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Receding Horizon Control: The Motivation

x(k+1) = g(x(k), u(k)) X u€ XU

Design control law u(k) = k(x(k)) such that the system:
Satifies constraints : {x(k)} C X, {u(k)} CU

Is stable: limyg_oo x(k) =0
Optimizes “performance”
Maximizes the set {x(0) | Conditions 1-3 are met}

> w o=

In this lecture, we will demonstrate that these objectives can be met in a
predictive control framework.
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Learning Objectives

e Contrast stability properties of LQR and MPC for constrained problems

e Understand why MPC by itself does not provide guarantees on stability
and constraint satisfaction

e Pose sufficient conditions and prove guarantees on stability and constraint
satisfaction
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Outline

1. MPC: Key Points lllustrated
2. Loss of Feasibility and Stability in MPC
3. Feasibility and Stability Guarantees in MPC

4. Extension to Nonlinear MPC
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Constrained Infinite Time Optimal Control
(what we would like to solve)

I3 (x(0)) = min Z I(xi. uj)

subj. to xjy1 = Ax;+ Buj, 1=0,..., %)
X/EX,U/EZ/[,/IO ..... o0

xo = x(0)

e Stage cost /(x, u): “cost” of being in state x and applying input u
e Optimizing over a trajectory provides a tradeoff between short- and
long-term benefits of actions

o \We'll see that such a control law has many beneficial properties...
... but we can’'t compute it: there are an infinite number of variables

MPC Lec. 6 - Feasibility and Stability 5



Constrained Finite Time Optimal Control
(what we can sometimes solve)

N—1
Jeskink(x(k)) = ,,min | Ie (X njk) + Z I(Xicifk Uk-tik)
k—k+N|k .
=0
subj. to Xkyip1k = AXkpilk + BUkyi, 1=0,...,
Xk+i\k€Xka+i|k eu,i=0,..., N—-1
XkrNik € Xr
Xk|k = X(k)
where Uy = {Ukjks - - - Uk N—1|k }-

Truncate after a finite horizon:

o Jr(xk+nik) © Approximates the ‘tail’ of the cost
o Xr : Approximates the ‘tail' of the constraints
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MPC: Mathematical Formulation

T
L

argmin le(xn) + > 1(xi, uj)
U

i

I
o

subj. to xg = x(k)
Xit1 = Ax; + Bu;
x; €X, uy el
xy € Xr

3

A

Plant

Output y(k)

>

Plant State x(k)

At each sample time:

e Measure / estimate current state x(k)

e Find the optimal input sequence for the entire planning window N:

U ={ug, g, .. Uy}

e Implement only the first control action ug
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Outline

1. MPC: Key Points lllustrated
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Example: Cessna Citation Aircraft

Linearized continuous-time model:
(at altitude of 5000m and a speed of 128.2 m/sec)

12822 0 098 0 03
. 0 0 1 ol | o |,
54293 0 —1.8366 0 17
1282 1282 0 0 0
o100
Y=1lo 0 0 1

Input: elevator angle
States: x;: angle of attack, x>: pitch angle, x3: pitch rate, x4: altitude

Outputs: pitch angle and altitude

Constraints: elevator angle +0.262rad (£15°), elevator rate £0.524rad/s
(£60°/s), pitch angle +0.349 (£39°)

Open-loop response is unstable (open-loop poles: 0, 0, —1.5594 + 2.29/)
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LQR and Linear MPC with Quadratic Cost

e Quadratic cost

e |inear system dynamics

e Linear constraints on inputs and states

LQR
Joo(x(k)) = min > x7 Qx + u Ru;
i=0
subj. to xj+1 = Ax; + Bu;
xo = x(k)

Assume: Q=QT >0, R=RT >0

MPC

N-1
J(x(K)) = min > X" Qx + uf Ru;
i=0
subj. to xjy1 = Ax; + Bu;

x; €X, uy el
Xo = x(k)
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Example: LQR with saturation
Linear quadratic regulator with saturated inputs.

At time t = 0 the plane is flying with a deviation of
10m of the desired altitude, i.e. xo = [0;0; 0; 10]

200 T T T T 2

5
= g
£ 100 1 =
><<r Q
g 0 0 2
£ -100 116
o

-200 . . . . )

0 2 4 6 8 10

Time (sec)

0.5

Elevator angle u (rad)
(=]

0 2 4 6 8 10
Time (sec)

Problem parameters:

Sampling time 0.25sec,
Q=I/,R=10

e Closed-loop system is
unstable

e Applying LQR control
and saturating the
controller can lead to
instability!
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Example: MPC with Bound Constraints on Inputs

MPC controller with input constraints |ux| < 0.262  Problem parameters:

Sampling time 0.25sec,
Q=I/,R=10,N=10

05 : ; : ;

40 1 & The MPC controller uses
E 2 05 = the knowledge that the
~ = . .
o o o & elevator will saturate, but it
] j= .
£ S does not consider the rate
Z -20 -0.55 .
&  constraints.
-40 - L L L _q
0 2 4 6 8 10
Time (sec)
- 05 = System does not
g converge to desired
% steady-state but to a
5 ° ] limit cycle
g
k]
w
4 6

Time (sec)
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Example: MPC with all Input Constraints

MPC controller with input constraints |ux| < 0.262  Problem parameters:

and rate constraints |ik| < 0.349 Sampling time 0.25sec,
approximated by |u; — uj—1] < 0.349 T, QR=I/,R=10, N=10
20 02 = The MPC controller
B £ considers all constraints on
< 1 ® 5 the actuator
2 2
£ 0 -0.28
< £
10 . . . . 04" e Closed-loop system is
2 4 6 8 10
Time (sec) stable
g 02 o Efficient use of the
3 od 1 control authority
©
= 0
§ -0.1
o
w02 : : : :
0 2 4 6 8 10

Time (sec)
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Example: Inclusion of state constraints

MPC controller with input constraints
and rate constraints |ik| < 0.349
approximated by |u; — uj—1] < 0.349 T,

|ug] <0.262  Problem parameters:

Sampling time 0.25sec,
Q=I/,R=10,N=10

Increase step:

150 05 5
£ 100 | £ Attimet =0 the planeis
e I° & flying with a deviation of
2 055 100m of the desired
2 0 S . :
= - Pitch angle ~-0.9, i.e. -50° 2 altitude, i.e.

50 2 4 6 8 0 Xo = [0;0;0;100]

Time (sec)

’g 0.5 .
=1 e Pitch angle too large
() . .
2 OJW during transient
5
g
K L L L
w ~055 2 4 8 10

Time (sec)
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Example: Inclusion of state constraints

MPC controller with input constraints |ux| < 0.262  Problem parameters:

and rate constraints |ik| < 0.349 Sampling time 0.25sec,
approximated by |u; — uj—1] < 0.349 T, QR=I/,R=10, N=10

150 e — 04 = Add state constraints for
E 100 Constraint O@‘iaﬂg'e active loo £ passenger comfort:
é 50 0 %
2 © |x2] < 0.349
= 0 -0.2§

2
% 2 4 6 8 1077
Time (sec)

0.5

Elevator angle u (rad)
o

_05 L L L L

Time (sec)
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Example: Short horizon

MPC controller with input constraints |ux| < 0.262  Problem parameters:

and rate constraints |ik| < 0.349
approximated by |u; — uj—1] < 0.349 T,

20

Sampling time 0.25sec,
Q=I,R=10,N=4

Decrease in the prediction

Altitude x, (m)
o

0 2 4 6 8 1
Time (sec)

Elevator angle u (rad)
o

0.5
horizon causes loss of the

stability properties

S
Pitch angle X, (rad)

-0.5

0 2 4 6 8 10

Time (sec)
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Outline

2. Loss of Feasibility and Stability in MPC
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Loss of Feasibility and Stability

What can go wrong with “standard” MPC?

e No feasibility guarantee, i.e., the MPC problem may not have a solution

e No stability guarantee, i.e., trajectories may not converge to the origin
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Example: Loss of feasibility - Double Integrator

Consider the double integrator

x(k+1) = [(1) ﬂx(k)+m u(k)
y(k) = [1 0]x(k)

subject to the input constraints
—0.5 < u(k)<0.5

and the state constraints

Compute a receding horizon controller with quadratic objective with

1 0

N =3, P—Q—{O 1

], R =10.
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Example: Loss of feasibility - Double Integrator

The QP problem associated with the RHC is

13.50 —10.00 —0.50
- |: —20.50 10.00 9.50 3.50 54.50

~10.00 22.00 ,10_00:| , F = [*10.50 10.00 70.50] , Y = [%4.50 23.50
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—0.50 0.00 0.50 —0.50 —1.50 8-?8
0.50 0.00 —0.50 0.50 1.50 530
0.00 0.00 0.00 3-90 9.0 200
0.00 0.00 0.00 9.9, &% 200
0.00 0.00 0.00 : . L 200

L 0.00 0.00 0.00 4 L 0.00 —1.00. :
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Example: Loss of feasibility - Double Integrator

1) MEASURE the state x(k) at time instance k

2) OBTAIN U*(x(k)) by solving the CFTOC

3) IF U*(x(k)) =0 THEN ‘problem infeasible’ STOP
4) APPLY the first element uf of U* to the system
5) WAIT for the new sampling time k+1, GOTO 1)

4 Set of initial
. feasible states
Time step 1: 35| N& (feasible set)
X =[-4:3], uy(x(0)) =-0.5 3
Time step 2: 25

X =[-1;2.5], uy(x(1))=-0.5 2
Time step 3:
xo =[1.5;2], Problem infeasible !

£)5 0 5

Depending on initial condition, closed loop trajectory may lead to states for
which optimization problem is infeasible.
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Loss of feasibility - Double Integrator

Example
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Boxes (Circles) are initial points leading (not leading) to feasible closed-loop

trajectories
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Example: Feasibility and stability are function of
tuning

Unstable system x(k+1) = {(2) 0%5] x(k) + [O} u(k)

Input constraints —1 < u(k) <1

. 0 10 1 0
State constraints {10] < x(k) < [10] Parameters: Q [O 1}

Investigate the stability properties for different horizons N and weights R by
solving the finite-horizon MPC problem in a receding horizon fashion...
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Example: Feasibility and stability are function of
tuning

1. R =10, N = 2: all trajectories unstable. )
2. R =2, N = 3: some trajectories stable.

3. R=1, N =4: more stable trajectories.

* Initial points with convergent trajectories

o Initial points that diverge

@

@) 10

-5

-1 %
-10 -5 0 5 10

Green lines denote the set of all feasible initial points. They depend on the
horizon N but not on the cost R = Parameters have complex effect and
trajectories.
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Summary: Feasibility and Stability

Problems originate from the use of a ‘short sighted’ strategy

= Finite horizon causes deviation between the open-loop prediction and the

closed-loop system: )
Set of feasible

Closed-loop initial states for

trajectories Open-loop / open-loop
prediction

7&\ predictions

Set of initial

states leading to
feasible closed-
loop trajectories

<0 SN0
-5 : ‘ -5 : ‘
-5 0 5 -5 0 5
X X

1 1
Ideally we would solve the MPC problem with an infinite horizon, but that is
computationally intractable

= Design finite horizon problem such that it approximates the infinite horizon

MPC Lec. 6 - Feasibility and Stability 25 2 — Loss of Feasibility and Stability in MPC



Summary: Feasibility and Stability

e |nfinite-Horizon
If we solve the RHC problem for N = oo (as done for LQR), then the
open loop trajectories are the same as the closed loop trajectories. Hence
e |f problem is feasible, the closed loop trajectories will be always feasible
e |f the cost is finite, then states and inputs will converge asymptotically to
the origin

e Finite-Horizon
RHC is “short-sighted” strategy approximating infinite horizon controller.
But

o Feasibility. After some steps the finite horizon optimal control problem
may become infeasible. (Infeasibility occurs without disturbances and
model mismatch!)

o Stability. The generated control inputs may not lead to trajectories that
converge to the origin.
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Feasibility and stability in MPC - Solution

Main idea: Introduce terminal cost and constraints to explicitly ensure
feasibility and stability:

N—1
J(x(k)) = mUin le(xn) + Z 1(xi, ui) Terminal Cost
i=0
subj. to

Xiy1 = Ax;+ Buj, 1=0,..., N-—1

xie€X, upeU, 1=0,..., N-1

Xy € Xf Terminal Constraint
xo = x(k)

I¢(+) and Xr are chosen to mimic an infinite horizon.
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Outline

3. Feasibility and Stability Guarantees in MPC
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Lyapunov Stability (1/2)
Consider the nonlinear, time-invariant, discrete-time system
x(k +1) = g(x(k)) (2)

with an equilibrium point at X, i.e., g(x) = Xx.

Asymptotic stability

An equilibrium point x € Q of system (2) is

e asymptotically stable in the positive invariant set Q C R" if it is
Lyapunov stable and attractive, i.e.

lim |x(k) = X| =0, ¥x(0) € Q
k—o00

¢ globally asymptotically stable if it is asymptotically stable and Q2 = R”
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Lyapunov Stability (2/2)

Definition: Lyapunov function

Consider the equilibrium point X = 0 of system (2). Let Q C R” be a closed
and bounded positive invariant set for the system (2) containing the origin. A
function V : R" — R, continuous at the origin, finite for every x € Q, and
such that

V(0) = 0 and V(x) > 0, ¥x € Q\ {0}
V(9(x)) — V(x) < —a(x) ¥x € 2\ {0}

where a : R” — R is continuous positive definite,

is called a Lyapunov function.

Theorem: Lyapunov stability (asymptotic stability)

If a system admits a Lyapunov function V/(x), then x = 0 is asymptotically
stable in Q.
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Feasibility and Stability of MPC: Proof

Main steps:

e Prove recursive feasibility by showing the existence of a feasible control
sequence at all time instants when starting from a feasible initial point

e Prove stability by showing that the optimal cost function is a Lyapunov
function
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Feasibility and Stability of MPC: Proof

Main steps:

e Prove recursive feasibility by showing the existence of a feasible control
sequence at all time instants when starting from a feasible initial point

e Prove stability by showing that the optimal cost function is a Lyapunov
function

Two cases:

1. Terminal constraint at zero: xy =0
2. Terminal constraint in some (convex) set: xy € Xr

General notation:

N—1

S(x(k) =min () + > 106, u)
U ~—— = ——

terminal cost stage cost
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Outline

3. Feasibility and Stability Guarantees in MPC
Proof for Xr =0
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Stability of MPC - Zero terminal state constraint

Terminal constraint: xy € Xr =0

o Assume feasibility of x(k) and let

{ug, ui, ..., uy_,} be the optimal control
sequence computed at x(k) and let

{x(k), x{, ..., x5} be the corresponding state
trajectory

o Apply u(k) = ug and let system evolve to
x(k+1) = Ax(k) + Bu(k)
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Stability of MPC - Zero terminal state constraint

Terminal constraint: xy € Xr =0

o Assume feasibility of x(k) and let

{ug, ui, ..., uy_,} be the optimal control
sequence computed at x(k) and let

{x(k), x{, ..., x5} be the corresponding state
trajectory

o Apply u(k) = ug and let system evolve to
x(k+1) = Ax(k) + Bu(k)

* At x(k+1) = x; the control sequence
U={uj, u3, ..., uy_;, 0} is feasible

(apply O control input = A x5 +B-0=0)
—~

=0

= Recursive feasibility v/
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Stability of MPC - Zero terminal state constraint

Terminal constraint: xy € Xr =0

Goal: Show J*(x(k+1)) < J*(x(k)) Vx(k)#0 g
J(x(K)) = /f(xom+§/(x,-*,ur) &
N—1

I (x(k+1)) < J(x(k+1)) Z/ )+ 1(xx, 0)
= Z/ (x5, uy) + 1(xp, 0)
i=0
= J(x(K)) = I(x(k), ug) + 1(0,0)
——

——
Subtract cost Add cost for

at stage k staying at 0=0

= J*(x) is a Lyapunov function — (Lyapunov) Stability v/
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Example: Impact of Horizon with Zero Terminal
Constraint

System dynamics:

Constraints:

X :={x]-50<x; <50, =10 < x> <10} = {x|Axx < b}
U:={ulllull <1} ={u[Asu < by}

Stage cost:

10
I(xi, uj) :== x;" {O J xi + uj u;
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Example: Impact of Horizon with Zero Terminal
Constraint

101

Maximum
Control-Invariant
Set

1% 0 50

The horizon can have a strong impact on the region of attraction.
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3. Feasibility and Stability Guarantees in MPC

General Terminal Sets

MPC Lec. 6 - Feasibility and Stability 39 3 — Feasibility and Stability Guarantees in MPC



Extension to More General Terminal Sets

Problem: The terminal constraint xy = 0 reduces the size of the feasible set

Goal: Use convex set Xr to increase the region of attraction

3 Feasible set for x, € 1; Double integrator

5 Feasible set for x,=0 11 0

1 x(k+1) = [O 1} x(k) + [1} u(k)
~ 0 -5 5
* < <

_1 HECEH

- —0.5<u(k) <05

1 0
B4 2 0 2 4 6 N—SQ—|:O 1,R:10

Goal: Generalize proof to the constraint xy € X
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Invariant sets

Definition: Invariant set

A set O is called positively invariant for system x(k+1) = gq(x(k)), if
x(0) e O=x(k) € O, VkeN;

The positively invariant set that contains every closed positively invariant set is
called the maximal positively invariant set Q.

Infeasible after
one step

Invariant
- Recursively
feasible

Infeasible after
two steps
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Stability of MPC - Main Result

Assumptions

1. Stage cost is positive definite, i.e. it is strictly positive and only zero at
the origin

2. Terminal set is invariant under the local control law k¢(x;):
Xit1 = Ax; + Bre(x;) € X¢, for all x; € Xr
All state and input constraints are satisfied in Xr:
Xr C X, ke(x;) €U, forall x; € Xf

3. Terminal cost is a continuous Lyapunov function in the terminal set X
and satisfies:

le(xiv1) — lr () < —1(xi, ke(x;)), for all x; € Xf
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Under those 3 assumptions:

Theorem

The closed-loop system under the MPC control law uj(x) is asymptotically
stable and the set X}y is positive invariant for the system

x(k+1) = Ax(k) + Bug(x(k)).

MPC Lec. 6 - Feasibility and Stability 43 3 — Feasibility and Stability Guarantees in MPC



Stability of MPC - Outline of the Proof

o Assume feasibility of x(k) and let

{ug, ui, ..., uy_,} be the optimal control
sequence computed at x(k) and

{x(k), x{. ..., xy} the corresponding state
trajectory
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Stability of MPC - Outline of the Proof

o Assume feasibility of x(k) and let

{ug, ui, ..., uy_,} be the optimal control
sequence computed at x(k) and

{x(k), x{. ..., xy} the corresponding state
trajectory

o At x(k-+1) = x{, the control sequence
U={uj, 5, ..., ke(x})} is feasible:

Xy is in Xr — Kke(xy) is feasible
and Axy + Bkr(xy) in Xr

= Terminal constraint provides recursive
feasibility
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Asymptotic Stability of MPC - Outline of the Proof

N—
J (x(k Z )+ le(xp)
i=0
At x(k+1) = x5, U={u}, u5, ..., ke(xy)} is feasible & sub-optimal
N-1
J(x(k+1)) < I(x7, ul) + 1(xn, ke(xn)) + le(Axy 4+ Bre(xy))
i=1
N-1

1067, ui) =1(x0. to) + 1(xy, ke (X)) + I (Axy + Brr (X))
=0

~———

(x(k)=le (xg)
"((K) = 1K), 1) + (A + Brer(xi) = IrO6) + Mo ()
<0 by Assumption 3

= J(x(k+1)) — S (x(k)) < —I(x(k), ug), [(x,u) >0 forx,u#0

S s

J*(x) is a Lyapunov function
= The closed-loop system under the MPC control law is asymptotically stable
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Choice of Terminal Sets and Cost - Linear System,
Quadratic Cost

N—1
J (x(k)) = mUin Xy Pxy + Z X" Qx; + u; Ru; Terminal Cost
i=0
subj. to

Xit1 = Axi+ Bu;, i1 =0,..., N—-1

xi€X, ug e, i=0,..., N-—-1

Xy € Xf Terminal Constraint

xo = x(k)
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Choice of Terminal Sets and Cost - Linear System,
Quadratic Cost

e Design unconstrained LQR control law
Foo=—(BTPxB+ R)'BTPLA
where P, is the solution to the discrete-time algebraic Riccati equation:
Po=A"PuA+ Q—ATPB(B"P.B+R)'BTP, A

e Choose the terminal weight P = P

e Choose the terminal set Xr to be the maximum invariant set for the
closed-loop system xx+1 = (A + BFo)Xk:

Xp41 = Axk + BFo(xk) € Xf, for all xx € Xr
All state and input constraints are satisfied in Xr:

Xr C X, Fooxxk €U, forall x, € Xf
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Choice of Terminal Sets and Cost - Linear System,
Quadratic Cost

1. The stage cost is a positive definite function

2. By construction the terminal set is invariant under the local control law
Ke(x) = FooX

3. Terminal cost is a continuous Lyapunov function in the terminal set X
and satisfies:
X¢<T+1 Pxir1 — x4 Pxx
=X (—Poo + ATPoA+ FLBTPoA— FLRF. )%«
=X (—Pos + ATPA— ATPB(B" PoB + R) ' BT PoA — FLRFo)xk
= —x (Q + F.LRF )Xk

All the Assumptions of the Feasibility and Stability Theorem are verified.
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Example: Unstable Linear System

System dynamics:

Constraints:

X = {x]| =50 < x; <50, —10 < x; < 10} = {x | Axx < b}
U= {ulllulls <1} ={u|Asu < by}

Stage cost:

10

I(x;, uj) == x;" [O 1

T
:|X,'+LI,- uj

Horizon: N =10
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Example: Designing MPC Problem

1. Compute the optimal LQR controller and cost matrices: Fu, Ps
2. Compute the maximal invariant set X’ for the closed-loop linear system
Xk+1 = (A 4+ BFs )Xk subject to the constraints

Xy = {X {Af\ﬁm] = m}

10

19 0 50
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Example: Closed-loop behaviour

6
Br e

4F
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Example: Closed-loop behaviour
6,

5 e

4F
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Example: Closed-loop behaviour
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MPC Lec. 6 -

Feasibility and Stability 54 3 — Feasibility and Stability Guarantees in MPC



Example: Closed-loop behaviour

6,

5,

4F
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Example: Closed-loop behaviour

6,
5,

4F
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Example: Lyapunov Decrease of Optimal Cost

7000¢
6000~
5000r

—~_ 40007

X

—

™ 3000f
2000+

1000F

O0 5 10 15
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Choice of Terminal Set and Cost: Summary
e Terminal constraint provides a sufficient condition for feasibility and
stability

e Region of attraction without terminal constraint may be larger than for
MPC with terminal constraint but characterization of region of attraction
extremely difficult

e Xr = 0 simplest choice but small region of attraction for small N
e Solutions available for linear systems with quadratic cost
e |n practice: Enlarge horizon and check stability by sampling

e With larger horizon length N, region of attraction approaches maximum
control invariant set
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Outline

3. Feasibility and Stability Guarantees in MPC

Example

MPC Lec. 6 - Feasibility and Stability 59 3 — Feasibility and Stability Guarantees in MPC



Example: Short horizon

MPC controller with input constraints |ux| < 0.262  Problem parameters:

and rate constraints |ik| < 0.349
approximated by |u; — uj—1] < 0.349 T,

20

Sampling time 0.25sec,
Q=I,R=10,N=4

Decrease in the prediction

Altitude x, (m)
o

0 2 4 6 8 1
Time (sec)

Elevator angle u (rad)
o

0.5
horizon causes loss of the

stability properties

S
Pitch angle X, (rad)

-0.5

0 2 4 6 8 10

Time (sec)
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Example: Short horizon

MPC controller with input constraints |ux| < 0.262

and rate constraints |ik| < 0.349

approximated by |u; — uj—1] < 0.349 T,

Problem parameters:

Sampling time 0.25sec,
Q=I,R=10,N=4

20 02 — Inclusion of terminal cost
- e
€ £ and constraint provides sta-
H ><N -
o 10 ° 5 bility
o o
3 c
£ 0 —0.22
< S
2
-10 . . . ~0.4
0 2 4 6 10
Time (sec)
5 02
g
ERR
@
2 0
®©
£ -01
>
@
W -0.2 ‘ s s s
0 2 4 6 8 10
Time (sec)
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Outline

4. Extension to Nonlinear MPC
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Extension to Nonlinear MPC

Consider the nonlinear system dynamics: x(k+1) = g(x(k), u(k))

N—1
S (x(k) = min leOan) + Y 106, ur)
i=0
subj. to  xi11 =9(x, u), i=0,..., N—-1
x;ie€X, uyeU, 1=0,..., N-—-1
Xy € Xf
xo = x(k)

e Presented assumptions on the terminal set and cost did not rely on

linearity
e |yapunov stability is a general framework to analyze stability of nonlinear

dynamic systems
— Results can be directly extended to nonlinear systems.

However, computing the sets Xr and function /¢ can be very difficult!
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Summary

Finite-horizon MPC may not be stable!

Finite-horizon MPC may not satisfy constraints for all time!

e An infinite-horizon provides stability and invariance.

e \We ‘fake’ infinite-horizon by forcing the final state to be in an invariant
set for which there exists an invariance-inducing controller, whose
infinite-horizon cost can be expressed in closed-form.

e These ideas extend to non-linear systems, but the sets are difficult to
compute.
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