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Optimization in MPC

N-1
argUmin I (Xkqn) + Z I(Xqi Uki)
2 i—0
subj. to xx = x(k) Uy Pl Output y(k)
ant —
Xktit1 = 9(Xkqiv Ukt i)
Xe+i € X, Ui €U
Xkrn € Xf
7}

Plant State x(k)
At each sample time:

Find the optimal input sequence for the entire planning window N:
Ug ={ug, ugyq -, Upin_1}

Need efficient optimization solvers. Two options:

e [terative optimization methods
e Explicit solution
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Introduction

OFFLINE ONLINE

N-1
U*(x(k)) = argmin x| Pxy + Z x| Qx; + u; Ru;
u i=0
subj. to xp = x(k)
Xit1 = Ax; + Bu;, i=0,..., N—-1

xi€X, uieU, i=0,..., N-—-1 Plant state x(k)

Plant —>
Output y(k)

Xy € Xf

e Optimization problem is parameterized by state
e Pre-compute control law as function of state x
e Control law is piecewise affine for linear system/constraints

Result: Online computation dramatically reduced and real-time
Tool: Parametric programming
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Recall: Quadratic Cost State Feedback Solution

S (x(k) =min  [UT x(K)TT[EA]IUT x(K)'T

subj. to GU < w + Ex(k)

The CFTOC problem is a multiparametric quadratic program (mp-QP)
with the following solution properties:

e The first component of the optimal solution has the form
uy = k(x(k)), ¥x(k) € Ay,
Kk :R" — R™, is continuous and PieceWise Affine on Polyhedra
k(x)=Fix+¢ if xeCR, j=1,..., N’

e The polyhedral sets CR/ = {x e R"|H/x < K/}, j=1,..., N’ are a
partition of the feasible polyhedron Aj.

e The value function J*(x(k)) is convex and piecewise quadratic on
polyhedra.
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Active Set and Critical Region

Let /:={1,..., m} be the set of constraint indices.

Definition: Active Set

We define the active set at x, A(x), and its complement, NA(x), as

Ax):={jel:Gz*(x) — S;x =w;}
NA(x):={jel: Gz"(x) — Six < w;}.

Gj, Sj and w; are the j-th row of G, S and w, respectively.

Definition: Critical Region

CRj4 is the set of parameters x for which the same set A C | of constraints
is active at the optimum. For a given X € K* let (A, NA) := (A(X), NA(X)).
Then,

CRa:={x e K" : A(x) = A}
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Example (1/2)

Consider the following problem:
J(x)=min  J(z,x) = 222 + 2xz + 2x?
z
subj. to z <1+ x,

x € R is a parameter.
The goals:

1. find z*(x) = argmin, J(z, x),
2. find all x for which the problem has a solution
3. compute the value function J*(x)

Define Lagrangian: L(z,x,A\) = f(z, x)+ A(z—x —1)
KKT conditions:

Z+2x+Xx = 0,
z—x—1 < 0,
AMz—x—-1) = 0,
A > 0.
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Example (2/2)

Consider the two strictly complementary cases:

Z*(x) =x+1, T (@)
1 z—x—1=0 <_1 1 .
J(x) = 2x2+3x+ 3
*(x) = —2x,
z—x—-1<0 1
2 X — X > =3
J(x)=0
1, ifx<-1%
.:>Z*(X): X + It x < ?
—2x, |fxzf§
9,2 1 1
X x4z, fx<—=3
J*(X): 2 + +2 — ‘I)
0, |fx2—§

e This problem has a solution for all x.
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Example
Consider the double integrator
x(t+1) = [(1) ﬂx(t)—l—[ﬂ u(t)
y(t) = [1 0]x(t)

subject to constraints

{ 18] x(k) < [18} k=0,..., 5

Compute the state feedback optimal controller u*(x(k)) solving the CFTOC

problem with N =6, Q = [§ 9], R = 0.1, P the solution of the ARE, Xr = R.
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Example

B (R 0 5 10
x,0)

Figure: Partition of the state space for the affine control law u*(x) (Nj = 13)
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Example

Figure: Partition of the state space for the affine control law u*(x) (Ng = 61)
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Example

Figure: Value function for the affine control law u*(x) (Ng = 61)
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Example

Figure: Optimal control input for the affine control law u*(0) (Ng = 61)
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Recall: 1- /oo-Norm State Feedback Solution

The CFTOC problem is a multiparametric linear program (mp-LP) with the
following solution properties:

e The first component of the multiparametric solution has the form
uy = k(x(0)), ¥x(0) € X,
Kk :R" —= R™, is continuous and PieceWise Affine on Polyhedra
k(x)=Fix+¢ if xeCR, j=1,..., N

e The polyhedral sets CR/ = {x e R"|H/x < K'}, j=1,. .., N’ are a
partition of the feasible polyhedron Aj.

e |n case of multiple optimizers a PieceWise Affine control law exists.

e The value function J*(x(0)) is convex and piecewise linear on polyhedra.
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Online evaluation: Point location
Calculation of piecewise affine function:

1. Point location

2. Evaluation of affine function
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Sequential Search

CR(B]_) = {X‘A1X+b1 S O}
CR(BQ) = {X|A2X+b2 < O}

Sequential search

for each J
if Aix+ b; <0 then
X is in region J

CR(Bs3) = {x[Asx + bs < 0}

e \ery simple
e Linear in number of regions
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Logarithmic search (1/6)

Offline construction of search
tree
e Find hyperplane that
separates regions into two
equal sized sets
e Repeat for left and right
sets
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Logarithmic search (2/6)
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Logarithmic search (3/6)
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Logarithmic search (4/6)

h
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Logarithmic search (5/6)

hL hLRR nLR
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Logarithmic search (6/6)




Explicit MPC - Summary

Point location:

e Sequential search
e Very simple
e \Works for all problems

e Search tree

e Potentially logarithmic
e Significant offline processing (reasonable for < 1’000 regions)

e Many other options for special cases

Explicit MPC:
e Linear MPC + Quadratic or linear-norm cost = Controller is PWA
function
e \We can pre-compute this function offline
e Online evaluation of a PWA function is very fast (ns - us)
o We can only do this for very small systems! (3-6 states)
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Multi-Parametric Toolbox

control.ee.ethz.ch/~mpt
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Optimization in MPC

N-1
argUmin I (Xkqn) + Z I(Xqi Uki)
2 i—0
subj. to xx = x(k) Uy Pl Output y(k)
ant —
Xktit1 = 9(Xkqiv Ukt i)
Xe+i € X, Ui €U
Xkrn € Xf
7}

Plant State x(k)
At each sample time:

Find the optimal input sequence for the entire planning window N:
U = vk gy Ukpn-1}
Need efficient optimization solvers. Two options:

e |terative optimization methods
e Explicit solution
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Recap: Convex Optimization Problems

The optimization problem

minimize  f(x)

subjectto x € Q (P)
is said to be convex, if f : R"” — R and the set Q are convex.
Most important examples:
min  c’x min  ixTHx +cTx
st. Ax=b (LP) st. Ax=b (QP)
Gx S f Gx S f

(convex for H = 0)
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Numerical Optimization Methods

In all but the simplest cases, an analytical solution to (P),
x*€arg min f(x)
st. xeQ

cannot be obtained.

= Numerical computation of a solution that is “good enough” by

Iterative optimization methods:

Given an initial guess x(©) produce a sequence of iterates

XD —w(x() £ Q), i=01,..., m—1
such that

[F(x(™) — f(x*)] <e and dist(x(™, Q) <34,

where € and ¢ are user defined tolerances.
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Outline

1. Unconstrained Minimization
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Unconstrained Minimization

min f(x) with f:R" - R

X

e f convex, twice continuously differentiable

e We assume optimal value p* = miny f(x) is finite

Optimality Conditions:

Theorem: Necessary and sufficient condition Q)

Assume f(-) differentiable at x*. If f is convex, then 09

x* is a global minimizer if and only if Vf(x*) = 0.

Unconstrained minimization methods can be interpreted as iterative methods
for solving optimality condition

Vi(x*)=0

(nonlinear set of equations, usually no analytical solution)
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Descent Methods

0D = 5 & f DA with f(X(f+1)) < f(X(r’))

Ax is the step or search direction

h() is the step size or step length

F(xUHD) < £(x), i.e., Ax() is a descent direction
e There exists a hl) > 0 such that f(x(*1)) < f(x0) if VF(x(N)TAx(D) <0

General descent method:

Input: starting point x(©) € domain of f
repeat
1. Compute a descent direction Ax()
2. Line search: Choose step size h{) > 0 such that
F(x + hDAxO) < £(x()
3. Update xUt1) .= x() 4 hAx()
until termination cond. (e.g. F(x{(™)—f(x*) < e; or ||x(M —x(M=1|| < ¢5)
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Outline

1. Unconstrained Minimization

Gradient Methods
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Descent Directions: Gradient Method

o Gradient descent
Idea: Gradient V£ gives direction of steepest local ascent
= Make steps of size h into anti-gradient direction —Vf:

U+ — () h(i)vf(x(i)) (1)

Question: How to choose the step sizes h()?
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L-smoothness and Constant Step Size

Assumption: |Vf(x) — VI(y)|| < Lllx—y| Vx,y € R"
< V£ is Lipschitz-continuous with constant L
< f can be upper bounded by a quadratic function:

F(x) < Fy) + V() (x—y) + 5lIx — y[|> ¥x,y € R"

=

= Choose constant step size: h() =
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Outline

1. Unconstrained Minimization

Newton's Method
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Descent Directions: Newton’s Method
XU = x4 i AXD with £(xUTD) < £(x1)

Idea: Minimize second-order approximation of f at current iterate x(:

xU+1) = arg min
X

1>
~Ht

(x,x()

X
i

Note: 7 is not necessarily an upper bound on f
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Descent Directions: Newton’'s Method

Idea: Minimize second-order approximation of f at current iterate x;:

XU = arg min F(xD) + VF(xN)T (x — x1D) + %(X — xMNTT2F(x) (x — x1D)
Vi <f(x<">) + VAT (x = xD) + ;(x — xN T2 F(xD)(x — x<">)>
& VF(xD) + V2F(xD)(xHD) — x(y =0

o x(HD) = x0) (v2( >)) V()

=0

x=x(i+1)

Newton direction Ax,;

Since 7 is not an upper bound on f, full Newton step does not necessarily yield
descent (i.e. £(xU+D) > £(x(N) might occur)

Idea: Use step size h() > 0 such that Newton step yields descent

. . . ! .
Newton step: | xU+1) = x() — p(1) (V2f(x(’))> VF(x1) 2)
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Line Search

Newton step: | x(*1) = x() 4 h) Ax,,

Problem: Find h() > 0 s.t. f(x() + h)Ax,.) < F(x))
Line search (LS) methods:

e Exact: Compute best h():
A = arg min £(x) + h) Ax,;)
h>0

Optimization in 1 variable — solve by bisection
Time consuming (requires many evaluations of f)

e Inexact: Find h() that decreases f by some amount.
Example: Backtracking® line search.
For o € (0, 0.5) and B € (0, 1):
Initialize h") = 1.
while £(x") + 7D Axye) > £(xD) + ahDVF(xD)T Axye do h) < gh?

IMore details in e.g. [Boyd & Vandenberghe, Convex Optimization, 2004]
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Equality constraints in Newton’s method

Consider the equality constrained problem (with matrix A € R™*")
minimize f(x)
subject to Ax = b

Newton: Minimize quadratic model of f around x() to obtain descent direction

| in 2 AxTV2f(x0) 0)
Axpe(x;) € arg min iAX V(XM Ax + VI(x")Ax (%)
s.t. Abx = —Ax") + b

Notice that if Ax() = b, then Ax,: € Null(A)
= Ax(HD) = AxO) 4 fDAAx (xD) = b+ 0 vhD

Hence if initial iterate satisfies Ax(®) = b, then Ax() = p Vi
Computation: Amounts to solving a linear system.
Optimality conditions of (**) (with multipliers A € R™):

V(N Ax + VIxD) + AT = 04 | [V2F(xD)  AT] [Ax] _ [-VF(x1)
AAX =0 A O] L[A 0

MPC Lec. 11 - Implementation 37 1 — Unconstrained Minimization



Outline

2. Constrained Minimization
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Common Classes of Constrained Optimization

Methods

o Gradient descent methods:
Idea: Gradient gives direction of steepest local ascent
— Make steps into anti-gradient direction

e [nterior-point methods:

Idea: Solve relaxed KKT system using Newton's method

e Active set methods:

Idea: Iteratively identify set of active constraints
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Outline

2. Constrained Minimization

Projected Gradient Method
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Constrained Minimization Using Gradient Methods

Consider the following constrained convex optimization problem:

minimize  f(x) (P)
subjectto x € Q

where Q is convex and f is convex and [-smooth.

= Incorporate constraints in gradient step:

XD — s (X0~ f0v (D))

where g Is a projection:
\) a; AV f(z)
" :
mo(y) = argmin Sx — yI3 ;

st.xeQ \Q

Can similarly choose h() = 1/L, 0
convergence rates are as in the unconstrained case.
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Implications for MPC

o MPC with simple input constraint set U (using “condensed” formulation,
i.e. eliminate states):

1
min EuTHu + XOTFU

st.uelU

e MPC with state constraints: Individual projections are easy, projection on
intersection is not — dualize

N-1
min 1/2 (Z X,-TQX,' + u,TRui + X,VTPXN)
i=0
s.t. Xir1 = Ax; + Bu;
uelU;, xeX;
lllustration: z = (x,u), K& X x U

TR v

T(z| Az=b} ¥ TKN{z| Az=b}

K = ‘;%z\Azf b}
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Outline

2. Constrained Minimization

Interior-Point Methods
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Constrained Minimization Problem
Consider the following problem with inequality constraints
min f(x)
st.gi(x)<0,/i=1,..., m
Assumptions:

e f, g; convex, twice continuously differentiable
e f(x*) is finite and attained

e strict feasibility: there exists a X with
e domf, g¢i(X)<0,i=1,..., m

e feasible set is closed and compact

Idea: There exist many methods for unconstrained minimization

= Reformulate problem as an unconstrained problem
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Primal-Dual Interior-point Methods

Idea: Iteratively solve the relaxed KKT system

Cx* =
gi(x*)+s* =0, i=1,..., m
V(') + S Vg () + T = ()
Agi(x*) =—-k, i=1,..., m
Af.st >0, i=1,..., m

i
where we introduced slack s € R™.
Idea: leave dual multipliers AF as variables (before, they were implicitly defined

by primal log barrier)?:

e Solve the primal and dual problem simultaneously via (**)
e Primal-dual central path = {(x, v, X, s) | (**) holds}
e Follow central path to solution by reducing k to zero

e Solve (**) by Newton method (with additional “safeguards” & line search)

2See e.g. [Stephen Wright, Primal-dual Interior-point Methods, SIAM 1997]
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Primal-Dual Search Direction Computation

At each iteration, linearize (**) and solve

H(x,A\) CT G(x)T 0] [Ax
C 0 0 0| |Av

Gx) 0 0 I||ax "
0 0 S A | As

where S £ diag(sy, .. ., sm) and A £ diag(\;

coefficient matrix is

Vi(x)+ CTv+ G(x)™A

Cx—d
g(x) +s
SA—

..... Am). the (1,1) block in the

H(x, ) 2 +va gi(x

and the vector v € R™ allows for a modification of the right-hand side. Call

resulting direction A [x, v, X, s] ().
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Search Directions in Primal-Dual Methods

Can generate different directions A [x, v, A, s] (v) depending on v:

AN
centering

current iterate
direction A [x, y, A, s] (k1)

(X, ¥, A\ 5)— e

resulting search
direction with o € (0, 1)

Newton — “.‘ Alx,y, A\ s] (ok1)
direction
(predictor) __— central path C
Alx,y, X s](0)
optimal point
|
* N

S1

e v = 0: pure Newton direction (“predictor” or “affine-scaling”)
e v = kl: centering direction, approach central path

= Using linear combination via centering parameter o € (0, 1) ensures fast
convergence in theory & practice by tracking central path to solution
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Outline

2. Constrained Minimization

Software
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Software for Modeling Optimization Problems

Formulate optimization problem in mathematical language and pass to solver:

CVX (cvxr.com/cvx): Matlab software for modeling convex problems

YALMIP (users.isy.liu.se/johanl/yalmip): Matlab software for modeling
convex and some non-convex optimization problems. MPC-Example:

u = sdpvar(repmat(nu,1,N),repmat(1,1,N));
constraints = []; objective = 0; x = x0;
for k = 1:N
x = A*x + Bxu{k};
objective = objective + norm(Q+*x,1) + norm(R¥u{k},1);
constraints = [constraints, -1 <= u{k}<= 1, -5<=x<=5];
end

AMPL (www.ampl.com): industry standard, proprietary software.
Supports basically all solvers.

GAMS (www.gams.com): commercial high-level modeling system for
large-scale optimization. Supports many different types of problems (LPs,
QCQPs, MILPs, MINLPs, ...) and solvers
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g%ftware for Solving Convex Problems on Desktop
s

General purpose solvers

SeDuMi (sedumi.ie.lehigh.edu): widely used free solver, with Matlab
interface

SDPT3 (www.math.nus.edu.sg/ mattohkc/sdpt3): Matlab software,
free (GPL)

CVXOPT (abel.ee.ucla.edu/cvxzopt): free Python solver, allows
customization of linear system solvers

IBM CPLEX: industry standard for (MI)LPs and (MI)QCQPs
(commercial)

Gurobi (www.gurobi.com): commercial (MI)SOCP solver, by creators of
CPLEX, strong Python support

MOSEK (www.mosek.com): fastest commercial solver for second-order
cone programs

OOQP (pages.cs.wisc.edu/ swright/ooqgp): object-oriented QP
solver (needs LAPACK/BLAS)

All listed solvers are based on interior-point methods (6 out of 7 primal-dual)
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Convex Optimization Solvers for Embedded
Platforms

o pOASES (www.kuleuven.be/optec/software/qpOASES): active set
solver (LGPL)

e HPIPM (https://github.com/giaf/hpipm): structure-exploiting
primal-dual IPM (BSD)

e ECOS (github.com/embotech/ecos): Sparse SOCP solver, 800 lines of
library free C code, Python & Matlab interface

Code generation: — generate problem-specific C-code:

o CVXGEN (cvxgen.com): code generation for small QPs, extremely fast,
code can get large

e FORCES PRO (www.embotech.com): Code generation for interior-point,
gradient methods, ADMM, non-convex solvers (NLPs), problems with
binary variables
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