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1. Robust "Constraint Tightening” MPC
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Robust Open-loop vs. Tube-based MPC

Robust open-loop MPC
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Robust tube-based MPC
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Can we combine these ideas? — Robust constraint tightening MPC
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Tube MPC to “Constraint Tightening” MPC

Main idea: Use propagated error bound to tighten constraints
Recall: Error dynamics €11 = (A+ BK)ei + w; = Axei + wj, wj € W
If g =0, then ¢ = Z};éAfW,-,l,j =6 EWRAWSD .. .Ai,ZIW

Robust positively invariant (RPI) tubes:  Disturbance reachable sets (DRS):
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Robust "Constraint-Tightening" MPC
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o Applied control: u(k) = v§ + K(x(k) — z) =V}

e Motivation: Can robustly ensure satisfaction of constraints at each time
step

e Need a terminal set Xr that is robust invariant under the tube controller K
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2. Robustness of Nominal MPC
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Nominal MPC with Noise
We want to control the noisy system:

x(k + 1) = Ax(k) + Bu(k) + w(k)

What happens if we just ignore the noise and hope for the best?

Setup and solve a standard MPC problem:

N—-1
J(x0) = min ; 1(xi, ui) + e (xn)
subj. to Xiy1 = Ax; + Bu;
X, up € X xU
Xy € Xr

Our closed-loop system is now:

x(k + 1) = Ax(k) + Buj(x(k)) + w(k)

= Can prove convergence to a neighborhood of the origin (for linear systems!)
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Example

Consider system with noise, but we pretend it's not there in the controller.
2

e 100 trajectories with
1.5+ different noise realizations

1t e Seems to work fine?!

0.5¢
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Example

Consider system with noise, but we pretend it's not there in the controller.

2 . . .
e 100 trajectories with
1.5+ different noise realizations
A\ .
1t \ e Seems to work fine?!
05! e Can no longer be certain it
will work!
or e For some states it will
-0.5} work sometimes
-1+ How do we formalize this idea?
-15
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What Happens to Our Lyapunov Function?

Recall: The optimal cost J*(x) is a Lyapunov function for the nominal system
J(Ax + Bu*(x)) — J*(x) < =I(x, u*(x))

However, our state at the next point in time is now
x(k 4+ 1) = Ax(k) + Bu*(x(k)) + w(k)

Do we still have a Lyapunov decrease?
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What Happens to Our Lyapunov Function?

Assume: Optimal cost J* is continuous’

|J*(Ax + Bu*(x) + w) — J*(Ax + Bu*(x))|
< [|Ax + Bu™(x) + w — (Ax + Bu™(x))l| = [lw|
Our Lyapunov decrease can be bounded as:
J(Ax + Bu*(x) + w) — J*(x)
= J*(Ax + Bu*(x) + w) — J*(x) — J*(Ax + Bu*(x)) + J*(Ax + Bu*(x))
< J(Ax + Bur(x)) — J*(x) + v[lw]]
< —=I(x, v (X)) + vllwl

e Amount of decrease grows with ||x||
e Amount of increase is upper bounded by max {||w]| | w € W}

Therefore we will move towards the origin until there is a balance between the
size of x and the size of w

1True for linear systems, convex constraints and continuous stage costs.
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Input-to-State Stability

What we have shown is that our system is Input-to-State Stable.

Much more general theory than what is given here?

Asymptotic stability ISS stability
Bound that Bound that
monotonically monotonically

decreases to max{||w| |w € W}

decreases to zero

[l

time time

System converges to zero Converges to set around zero, who's
size is determined by size of the noise

2L\mon, D., Alamo, T., Raimondo, D. M., Mufioz de la Pefia, D., Bravo, J. M., Ferramosca, A., and Camacho, E. F. (2009). Input-to-State
Stability: A Unifying Framework for Robust Model Predictive Control. In L. Magni, D. M. Raimondo, & F. Allgéwer (Eds.), Nonlinear Model
Predictive Control (Vol. 384, pp. 1-26). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-01094-1
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Nominal MPC for Uncertain Systems - Summary

Idea
e [gnore the noise and hope it works

Benefits
e Simple
o No knowledge of the noise set W required - ‘just works'
o Often very effective in practice (this is what most practitioners do anyway)
e Feasible set is large (we can find a solution, but it may not work)

e Region of attraction may be larger than other approaches

Cons
o Very difficult to determine region of attraction (set of states in which the
controller works)
e Hard to tune - no obvious way to tradeoff robustness against performance

e Works for linear systems, for nonlinear systems only under continuity
assumptions

MPC Lec. 10 - Robust MPC - Extensions 13 2 — Robustness of Nominal MPC



	Robust ``Constraint Tightening'' MPC
	Robustness of Nominal MPC

