := {x | Fx ≤ f }

preW(Ω) = {x | FAx ≤ f − max
w∈W

Fw} = {x | FAx ≤ f − hW i (F )}

Robust Invariant Set Conditions

Set OW is robust positive invariant set iff
OW ⊆ preW(OW) ⇔ preW(OW) ∩ OW = OW

Robust Constraint Satisfaction

Ensure constraints are satisfied for MPC sequence

φi(x0,U,W ) =
{
xi +

∑i−1
j=0 A

jwi−1−j |W ∈ W i
}
⊆ X (1)

Assume X = {x | Fx ≤ f } (polyhedron)

Fxi ≤ f − hW i

(
F
∑i−1
j=0 A

j
)

ACHTUNG Must ensure term state contained in robust invariant set
Intuition Tightening constraints on nominal system

SET OPERATORS

Minkowski Sum
A⊕ B := {x + y | x ∈ A, y ∈ B}

Pontryagin Difference
A	 B := {x | x + e ∈ A ∀e ∈ B}

ACHTUNG A	 B ⊕ B ⊆ A
Robust Constraint Satisfaction
Eqn. (1) can be rewritten φi ∈ xi ⊕ (W ⊕ ...Ai−1W) ⊆ X
Enforcing this cond. requires Tightened Constraints

xi ∈ X 	
(⊕i−1

j=0 A
jW
)

ROBUST OPEN-LOOP MPC

Robust Open-Loop MPC

min
U

[
lf (xN) +

∑N−1
i=0 l(xi , ui )

]

subj. to xi+1 = Axi + Bui

xi ∈ X 	 (
⊕i−1
j=0 A

jW), ui ∈ U

x0 = x(k), xN ∈ Xf 	 (
⊕N−1
j=0 A

jW)

Xf ⊆ X robust pos invar set for system (A + BK)x(k) + w(k) with
w ∈ W ∀k for some stabilizing K , and Kx ∈ U ∀x ∈ Xf

Intuition Nominal MPC, but with tigher state constraints
Open-Loop? Not accounting for FB during solving, just plan ahead for w
Achtung
• Unstable systems Ai−1W grows use ‘pre-stabilization’ ui = Kxi + ui
• Potentially very small region of attraction, particularly for unstable sys
Robust Invariance
If U?(x(k)) is optimizer of robust OL MPC problem for x(k) ∈ X , then
system Ax(k) + Bu?0 (x(k)) + w(k) ∈ X for all w ∈ W
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9 ROBUST MPC II

CLOSED-LOOP PREDICTIONS

Goal optimize over seq. of funcs {u0,µ1(·), ... ,µN−1(·)} with
(µi(xi) : Rn → Rm control policy)
Problem Can’t optimize over arbitrary functions!
Solution assume some structure on functions µi
Pre-Stabilization µi (xi ) = Kxi + vi

Fixed K, s.t A+ BK stable Simple, often conservative
Linear Feedback µi (xi ) = Kixi + vi

Optimize over Ki , vi , Non-Convex – Extremely difficult to solve
Disturbance Feedback µi (xi ) =

∑i−1
j=0 Mijwj + vi

Optimize overMij , vi  Equiv to linear feedback but Convex 
Effective, but computationally intense

Tube-MPC µi (xi ) = vi + K(xi − x̄i )
Fixed K, s.t A + BK stable Optimize over x̄i , vi  Simple, can
be effective

TUBE-MPC

System

x(k + 1) = Ax(k) + Bu(k) + w(k) x , u ∈ X ,U w ∈ W
Idea Seperate available control authority into 2 parts
(1) Portion that steers nominal sys to origin z(k + 1) = Az(k) + Bv(k)
(2) Portion that compensates for deviations from this system ui =
K(xi − zi ) + vi (keeps real traj close to nominal), for some linear
K , which stabilizes nominal system

 Fix linear FB K offline and optimize over nominal trajectory
{v0, ... , vN−1} convex problem
Error Dynamics

Define ei := xi − zi  ei+1 = (A+ BK)ei + wi
Bound maximum error, how far ‘real’ traj from nominal

ei+1 = (A+ BK)ei + wi wi ∈ W

Dynamics A + BK are stable, setW bounded Set E s.t e stays inside
∀k  want ‘minimal robust invariant set’

Tube-MPC Procedure
(a) Compute set E that error remains inside
(b) Modify constraints on nominal traj {zi}
(c) Formulate as convex optimization problem

(a) – MINIMUM ROBUST INVARIANT SET

mRPI – Minimum
Robust Invariant Set

F∞ =
⊕∞
j=0 A

jW
F0 :={0}

If Fn = Fn+1 ⇒ Fn = F∞

Ω0 ← {0}
loop

Ωi+1 ← Ωi ⊕ AiW
if Ωi+1 = Ωi then

return F∞ = Ωi
end if

end loop

• Finite n does not always exist, ‘large’ n often good approx.
• If n not finite, other methods of computing small invariant sets, slightly

larget than F∞

(b) – MODIFY NOMINAL TRAJECTORY CONSTRAINTS

Noisy System Trajectory

Given nominal traj zi noisy sytem traj xi = zi + ei  will be smewhr in E
xi ∈ zi ⊕ E = {zi + e | e ∈ E}

Goal xi , ui ∈ X ,U for all {wi} ∈ W j
State Condition
Necessary & Sufficent Condition

zi ⊕ E ⊆ X ⇔ zi ∈ X 	 E

Set E known offline – can compute constraints offline!

Input Condition ui ∈ KE ⊕ vi ⊂ U ⇔ vi ∈ U 	 KE

(c) – CONVEX OPTIMIZATION PROBLEM

Problem Formulation

min
Z ,V

lf (zN) +
∑N−1
i=1 l(zi , vi )

s.t. zi+1 = Azi + Bvi

zi ∈ X 	 E, ui ∈ U 	 KE
zN ∈ Xf , x(k) ∈ z0 ⊕ E





=: Set Z

Control Law : µtube(x) := K(x − z?0 (x)) + v?0 (x)

Remarks

• Optimizing nominal system with tightened state, input constraints
• First tube center z0 is opt. var.  has to be within E of x0

• Cost is w.r.t tube centers, terminal set is w.r.t tightened constraints

ACHTUNG K(x − z?0 (x)) + v?0 (x) NOT LINEAR in CL

ROBUST CONSTRAINT SATISFACTION

Assumptions almost the same as for nominal MPC

(1) Stage cost pos def, i.e strictly pos and only 0 at origin
(2) Terminal set invar for the nominal sys under local control law κf (z):

Az + Bκf (z) ∈ Xf ∀z ∈ Xf
All tightened state and input constraints satisfied in Xf :
Xf ⊆ X 	 E,κf (z) ∈ U 	 KE ∀z ∈ Xf

(3) Terminal cost is continuous Lyapunov function in terminal set Xf :
lf (Az + Bκf (z))− lf (z) ≤ −l(z ,κf (z)) ∀z ∈ Xf

Theorem: Robust Invariance of Tube-MPC
Set Z := {x | Z 6= ∅} is robust invariant set of system x(k + 1) =
Ax(k) + Bµtube(x(k)) + w(k) subject to constraints x , u ∈ X ,U

Proof let ({v?0 ... v?N−1}, {z
?
0 ... z?N}) be optimal sol’n for x(k) At next point

in time, state x(k + 1) may have many possible values due to disturbance
By construction, state x(k + 1) in in the set z?1 ⊕ E ∀W
Therefore the following sequence is feasible for all x(k + 1)

({v?1 ... v?N−1,κf (z
?
N)}, {z?1 ... z?N︸ ︷︷ ︸

feas. IC

,Az?N + Bκf (z
?
N)︸ ︷︷ ︸

∈Xf feas.

})

ROBUST STABILITY

Robust Stability of Tube-MPC
State x(k) of system x(k + 1) = Ax(k) + Bµtube(x(k)) +
w(k) converges in the limit to the set E

Proof As in standard MPC we have
J?(z?0 (x(k))) = lf (z

?
N) +

∑N−1
i=0 l(z

?
i , v?i )

J?(z?0 (x(k + 1))) ≤ lf (z?N) +
∑N−1
i=1 l(z

?
i , v?i )

+l(z?0 , v?0 )− l(z?0 , v?0 ) + lf (z
?
N)− lf (z?N)

= J?(x(k))− l(z?0 , v?0 )︸ ︷︷ ︸
≥0

−lf (z?N) + lf (zN+1) + l(z?N ,κf (z
?
N))︸ ︷︷ ︸

≤0 (lf is lyap function in Xf )

This shows limk→∞ J(z?0 (x(k))) = 0, therefore limk→∞ z
?
0 (x(k)) = 0

ACHTUNG
• x(k) does not tend to 0! It only stays within robust invar set centered at
z?0 (x(k)) : limk→0dist(x(k), E) = 0

• Can remove constr. z0 ∈ X ⊕ E , doesn’t affect recursive stability
• E must be robust positive invariant for proof (so error remains bounded)

TUBE-MPC IMPLEMENTATION

Offline Design
(1) Choose stabilizing controller K s.t ||A+ BK || < 1
(2) Compute mRPI set E = F∞ for system x(k + 1) = (A+ BK)x(k) +
w(k),w ∈ W

(3) Compute tightened constaints X̃ := X 	 E, Ũ := U 	 KE
(4) Choose terminal weight function lf and constraint Xf satisfying as-

sumptions on tube MPC (see Robust Constraint Satisfaction)
• Assumption on Terminal set ensures Recursive Feasibility
• Assumption on terminal cost ensures Asymptotic Stability

LQR Terminal Constraint (typical choice)

• Choose LQR terminal control law κf (x) = Kx , (Q,R same as MPC)
• Find Xf invar under this controller s.t satisfies constraints

Online Design
(1) Measure / Estimate state x
(2) Solve optimization problem

(V ?(x0),Z?(x0)) = argminV ,Z{J(Z ,V ) | (Z ,V ) ∈ Z(x0)}
(3) Set input to u = K(x − z?0 (x)) + v?0 (x)

Benefits
• Less conservative than OL robust

MPC (now actively compensating for
noise in prediction)

• Works for unstable systems
• Optimization problem to solve is ‘sim-

ple’

Cons
• Sub-optimal MPC (optimal ex-

tremely difficult)
• Reduced feasible set when com-

pared to nominal MPC
• We need to know whatW is (usu-

ally not realistic)

ROBUST MPC FOR UNCERTAIN SYSTEMS – SUMMARY
Idea compensate for noise in prediction to
ensure constraint satisfaction

Benefits
• Feasible set invariant – know exactly

when controller will work
• Easier to tune – knobs to tradeoff

robustness against performance

Cons
• Complex (tubes easy to implement,

complex to understand)
• Must know largest noiseW
• Often conservative
• Feas set may be small

10 ROBUST MPC III – EXTENSIONS

ROBUST CONSTRAINT TIGHTENING MPC

Idea Combine best of Robust OL and Tube-Based MPC
 Use propagated error bound to tighten constraints
Error Dynamics ei+1 = (A+ BK)ei + wi = AK ei + wi ,wi ∈ W
If e0 = 0 then ei =

∑i−1
j=0 A

jwi−1−j ⇒ ei ∈ W ⊕ AKW ⊕ ...Ai−1
K W

min
Z ,V
lf (zN) +

∑N−1
i=0 l(zi , vi )

subj. to zi+1 = Azi + Bvi

zi ∈ X 	 (W ⊕ AKW ⊕ ...Ai−1
K W)

ui ∈ U 	 K(W ⊕ AKW ⊕ ...Ai−1
K W)

zN ∈ Xf 	 (W ⊕ AKW ⊕ ...AN−1
K W)

z0 = x(k)

Control Law u(k) = v?0 + K(x(k)− z0) = v?0

Motivation can robustly ensure constraint satisfactkon at each time step
Note need terminal set Xf that is robust invariant under tube controller K

NOMINAL MPC WITH NOISE

Standard MPC Problem for x(k+1) = Ax(k)+Bu(k)+w(k)

J
?

(x0) = min
U
lf (xN) +

∑N−1
i=0 l(xi , ui ), s.t xi+1 = Axi + Bui , xi , ui , xN ∈ X ,U ,Xf

Effect on Lyapunov Function

Assume Optimal cost J? Lipschitz continuous (|f (y)− f (x)| ≤ γ‖y−x‖)

|J(Ax+Bu+w)−J(Ax+Bu)|≤γ||Ax+Bu+w−(Ax+Bu)||=γ||w ||

Lyapunov Decrease can be bounded as

J?(Ax + Bu? + w)− J?(x) −J?(Ax + Bu? + w) + J?(x)

≤ J?(Ax + Bu?)− J?(x) + γ||w || ≤ −l(x , u?) + γ||w ||

• Amount of decrease grows with ‖x‖
• Amount of increase upper bounded by max{‖w‖ | w ∈ W}

ISS –
Input-To-State
Stability

Input-to-State Stability

What we have shown is that our system is Input-to-State Stable.

Much more general theory than what is given here2

Asymptotic stability

Bound that !
monotonically !
decreases to zero


�xi�

time

System converges to zero

ISS stability

Bound that !
monotonically !
decreases to


�xi�

time


max{�w� |w �W}

Converges to set around zero, who’s
size is determined by size of the noise

2Limon, D., Alamo, T., Raimondo, D. M., Muñoz de la Peña, D., Bravo, J. M., Ferramosca, A., and Camacho, E. F. (2009). Input-to-State
Stability: A Unifying Framework for Robust Model Predictive Control. In L. Magni, D. M. Raimondo, & F. Allgöwer (Eds.), Nonlinear Model
Predictive Control (Vol. 384, pp. 1-26). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-01094-1

MPC Lec. 10 - Robust MPC - Extensions 12 2 – Robustness of Nominal MPC
Benefits
• No special knowledge required – ‘just

works’ (sometimes)
• Often very effective in practice
• Large feasible set
• Region of attraction may be relatively

large

Cons
• Very difficult to determine region

of attraction (set of states where
controller works)

• Hard to tune
• Only works for NL systems under

continuity assumptions

11 IMPLEMENTATION

EXPLICIT MPC
Introduction

OFFLINE ONLINE

U?(x(k)) = argmin
U

xT
N PxN +

N−1∑

i=0

x>i Qxi + u>i Rui

subj. to x0 = x(k)

xi+1 = Axi + Bui , i = 0, . . . ,N − 1

xi ∈ X , ui ∈ U , i = 0, . . . ,N − 1

xN ∈ Xf

• Optimization problem is parameterized by state

• Pre-compute control law as function of state x

• Control law is piecewise affine for linear system/constraints

Result: Online computation dramatically reduced and real-time
Tool: Parametric programming

MPC Lec. 11 - Implementation 3

Recall: Quadratic Cost State Feedback Solution

MP-QP – Multiparametric Quadratic Program

J?(x(k)) = min
U

[
U>x(k)>

] [
H F>
F Y

] [
U>x(k)>

]>

subj. to GU ≤ w + Ex(k)

Solution Properties – J?(x(k)) convex and PW Quad. on polyhedra.

Active Set for l = 1, ... ,m

Define active set at x , A(x), and it’s complement NA(x) as

A(x) :={j ∈ l : Gjz
?(x)− Sjx = wj} (satisfied with eq.)

NA(x) :={j ∈ l : Gjz
?(x)− Sjx < wj} (strict inequality)

Critical Region
CRA is set of parameters x for which set A ⊆ l of constraints i active at
the optimum. For given x̄ ∈ K? let (A,NA) := (A(x̄),NA(X̄ )). Then

CRA := {x ∈ K? : A(x) = A} (states share active set)

Point Location

• Sequential Search – Computationally linear, very simple, works for all
problems

• Search Tree – Potentially logarithmic, significant offline processing
(reasonable for <1k regions)

Remarks on Explicit MPC

• Linear MPC + Quad / Linear-norm cost Controller PWA func.
• Can pre-compute this function offline
• Online evaluation of PWA function very fast (ns - µs)
• Can only do this for small systems (3-6 states, small horizon)

ITERATIVE OPTIMIZATION METHODS

Generic Optimization Problem
convex if f : Rn → R and set Q convex
Analytical sol’n cannot be obtained except
simplest cases

minimize f (x)

subj. to x ∈ Q

Iterative Optimization Methods
Given initial guess x(0), produce sequence of iterates

x(i+1) = ψ(x(i), f ,Q), i = 0, ... ,m − 1

such that |f (x(m))− f (x?)| ≤ ε and dist(x (m),Q) ≤ δ
where ε and δ are user defined tolerances

UNCONSTRAINED MINIMIZATION

Optimality Conditions

Assume f (·) diff’bar at x?. If f convex, then x? global min iff ∇f (x?) = 0

Descent Methods
x (i+1) = x (i) + h(i)∆x(i)

with f (x(i+1)) < f (x(i))

• ∆x : step/search direction
• h(i): step size/length
• f (x(i+1)) < f (x(i)) i.e ∆x (i) is

descent function

Input x (0) ∈ dom(f )
repeat

Compute descent dir. ∆x (i)

Line Search: choose step size
h(i) > 0 s.t f (x (i) + h(i)∆x (i)) < f (x (i))

Update x (i+1) := x (i) + h∆x (i)

until termination condition
(e.g f (x (m))− f (x?) ≤ ε1)

• ∃h(i) > 0 s.t f (x(i+1)) < f (x(i)) if ∇f (x(i))>∆x(i) < 0

Descent Direction
• Gradient descent x(i+1) = x(i) − h(i)∇f (x (i))

– Assume ∇f Lipschitz-continuous ||∇f (x)−∇f (y)|| ≤ L||x − y ||
– Choose constant step size h(i) = 1/L

• Newton Step x(i+1) = x(i) + h(i)∆xnt
– ∆xnt = −(∇2f (x(i)))−1∇f (x (i))
– Exact Line Search h(i)? = argminh>0 f (x (i) + h(i)∆xnt)

Optimization in 1 var solve by bisection, time consuming
– Inexact Line search: find h(i) that decreases f by some amount

CONSTRAINED MINIMIZATION

Projected Gradient Methods

Incorporate Constraints in Gradient Step

x(i+1) = πQ(x(i) − h(i)∇f (x(i)))

Projection πQ = argminx
1
2
‖x − y‖2

2 s.t x ∈ Q
• Simple input constraints: ezpz
• State constraints: hard solve for dual

Constrained Minimization Using Gradient Methods

Consider the following constrained convex optimization problem:

minimize f (x)
subject to x ∈ Q (P)

where Q is convex and f is convex and L-smooth.

⇒ Incorporate constraints in gradient step:

x (i+1) = πQ (x (i) − h(i)∇f (x (i)) )

where πQ is a projection:

πQ(y) , arg min
x

1
2
‖x − y‖22

s.t. x ∈ Q

Can similarly choose h(i) = 1/L,
convergence rates are as in the unconstrained case.

MPC Lec. 11 - Implementation 41 2 – Constrained MinimizationInterior-Point Methods

System min f (x) s.t. gi (x) ≤ 0, i = 1, ... ,m
Assumptions f , gi convex, twice cont. diff’bar. f (x?) is finite and at-
tained, stict feasiblity ∃g(x̃) < 0, feasible set closed & compact
Idea Reformulate as unconstrained problem

Primal-Dual Interior-Point Methods

Idea – Iteratively solve relaxed KKT
system leave λ?i as variables, linearize
and solve resulting sytem of linear eqns
at each iteration
Search Direction ∆[x , ν,λ, s](v)
• v = 0 pure Newton direction

“predictor”/“affine-scaling”
• v = κ1 centering direction, approach

central path

Search Directions in Primal-Dual Methods
Can generate different directions ∆ [x , ν, λ, s] (v) depending on v :

C

s1

λ1

(x, y , λ, s)

∆ [x, y , λ, s] (0)

∆ [x, y , λ, s] (κ1)

σ ∈ (0, 1)

∆ [x, y , λ, s] (σκ1)

• v = 0: pure Newton direction (“predictor” or “affine-scaling”)
• v = κ1: centering direction, approach central path

⇒ Using linear combination via centering parameter σ ∈ (0, 1) ensures fast
convergence in theory & practice by tracking central path to solution
MPC Lec. 11 - Implementation 47 2 – Constrained Minimization

⇒ combine via centering
parameter σ ∈ (0, 1)
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