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MPC: Mathematical Formulation

argmin
Uk

N−1∑

i=0

l(xk+i , uk+i )

subj. to xk = x(k)

xk+i+1 = Axk+i + Buk+i

xk+i ∈ X , uk+i ∈ U

Plant
u?k

Plant State x(k)

Output y(k)

At each sample time:

• Measure / estimate current state x(k)

• Find the optimal input sequence for the entire planning window N:
U?

k = {u?k , u?k+1, . . . , u
?
k+N−1}

• Implement only the first control action u?k
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Optimization Problems Arising in MPC

Linear Systems

• Linear system dynamics

• Continuous set of states and
inputs, e.g.,
x ∈ [xmin, xmax], u ∈ [umin, umax]

• Example: Chemical processes

Nonlinear Systems

• Nonlinear system dynamics

• Continuous set of states and
inputs, e.g.,
x ∈ [xmin, xmax], u ∈ [umin, umax]

• Example: Kites

Hybrid Systems

• Mixed dynamics that are both
continuous and discrete, e.g.{

xk+1 = −c1 xk ≥ xmax

xk+1 = c2 − c1 xk < xmax

• Continuous set of states and
inputs

• Example: Walking robot

Discrete Decision Variables

• Inputs and/or states can only
take discrete values, e.g.
u ∈ {1, 2, 3, 4, 5}

• Example: Internet
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Learning Objectives – Lecture 3

• Learn to ‘read’ and define optimization problems

• Understand property of convexity of sets and functions

• Understand benefit of convex optimization problems

• Learn and contrast properties of LPs and QPs

• Pose the dual problem to a given primal optimization problem

• Test optimality of a primal and dual solution by means of KKT conditions

• Understand meaning of dual solution for the cost function
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Mathematical Optimization Problem

A mathematical optimization problem is generally formulated as:

min
x∈dom(f )

f (x)

subj. to gi (x) ≤ 0 i = 1, . . . ,m

hi (x) = 0 i = 1, . . . , p

• Optimization variables x := [x1; x2; . . . ; xn]

• Objective function f : dom (f )→ R
• Domain dom (f ) ⊆ Rn of the objective fcn

• Optional inequality constraint functions
gi : Rn → R, for i = 1, . . . ,m

• Optional equality constraint functions
hi : Rn → R, for i = 1, . . . , p f (x) = const

x�

X

• X := {x ∈ dom (f ) | gi (x) ≤ 0, i = 1, . . . ,m, hi (x) = 0, i = 1, . . . , p}:
set of feasible decisions, or feasible set
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Terminology

Feasible point: x ∈ dom (f ) satisfying the inequality and equality constraints,
i.e. gi (x) ≤ 0 for i = 1, . . . ,m, hi (x) = 0 for i = 1, . . . , p.

Strictly feasible point: Feasible x ∈ dom (f )

satisfying the inequality constraints
strictly, i.e. gi (x) < 0 for
i = 1, . . . ,m.

Optimal value: Lowest possible cost value
p∗ = f (x?) , minx∈X f (x)
also denoted by f ? or J?

f (x) = const

x�

X

Optimizer: Any feasible x? that achieves smallest cost p∗, i.e., x? ∈ X with
f (x?) ≤ f (x) for all feasible x ∈ X .
Optimizer is not always unique. The set of solutions is:

argmin
x∈X

f (x) := {x ∈ X | f (x) = p?}
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A Simple Example

Problem : In R2, find the point in
the unit box X closest to the point
(x1, x2) = (3, 2).

X
x1

x2

✓
3
2

◆

Same problem in standard format:

min
(x1,x2)∈R2

(x1 − 3)2 + (x2 − 2)2

subj. to x1 ≤ 1

−x1 ≤ 1

x2 ≤ 1

−x2 ≤ 1
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Active, Inactive and Redundant Constraints
Consider the standard problem

min
x∈dom(f )

f (x)

subj. to gi (x) ≤ 0 i = 1, . . . ,m

hi (x) = 0 i = 1, . . . , p

• The i th inequality constraint gi (x) ≤ 0 is active at x̄ if gi (x̄) = 0.
Otherwise it is inactive.

• Equality constraints are always active.

• A redundant constraint does not change the feasible set. This implies
that removing a redundant constraint does not change the solution.
Example:

min
x∈R

f (x)

subj. to x ≤ 1

x ≤ 2 (redundant)
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Optimality

• x ∈ X is locally optimal if, for some R > 0, it
satisfies

y ∈ X , ‖y − x‖ ≤ R ⇒ f (y) ≥ f (x)

• x ∈ X is globally optimal if it satisfies

y ∈ X ⇒ f (y) ≥ f (x)

R

f (y)

X
f (x)

f (y)

X

f (x)

• If p∗ = −∞ the problem is unbounded below
• If X is empty, then the problem is said to be infeasible
(convention: p∗ =∞)

• If X = Rn the problem is said to be unconstrained
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“Easy” and “Hard” Problems

“Easy”: Linear Program (LP)
Linear cost and constraint functions.

min
x

c>x

subj. to Gx ≤ h

Ax = b

x*

P

Linear optimization on a
polytope.

“Hard’: Mixed Integer Linear Program
Linear program with binary or integer constraints.

min
x

c>x

subj. to Gx ≤ h

Ax = b

x ∈ {0, 1}n or x ∈ Zn

x*

P

Linear optimization with
integer constraints (dots).

Convex optimization problems can be solved efficiently and reliably.
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Software Tools for Optimization

A simple optimization problem:

min
x1,x2
|x1 + 5|+ |x2 − 3]

subj. to 2.5 ≤ x1 ≤ 5

−1 ≤ x2 ≤ 1

• This problem is equivalent to a linear program (more on this later).
• Huge variety of software tools for solving standard optimization problems:

• Examples: MATLAB (linprog/quadprog), CPLEX, Gurobi, GLPK,
XPRESS, qpOASES, OOQP, FORCES, SDPT3, Sedumi, MOSEK,
IPOPT,...

• There is no standard interface to solvers – they are almost all different.
• General purposes modeling tools allow easy switching between solvers:

• Examples: CVX, Yalmip, GAMS, AMPL

MPC Lec. 3 - Introduction to Convex Optimization 13 1 – Main Concepts



Software Tools for Optimization

A simple optimization problem:

min
x1,x2
|x1 + 5|+ |x2 − 3]

subj. to 2.5 ≤ x1 ≤ 5

−1 ≤ x2 ≤ 1

The YALMIP toolbox for Matlab (from ETH / Linköping):

%make variables
sdpvar x1 x2;
%define cost function
f = abs(x1 + 5) + abs(x2 − 3);
%define constraints
X = set(2.5 <= x1 <= 5) + ...

set( −1 <= x2 <= 1);
%solve
solvesdp(X,f)
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Software Tools for Optimization

A simple optimization problem:

min
x1,x2
|x1 + 5|+ |x2 − 3]

subj. to 2.5 ≤ x1 ≤ 5

−1 ≤ x2 ≤ 1

The CVX toolbox for Matlab (from Stanford):

cvx_begin
%define cost function
variables x1 x2
%define constraints
minimize(abs(x1 + 5) + abs(x2−3))
subject to

2.5 <= x1 <= 5
−1 <= x2 <=1

cvx_end %solves automatically
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Convex Sets
Definition: Convex Set

A set X is convex if and only if for any pair of points x and y in X :

λx + (1− λ)y ∈ X , ∀λ ∈ [0, 1], ∀x , y ∈ X

Interpretation: All line segments starting and ending in X stay within X .

Convex:

Non-convex:

Convex:

Non-convex:

Convex combination of x1, . . . , xk : Any point x of the form

x = θ1x1 + θ2x2 + . . .+ θkxk with θ1 + . . .+ θk = 1, θi ≥ 0
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Convex Sets: Hyperplanes and Halfspaces
Definitions: Hyperplanes and halfspaces

A hyperplane is defined by
{
x ∈ Rn

∣∣ a>x = b
}
for a 6= 0, where a ∈ Rn is the

normal vector to the hyperplane.

A halfspace is everything on one side of a hyperplane
{
x ∈ Rn

∣∣ a>x ≤ b
}
for

a 6= 0. It can either be open (strict inequality) or closed (non-strict inequality).

For n = 2, hyperplanes define lines. For n = 3, hyperplanes define planes.

Hyperplanes are affine and convex, halfspaces are convex.

{x | aTx = b}

x1

x2

a

A hyperplane

{x | aTx  b}

x1

x2

a

A closed halfspace
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Convex Sets: Polyhedra and Polytopes
Definitions: Polyhedra and polytopes

A polyhedron is the intersection of a finite number of closed halfspaces:

P :=
{
x
∣∣ a>i x ≤ bi , i = 1, . . . , n

}
= {x |Ax ≤ b}

where A := [a1, a2, . . . , am]> and b := [b1, b2, . . . , bm]>.

A polytope is a bounded polyhedron.

Polyhedra and polytopes are always convex.

x1

x2

An (unbounded) polyhedron

x1

x2
ak

A polytope
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Convex Sets: Ellipsoids
Definition: Ellipsoid

An ellipsoid is a set defined as
{
x
∣∣ (x − xc)>A−1(x − xc) ≤ 1

}
,

where xc is the centre of the ellipsoid, and A � 0 (i.e. A is positive definite).

x1

x2

xc

{x | (x - xc)TA-1(x - xc)  1}

Semi-axis lengths are square 
roots of eigenvalues of A


2


1

The Euclidean ball B(xc , r) is a special case of the ellipsoid, for which
A = r2I , so that B(xc , r) := {x | ||x − xc ||2 ≤ r}.
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Convex Sets: Norm Balls
The norm ball, defined by {x | ||x − xc || ≤ r} where xc is the centre of the ball
and r ≥ 0 is the radius, is always convex for any norm.

By far the most common `p norms are:

• p = 2 (Euclidean norm):

||x ||2 =

√∑

i

x2i

• p = 1 (Sum of absolute values):

||x ||1 =
∑

i

|xi |

• p =∞ (Largest absolute value):

||x ||∞ = max
i
|xi |

x

x

1

2

1

2

8

x = 1

x = 1

x = 1
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Intersection
Theorem

The intersection of two or more convex sets is itself convex.

Proof (for two sets): Consider any two points a and b which both lie in both
of two convex sets X and Y. For any λ ∈ [0, 1], λa + (1− λ)b is in both X
and Y. Therefore λa + (1− λ)b ∈ X ∩ Y, ∀λ ∈ [0, 1]. This satisfies the
definition of convexity for set X ∩ Y.

x2

x1

x2

x1

x2

x1

= 

x2

x1



Many sets can be written as the intersection of convex elements, and are
therefore easily shown to be convex. Any convex set can be written as a
(possibly infinite) intersection of halfspaces.
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Union X ∪ Y
Note that the union of two sets is not convex in general, regardless of
whether the original sets were convex!

x1

x2

x1

x2

x1

x2

Set X Set Y Set XY
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Convex Functions
Definitions: Convex Function

A function f : dom (f )→ R is convex iff dom (f ) is convex and

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y), ∀λ ∈ (0, 1), ∀x , y ∈ dom (f )

The function f : dom (f )→ R is strictly convex if this inequality is strict.

f (x + (1 - )y)

f (x) + (1 - )f (y)

z

f (z)

x y

The function f is concave iff dom (f ) is convex and −f is convex.
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First-order Condition for Convexity

A differentiable function f : dom (f )→ R with a convex domain is convex iff

f (y) ≥ f (x) +∇f (x)>(y − x), ∀x , y ∈ dom (f )

f (x) + f (x)T(y - x)

y

f (y)

x

→ First-order approximation of f around any point x is a global
underestimator of f .

The gradient ∇f (x) is given by

∇f (x) =

[
∂f (x)

∂x1
,
∂f (x)

∂x2
, . . . ,

∂f (x)

∂xn

]>
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Second-order Condition for Convexity

A twice-differentiable function f : dom (f )→ R with convex domain dom (f ) is
convex iff

∇2f (x) � 0, ∀x ∈ dom (f ) ,

where the Hessian ∇2f (x) is defined by

∇2f (x)ij =
∂2f (x)

∂xi∂xj

If dom (f ) is convex and ∇2f (x) � 0 for all x ∈ dom (f ), then f is strictly
convex.
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Level and sublevel sets
Definition: Level set

The level set Lα of a function f for value α is the set of all x ∈ dom (f ) for
which f (x) = α:

Lα := {x | x ∈ dom (f ) , f (x) = α}
For f : R2 → R these are contour lines of constant “height”.

Definition: Sublevel set

The sublevel set Cα of a function f for value α is defined by

Cα := {x | x ∈ dom (f ) , f (x) ≤ α}

Function f is convex ⇒ sublevel sets of f are convex for all α. But not ⇐!
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Examples of Convex Functions: R→ R
The following functions are convex (on domain R unless otherwise stated):

• Affine: ax + b for any a, b ∈ R

• Exponential: eax for any a ∈ R

• Powers: xα on domain R++, for α ≥ 1 or α ≤ 0

• Vector norms on Rn: ||x ||p = (
∑n

i=1 |x |p)1/p, for p ≥ 1, ||x ||∞ = maxi |xi |

The following functions are concave (on domain R unless otherwise stated):

• Affine: ax + b for any a, b ∈ R

• Powers: xα on domain R++, for 0 ≤ α ≤ 1

• Logarithm: log x on domain R++

• Entropy: −x log x on domain R++
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Convexity-preserving Operations

Certain operations preserve the convexity of functions:

• Non-negative weighted sum

• Composition with affine function

• Pointwise maximum and supremum

• Partial minimization

and many other possibilities...
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Convex Optimization Problem

A convex optimization problem in standard form:

min
x∈dom(f )

f (x)

subj. to gi (x) ≤ 0 i = 1, . . . ,m

a>i x = bi i = 1, . . . , p

• f , g1, . . . , gm are convex functions
• dom (f ) is a convex set
• equality constraint functions hi (x) = a>i x − b are all affine.

The affine constraints are typically gathered into matrix form:

min
x∈dom(f )

f (x)

subj. to gi (x) ≤ 0 i = 1, . . . ,m

Ax = b A ∈ Rp×m

Important property: Feasible set of a convex optimization problem is convex.
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Local and Global Optimality for Convex Problems
Theorem

For a convex optimization problem, any locally optimal solution is globally
optimal (local optima are global optima).

Proof:

• Assume that x is locally optimal, but not globally optimal.
• Therefore there is some other point y such that f (y) < f (x).
• x locally optimal implies that there is some R > 0 such that

‖z − x‖2 ≤ R ⇒ f (x) ≤ f (z)

• The problem can’t be convex.

f (x)

xy

f (y)

Rz
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Local and Global Optimality for Convex Problems
Theorem

For a convex optimization problem, any locally optimal solution is globally
optimal (local optima are global optima).

Proof:

• Assume that x is locally optimal, but not globally optimal.
• Therefore there is some other point y such that f (y) < f (x).
• x locally optimal implies that there is some R > 0 such that

‖z − x‖2 ≤ R ⇒ f (x) ≤ f (z)

• The problem can’t be convex.

f (x)

xy

f (y)

Rz

Local optimality
� f (z) > f (x)

Convexity� f (z) < f (x)
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Equivalent Optimization Problems

Two problems are (informally) called equivalent if the solution to one can be
(easily) inferred from the solution to the other, and vice versa.

• Introducing equality constraints:

min
x

f (A0x + b0)

subj. to gi (Aix + bi ) ≤ 0 i = 1, . . . ,m

is equivalent to

min
x ,yi

f (y0)

subj. to gi (yi ) ≤ 0 i = 1, . . . ,m

Aix + bi = yi i = 0, 1, . . . ,m

MPC Lec. 3 - Introduction to Convex Optimization 35 4 – Convex Optimization Problems



Equivalent Optimization Problems

Two problems are (informally) called equivalent if the solution to one can be
(easily) inferred from the solution to the other, and vice versa.

• Introducing slack variables for linear inequalities:

min
x

f (x)

subj. to Aix ≤ bi i = 1, . . . ,m

is equivalent to

min
x ,si

f (x)

subj. to Aix + si = bi i = 1, . . . ,m

si ≥ 0 i = 1, . . . ,m
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General Linear Program (LP)

Affine cost and constraint functions:

min
x∈Rn

c>x

subj. to Gx ≤ h

Ax = b

• Feasible set P is a polyhedron

• If P is empty, the problem is infeasible

x*

P

Linear optimization on a polytope.

(a) Gx ≤ h (b) A>i x = bi (c) Gx ≤ h ∩ A>i x = bi
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Graphical Interpretation and Solution Properties

Denote by p∗ the optimal value and by Xopt the set of optimizers

Case 1. The LP solution is unbounded, i.e., p∗ = −∞.
Case 2. The LP solution is bounded, i.e., p∗ > −∞ and the optimizer is

unique. Xopt is a singleton.
Case 3. The LP solution is bounded and there are multiple optima.

Xopt is a subset of Rs , which can be bounded or unbounded.

cTx = k4

cTx = k1

P

(a) Case 1

cTx = k4

cTx = k3

cTx = k1

x∗

P

(b) Case 2

cTx = k4

cTx = k1

x∗

P

(c) Case 3
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General Quadratic Program (QP)

min
x∈Rn

1
2
x>Hx + q>x + r

subj. to Gx ≤ h

Ax = b

• Constant r can be left out, since it has no effect on the optimal solution.
• Convex if H � 0
• Problems with concave objective H ≺ 0 are quadratic programs, but hard.

Two cases can occur if feasible set P is not empty:

Case 1. The optimizer lies strictly inside the feasible polyhedron
Case 2. The optimizer lies on the boundary of the feasible polyhedron

x'Hx+qx+r=ki

P

x* x'Hx+qx+r=kiP
x*
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The Lagrangian Function

Recall our standard (possibly non-convex) optimization problem:

(P) :

min
x∈dom(f )

f (x)

subj. to gi (x) ≤ 0 i = 1 . . .m

hi (x) = 0 i = 1 . . . p

with (primal) decision variable x , domain dom (f ) and optimal value p?.

Lagrangian Function: L : dom (f )× Rm × Rp → R

L(x , λ, ν) = f (x) +

m∑

i=1

λigi (x) +

p∑

i=1

νihi (x)

• λi : inequality Lagrange multiplier for gi (x) ≤ 0.
• νi : equality Lagrange multiplier for hi (x) = 0.
• Lagrangian is a weighted sum of the objective and constraint functions.
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Lagrange Dual Function

The dual function d : Rm × Rp is

d(λ, ν) = inf
x∈dom(f )

L(x , λ, ν)

= inf
x∈dom(f )

[
f (x) +

m∑

i=1

λigi (x) +

p∑

i=1

νihi (x)

]

• The dual function d(λ, ν) is always a concave
function (pointwise infimum of affine functions).

• The dual function generates lower bounds for p?:

d(λ, ν) ≤ p?, ∀(λ ≥ 0, ν ∈ Rp)

• d(λ, ν) might be −∞:

dom (d) := {λ, ν | d(λ, ν) > −∞}

d(λ)

λ
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The Primal and Dual Problem

A general optimization problem and its dual:

(P) :

min
x

f (x)

subj. to gi (x) ≤ 0 i = 1 . . .m

hi (x) = 0 i = 1 . . . p,

(D) :
max
ν,λ

d(ν, λ)

subj. to λ ≥ 0

• Problem (D) is convex, even if (P) is not.

• Problem (D) has optimal value d? ≤ p?.

• The point (λ, ν) is dual feasible if λ ≥ 0 and (λ, ν) ∈ dom (d).

• Can often impose the constraint (λ, ν) ∈ dom (d) explicitly in (D).
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Example : Dual of a Linear Program (LP)

(P) :

min
x∈Rn

c>x

subj. to Ax = b

Cx ≤ e

The dual function is

d(λ, ν) = min
x∈Rn

[
c>x + ν>(Ax − b) + λ>(Cx − e)

]

= min
x∈Rn

[
(A>ν + C>λ+ c)>x − b>ν − e>λ

]

=

{
−b>ν − e>λ if A>ν + C>λ+ c = 0

−∞ otherwise

Lower bound property:
−b>ν − e>λ ≤ p? whenever A>ν + C>λ+ c = 0 and λ ≥ 0.
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Example : Dual of a Linear Program (LP)

(P) :

min
x∈Rn

c>x

subj. to Ax = b

Cx ≤ e

The dual problem is

(D) :

max
λ,ν
−b>ν − e>λ

subj. to A>ν + C>λ+ c = 0

λ ≥ 0

The dual of a linear program is also a linear program.
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Example : Dual of a Quadratic Program

A quadratic program (QP) with Q � 0:

(P) :
min
x∈Rn

1
2
x>Qx + c>x

subj. to Cx ≤ e

The dual function is

d(λ) = min
x∈Rn

[
1
2
x>Qx + c>x + λ>(Cx − e)

]

= min
x∈Rn

[
1
2
x>Qx + (c + C>λ)>x − e>λ

]

The unconstrained minimization over x is convex for every λ. If Q � 0, then
the optimal x satisfies

Qx + c + C>λ = 0
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Example : Dual of a Quadratic Program (cont’d)

Substitute x = −Q−1(c + C>λ) into the dual function:

d(λ) = −1
2

(
c + C>λ

)>
Q−1

(
c + C>λ

)
− e>λ

Dual of a QP:

The dual problem is to maximize d(λ) over λ ≥ 0, or equivalently,

(D) :
min
λ

1
2
λ>CQ−1C>λ+

(
CQ−1c + e

)>
λ+

1
2
c>Q−1c

subj. to λ ≥ 0

NB: Dual of a QP is another QP.
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Weak and Strong Duality

Weak Duality

• It is always true that d? ≤ p?.

Strong Duality

• It is sometimes true that d? = p?.

• Strong duality usually does not hold for non-convex problems.

• Can impose conditions on convex problems to guarantee that d? = p?.

• Sometimes the dual is much easier to solve than the primal (or vice-versa).

• Example: The dual of a mixed integer linear program (difficult to solve) is
a standard LP (easy to solve).
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Strong Duality for Convex Problems

An optimization problem with f and all gi convex:

(P) :

min f (x)

subj. to gi (x) ≤ 0 i = 1 . . .m

Ax = b A ∈ Rp×n

Slater Condition

If there is at least one strictly feasible point, i.e.
{

x
∣∣∣Ax = b, gi (x) < 0, ∀i ∈ {1, . . . ,m}

}
6= ∅

Then p? = d?.

Other constraint qualification conditions can also be used to check strong
duality in convex problems.
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Karush-Kuhn-Tucker Conditions
Assume that f , all gi and hi are differentiable.

1) Primal Feasibility:

gi (x?) ≤ 0 i = 1, . . . ,m

hi (x?) = 0 i = 1 . . . , p

2) Dual Feasibility:
λ? ≥ 0

3) Complementary Slackness:

λ?i gi (x?) = 0 i = 1, . . . ,m

4) Stationarity:

∇xL(x?, λ?, ν?) = ∇f (x?) +

m∑

i=1

λ?i ∇gi (x?) +

p∑

i=1

ν?i ∇hi (x?) = 0
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Notes on Complementary Slackness

Assume that strong duality holds, with optimal solution x? and (λ?, ν?).

1) From strong duality, d? = p? ⇒ d(λ?, ν?) = f (x?).

2) From the definition of the dual function:

f (x?) = d(λ?, ν?) = min
x

{
f (x) +

m∑

i=1

λ?i gi (x) +

p∑

i=1

ν?i hi (x)

}

≤ f (x?) +

m∑

i=1

λ?i gi (x?) +

p∑

i=1

ν?i hi (x?)
[lower bound]
≤ f (x?)

⇒ f (x?) = d(λ?, ν?) = f (x?) +

m∑

i=1

λ?i gi (x?) +

p∑

i=1

ν?i hi (x?)

3)
λ?i = 0 for every gi (x?) < 0.

gi (x?) = 0 for every λ?i > 0.

}
Complementary slackness.
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KKT Conditions
For general optimization problem: Necessary condition

If x? and (λ?, ν?) are primal and dual optimal solutions, with zero duality gap,
then x? and (λ?, ν?) satisfy the KKT conditions.

For a convex optimization problem: Sufficient condition

If x? and (λ?, ν?) satisfy the KKT conditions, then x? and (λ?, ν?) are primal
and dual optimal solutions, with zero duality gap.

For a convex optimization problem where Slater’s condition holds: Necessary
and sufficient condition

If Slater’s condition holds (i.e. strong duality holds), x? and (λ?, ν?) are primal
and dual optimal solutions if and only if they satisfy the KKT conditions.
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Remark: KKT Conditions for Convex Problems
For a convex optimization problem, KKT conditions are sufficient:

If (x?, λ?, ν?) satisfy the KKT conditions, then p? = d?.

• p? = f (x?) = L(x?, λ?, ν?) (due to complementary slackness)

• d? = d(λ?, ν?) = L(x?, λ?, ν?) (due to convexity of the functions and
stationarity)
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Example : KKT Conditions for a QP

Consider a (convex) quadratic program with Q � 0:

(P) :

min
x∈Rn

1
2
x>Qx + c>x

subj. to Ax = b

x ≥ 0

The Lagrangian is L(x , λ, ν) = 1
2x
>Qx + c>x + ν>(Ax − b)− λ>x .

The KKT conditions are:
∇xL(x , λ, ν) = Qx + A>ν − λ+ c = 0 [stationarity]

Ax = b [primal feasibility]

x ≥ 0 [primal feasibility]

λ ≥ 0 [dual feasibility]

xiλi = 0 i = 1 . . . n [complementarity]

The final three conditions are often written together as 0 ≤ x ⊥ λ ≥ 0.
MPC Lec. 3 - Introduction to Convex Optimization 59 5 – Optimality Conditions



Outline

5. Optimality Conditions

The Lagrange Dual Problem

Weak and Strong Duality

Optimality Conditions

Sensitivity Analysis

MPC Lec. 3 - Introduction to Convex Optimization 60 5 – Optimality Conditions



Sensitivity Analysis

A general optimization problem and its dual:

min
x

f (x)

subj. to gi (x) ≤ 0 i = 1 . . .m

hi (x) = 0 i = 1 . . . p,

max
ν,λ

d(ν, λ)

subj. to λ ≥ 0

A perturbed optimization problem and its dual:

min
x

f (x)

subj. to gi (x) ≤ ui i = 1 . . .m

hi (x) = vi i = 1 . . . p,

max
ν,λ

d(ν, λ)− u>λ− v>ν

subj. to λ ≥ 0

• x is the primal decision variable. (λ, ν) are the dual decision variables.
• u and v are parameters representing perturbations to the constraints.
• p?(u, v) is the optimal value as a function of (u, v).
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Sensitivity and Lagrange Multipliers

Assume strong duality for the unperturbed problem with (ν?, λ?) dual optimal.

Weak duality for the perturbed problem implies

p?(u, v) ≥ d?(ν?, λ?)− u>λ? − v>ν?

= p?(0, 0)− u>λ? − v>ν?

Global Sensitivity Analysis

• λ?i large and ui < 0 ⇒ p?(u, v) increases greatly.

• λ?i small and ui > 0 ⇒ p?(u, v) does not decrease much.

•
{
ν? large and positive and vi < 0

ν? large and negative and vi > 0

}
⇒ p?(u, v) increases greatly.

•
{
ν? small and positive and vi > 0

ν? small and negative and vi < 0

}
⇒ p?(u, v) does not decrease much.

Note: Results are not symmetrical. We only have a lower bound on p?(u, v).
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Sensitivity and Lagrange Multipliers

Assume strong duality for the unperturbed problem with (ν?, λ?) dual optimal.

Weak duality for the perturbed problem implies

p?(u, v) ≥ d?(ν?, λ?)− u>λ? − v>ν?

= p?(0, 0)− u>λ? − v>ν?

Local Sensitivity Analysis

If in addition p?(u, v) is differentiable at (0, 0),
then

λ?i = −∂p
?(0, 0)

∂ui
, ν?i = −∂p

?(0, 0)

∂vi

• λ?i is sensitivity of p? relative to i th inequality.

• ν?i is sensitivity of p? relative to i th equality.

0

p
⇤ (

u
)

u

p⇤(0) � �⇤>u
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Summary: Convex Optimization

• Convex optimization problem:
• Convex cost function
• Convex inequality constraints
• Affine equality constraints

• Benefit of convex problems: Local = Global optimality

• Only need to find one minimum, it is the global minimum!

• For convex optimization problem: If slater condition holds, x∗ optimal iff
∃(λ∗, ν∗) satisfying KKT conditions

• Convex optimization problems can be solved efficiently

• Many problems can be written as convex opt. problems (with some effort)

Note: Duality and optimality conditions similarly extend to Convex Cone
Programs
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Summary: Why did we need the dual problem?

• The dual problem is convex, even if the primal is not
–> can be ‘easier’ to solve than primal

• The dual problem provides a lower bound for the primal problem:

d∗ ≤ p∗ (and d(λ, ν) ≤ p(x) for all feasible x , λ, ν)

(provides suboptimality bound)

• The dual provides a certificate of optimality via the KKT conditions for
convex problems

• KKT conditions lead to efficient optimization algorithms

• Lagrange multipliers provide information about active constraints at the
optimal solution: if λ∗i > 0, then gi (x∗) = 0

• Lagrange multipliers provide information about sensitivity of optimal cost:
if λ∗i large, then tightening constraint will significantly increase cost
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