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Lecture V – Differences between SISO and
MIMO Systems
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Introduction

Counter-flow heat exchanger (one strand)

ts

∗
mc, c, ρ

ϑci (t)
perfect insulation

volume Vc

∗

Q(t)

ϑco(t)

k,A
∗
mh, c, ρ

ϑhi (t)
volume Vh

ϑho (t)

walls with negligible mass
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Heat exchanger simplified (warning: not sufficiently accurate for most

applications!)

ϑci (t) = u2(t)

∗
mc

Vc ϑco(t) = y2(t)

∗

Q(t)
ϑc(t) = x2(t)

ϑh(t) = x1(t) ∗
mh

Vh
ϑhi (t) = u1(t)ϑho(t) = y1(t)

Note: use several such elements in series connection to increase model

prediction quality.
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Causality:

1. state variables: x1 = ϑh =temperature of hot fluid,

x2 = ϑc =temperature of cold fluid

2. inputs: u1 = ϑhi =temperature of hot fluid entering,

u2 = ϑci =temperature of cold fluid entering

3. outputs: y1 = ϑho =temperature of hot fluid exiting,

y2 = ϑco =temperature of cold fluid exiting

Simplifications and assumptions:

1. no mass storage (incompressible fluid, say water)

2. perfect insulation

3. pipe walls are very thin and store no heat

4. perfect mixing inside the heat exchanger ϑ
h/c
o = ϑh/c

5. constant specific heat c, heat transfer coefficient k, and fluid mass flow
∗
m
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Energy conservation:

d

dt
Uh(t) =

∗

H
h

i (t)−
∗

H
h

o (t)−
∗

Q (t) (1)

d

dt
U c(t) =

∗

H
c

i (t)−
∗

H
c

o(t)+
∗

Q (t) (2)

Thermodynamics:

Uh/c(t) = ρ · V · c · ϑh/co (t) (3)

∗

H
h/c

i/o (t) =
∗
m ·c · ϑh/ci/o (4)

∗

Q (t) = k ·A ·
(
ϑh − ϑc

)
(5)
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Control-oriented formulation

ρ · V · c · d
dt
x1(t) =

∗
m ·c · (u1(t)− x1(t))− k ·A · (x1(t)− x2(t)) (6)

ρ · V · c · d
dt
x2(t) =

∗
m ·c · (u2(t)− x2(t)) + k ·A · (x1(t)− x2(t)) (7)

or

τ · d
dt
x1(t) = −x1(t) + σ · x2(t) + β · u1(t) (8)

τ · d
dt
x2(t) = −x2(t) + σ · x1(t) + β · u2(t) (9)

with

τ =
ρ · V · c

∗
m ·c+ k ·A

, σ =
k ·A

∗
m ·c+ k ·A

, β =

∗
m ·c

∗
m ·c+ k ·A

(10)

Note: since all physical parameters are greater than 0, the control-oriented

parameters satisfy the inequalities τ > 0, 1 > σ > 0, and 1 > β > 0
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State-space form

ẋ(t) = A · x(t) +B · u(t) (11)

y(t) = C · x(t) +D · u(t) (12)

where

A =




−1/τ σ/τ

σ/τ −1/τ


 , B =




β/τ 0

0 β/τ


 (13)

C =




1 0

0 1


 , D =




0 0

0 0


 (14)

Number of state variables n = 2

“Square system,” i.e., number of inputs m = 2 equal to number of measurements

p = 2

Obviously, system completely controllable and observable . . .
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System stable?

Compute eigenvalues of A, i.e., roots of

det(s · I −A) = 0 (15)

where

det(s · I −A) = (s+ 1/τ)2 − (σ/τ)2 (16)

Eigenvalues

λ1,2 =
−2 · τ ±

√
4 · τ2 − 4 · τ2 · (1− σ2)

2 · τ2 =
−1± σ

τ
(17)

Recall: 1 > σ > 0 and τ > 0.

Therefore, for all physically meaningful parameter values, the system is

asymptotically stable and has two real (“non-oscillatory”) eigenvalues.
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Transfer function:

P (s) = C · [s · I − A]
−1 ·B +D (18)

Insert {A,B,C,D}

⇒ P (s) =



s+ 1/τ −σ/τ

−σ/τ s+ 1/τ




−1

· β
τ

(19)

Using Cramer’s rule

M−1 =
1

det(M)
·Adj {M} (20)

⇒ P (s) =
τ2

τ2 · s2 + 2 · τ · s+ (1− σ2)
·



s+ 1/τ σ/τ

σ/τ s+ 1/τ


 · β

τ
(21)
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Transfer function (contd.)

P (s) =




β·(τ ·s+1)
τ2·s2+2·τ ·s+(1−σ2)

β·σ
τ2·s2+2·τ ·s+(1−σ2)

β·σ
τ2·s2+2·τ ·s+(1−σ2)

β·(τ ·s+1)
τ2·s2+2·τ ·s+(1−σ2)


 (22)

Looking at the four SISO transfer functions it seems that

1. the system has 8 poles, but we know it has only two eigenvalues;

2. the system has 2 minimumphase zeros, but are these zeros really active?

Remark: using the definition of the zeros as the solution of the equation

det




(ζ · I −A) −B

C D


 = 0 (23)

it is easy to see that there are no finite zeros (the determinant is constant

and equal to β2/τ2).
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Transmission zeros

(sI − A) · x−B · u = 0

C · x+D · u = 0

(46)

has a nontrivial solution [xi, ui] iff the matrix



(sI −A) −B

C D


 (47)

is singular. The values s = ζi for which this is true are exactly the

transmission zeros of (34).
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Numerical values (just reasonable examples)

∗
m= 0.5 kg/s, ρ = 1000 kg/m3, c = 4200 J/(kg K) (24)

A = 2m2, V = 0.01m3, k = 100W/(m2K) (25)

Therefore

τ ≈ 18.26 s, σ ≈ 0.087, β ≈ 0.913 (26)

and eigenvalues

λ1 = −0.05 s−1, λ2 = −0.0595 s−1 (27)
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Step responses plant

s
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time t(s)
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solid=u1 → y1 and u2 → y2, dashed=u1 → y2 and u2 → y1

Physical interpretation?
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Bode diagrams plant
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Controller design, chosen structure

C(s) = kp · (1 +
1

Ti · s
) · 1

τro · s+ 1
(28)

Parameters kp = 3, Ti = 7 s, and τro = 0.7 s yield following SISO loop gain

-2 -1.5 -1 -0.5 0 0.5 1
-2.5

-2

-1.5

-1

-0.5

0

0.5
Nyquist diagram open loop L(jω)
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SISO closed-loop time-domain behavior (one channel only)

Setup:

0

u1

u2

y1

y2

P(s)

numC(s)

denC(s)
y1

r1
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SISO closed-loop time-domain behavior (one channel only)

Step responses: solid=closed-loop SISO r1 → y1, dashed=open-loop SISO u1 → y1

time t(s)

0 20 40 60 80 100 120 140 160 180 200
0
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1

1.2

1.4

Looks OK, of course . . .
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MIMO closed-loop time-domain behavior (both channels)

Setup:

0

u1

u2

y1

y2

P(s)

numC(s)

denC(s)

numC(s)

denC(s)

y2

y1

r1
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MIMO closed-loop time-domain behavior (both channels)

Solid=y1(t) and y2(t); dashed=r2(t)

y1

y2

time t(s)
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Looks still OK! MIMO and SISO close, why? Always the case?
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Assume much higher heat transfer coefficient

k̃ = 10000W/(m2K) (29)
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Use same controller and check closed-loop MIMO behavior

x11

solid: k = 10000 W/Km2; dashed: k = 100 W/Km2

y1

y2

time t (s)
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0.2

0.4

0.6

0.8

1

Bad time-domain behavior, much slower convergence to desired value!
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Explanation:

In the first case (k = 100W/(m2K)) the cross-coupling transfer functions

have a gain that is more than ten times smaller than the gain of the main

channel in all frequencies.

Note that this yields an attenuation of 1/102 when the loop is closed as a full

MIMO system.

In the second case (k = 10000W/(m2K)) the cross-coupling transfer

functions have a gain that is close to the gain of the main channel in all

relevant frequencies.

Therefore, in this case the system is “a hundred times more MIMO” than in

the previous case.

Plants of the first type are called diagonally dominant. Such plants may be

controlled using SISO controller design techniques by “breaking one loop at

the time.” Plants of the second type require more powerful design techniques.
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MIMOSISO

€

˙ x (t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

€

P(s) =

b11(s)
a11(s)

b1m (s)
a1m (s)

bp1(s)
ap1(s)

bpm (s)
am (s)

" 

# 

$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 

easy
€

˙ x (t) = Ax(t) + bu(t)
y(t) = cx(t) + du(t)

€

P(s) =
b(s)
a(s)

easy difficult



MIMO System Representation

ẋ(t) = A · x(t) +B · u(t), x(t) ∈ IRn, u(t) ∈ IRm

(30)

y(t) = C · x(t) +D · u(t), y(t) ∈ IRp

Such a description is well-defined only if it is obtained by a modeling process based

on “physical first laws.”

If only the input/output (IO) behavior is known (say, by measuring the impulse

responses of the m× p channels), then there are infinitely many sets of matrices

{A,B,C,D} that produce the same IO behavior.

Moreover, most of these sets will have more than the minimum number of states n

required to reproduce the observed IO behavior.
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The Laplace transformation of equations (30) yields

s ·X(s) = A ·X(s) + B · U(s) (31)

hence

X(s) = (s I −A)−1 ·B · U(s) (32)

and

Y (s) =
[
C · (s I −A)−1 ·B +D

]
· U(s) (33)

If only the input/output (IO) behavior is of interest, the frequency domain

representation

y(s) =
[
C(sI − A)−1B +D

]
· u(s) = P (s) · u(s) (34)

is sufficient. Notice that P (s) contains only the controllable and observable

parts of (30).
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P (s) =




P1,1(s) P1,2(s) . . . P1,m(s)

P2,1(s) P2,2(s) . . . P2,m(s)

. . . . . . . . . . . .

Pp,1(s) Pp,2(s) . . . Pp,m(s)




(35)

Pi,j(s) =
bm,i,js

m + · · ·+ b1,i,js+ b0,i,j
sn + an−1,i,jsn−1 + · · ·+ a1,i,js+ a0,i,j

=
bi,j(s)

ai,j(s)
(36)
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In the MIMO case the realization problem is more difficult to solve.

P (s) =




2
s+ 1

3
s+ 2

1
s+ 1

1
s+ 1


 (37)

has the following “naive realization”

d
dtx(t) =




−1 0 0 0

0 −2 0 0

0 0 −1 0

0 0 0 −1




· x(t) +




1 0

0 1

1 0

0 1




· u(t)

y(t) =




2 3 0 0

0 0 1 1


 · x(t)

(38)

which is not minimal.
26



System Stability, Controllability and Observability Most system

analysis results valid for SISO systems remain true for MIMO systems:

1. The stability properties of the system {A,B,C,D} are determined by

the eigenvalues of A.

2. The system {A,B,C,D} is completely controllable iff the matrix

Rn = [B,AB, . . . , An−1B] ∈ IRn×(n·m) (39)

has full rank n.

3. The system {A,B,C,D} is completely observable iff the matrix

On = [CT , AT CT , . . . , (An−1)TCT ]T ∈ IR(n·p)×n (40)

has full rank n.
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Plant {A,B,C, 0} and controller {F,G,H, 0} connected in the standard

feedback configuration. Closed-loop system is asymptotically stable iff all

eigenvalues of the matrix



A BH

−GC F


 (41)

have stricly negative real parts.

Nyquist theorem for MIMO systems: closed-loop system stable iff

N = det[I + P (j ω) · C(j ω)], ω ∈ [−∞,+∞] (42)

encircles the origin n+ + n0/2 times.
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System Poles and Zeros

The poles of P (s) are the roots of the least common denominator of all

minors of P (s).

Example:

P (s) =




2
s+ 1

3
s+ 2

1
s+ 1

1
s+ 1


 (43)

The zeros and poles of the SISO entries are ζ = ∞ and π1 = −1, π2 = −2.

The minors of P (s) are

2

s+ 1
,

3

s+ 2
,

1

s+ 1
,

1

s+ 1
,

1− s

(s+ 1)2(s+ 2)
(44)

The least common denominator is

p(s) = (s+ 1)2(s+ 2) (45)

and the poles πi of P (s) are −2, −1, and −1. An internal description of the

system has order n ≤ 3.
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Obviously, the internal description {A,B,C,D} of the IO description P (s)

must be of minimal order, otherwise additional zeros and poles appear, which

cancel out. Also, if P (s) is square, the zeros of P (s) are simply the poles of

P−1(s). Moreover

The zeros of P (s) are the roots of the greatest common divisor of the

numerators of the maximum minors of P (s) after normalization to have the

pole polynomial of P (s) as denominators.

Example, contd.: The only maximum minor of P (s) is

1− s

(s+ 1)2(s+ 2)
(48)

which is already normalized by the pole polynomial. Therefore, one zero at

ζ = 1. None of the entries of P (s) had a finite zero. The zero found at 1 (a

non-minimumphase zero!) is due to the MIMO structure of the system.
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A MIMO system can have poles and zeros at the same frequency s without

incurring a pole-zero cancellation!

P (s) =




s+2
s+1 0

0 s+1
s+2


 (49)

has a pole and a zero at s = −1 and s = −2. In fact, the minors of P (s) are

s+ 2

s+ 1
,
s+ 1

s+ 2
,

(s+ 2) · (s+ 1)

(s+ 1) · (s+ 2)
= 1

The lcd is (s+ 1) · (s+ 2). Therefore, one pole at s = −1 and one at s = −2.

Since P (s) is square, there is only one maximum minor equal to 1. After

normalization to have the pole polynomial (s+ 2) · (s+ 1) as denominator,

this maximum minor is defined by the fraction

(s+ 2) · (s+ 1)

(s+ 2) · (s+ 1)

such that the gcd of the numerator is (s+ 2) · (s+ 1). Accordingly, the

system has s = −2 and s = −1 as zeros.
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This seemingly contradictory result is a consequence of the fact that in

MIMO systems a direction is associated with each pole and zero. A

cancellation takes place only if the frequency and the direction of a pole and

a zero coincide.

Directions δin,outπ,i associated with pole πi are

P (s)|s=πi
· δinπ,i = ∞ · δoutπ,i (50)

where δinπ,i is the input and δoutπ,i the output pole direction.

Directions δin,outζ,i associated zero ζi are

P (s)|s=ζi · δinζ,i = 0 · δoutζ,i (51)

where δinζ,i is the input and δoutζ,i the output zero direction.
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An approach to compute the directions is to use the singular value

decomposition introduced later. For square m×m systems, the directions

may be obtained by

P (s)|s→πi+ε = U · Σ · V T ⇒ δinπ,i = V (:, 1), δoutπ,i = U(:, 1),

or

P (s)|s→ζi+ε = U · Σ · V T ⇒ δinζ,i = V (:,m), δoutζ,i = U(:,m),

respectively, where ε is an arbitrary small number.
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Example, contd.

The pole directions associated with the three poles π1 = −1, π2 = −1, and

π3 = −2 are

δinπ,1 =


 0.97

0.23


 , δoutπ,1 =


 0.85

0.53




δinπ,2 =


 −0.23

0.97


 , δoutπ,2 =


 −0.53

0.85




δinπ,3 =


 0.00

−1.00


 , δoutπ,3 =


 −1.00

0.00




The zero directions associated with the zero ζ = 1 are

δinζ =


 −0.71

0.71


 , δoutζ =


 0.45

−0.89



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Lecture VI – Relative Gain Array, Singular
Values and System Gains
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Relative-Gain Array

Question: When can MIMO plants be controlled well by SISO controllers?

Answer: When their relative-gain array matrix RGA(s) is close to I.

General idea of RGA explained with a 2× 2 plant. To compute the (1, 1) elements

of RGA(s) close loop from y2 to u2 and compute transfer function from u1 to y1.

- -

y1(t)y1(t)

y2(t)y2(t)

u1(t)u1(t)

u2(t)u2(t)

P11P11 P12P12

P21P21 P22P22

C22 C21

Two cases:

• First assume open loop conditions (C2,2 = 0): in this case u1 → y1 is P11(s).

• Second assume high controller gains (C2,2P2,2 >> 1): in this case u1 → y1 is
P11P22−P21P12

P22 .
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The element (1, 1) of the matrix RGA(s) is then defined by

RGA1,1(s) = P11/
P11P22 − P21P12

P22
=

P11P22

P11P22 − P21P12

It’s easy to see that RGA2,2(s) = RGA1,1(s). These scalars are close to 1 iff

P12 · P21 << P11 · P22. If RGA11 = RGA22 substantially differ from 1 the

MIMO interactions are substantial and a SISO-similar approach is not

recommended.

To compute the element RGA2,1(s) analyze the transfer function u1 → y2.

The result is

RGA2,1(s) =
−P12P21

P11P22 − P21P12

It’s easy to see that RGA1,2(s) = RGA2,1(s). These scalars are close to 0 iff

P12 · P21 << P11 · P22. If RGA12 = RGA21 substantially differ from 0 the

MIMO interactions (as defined by P12 and P21) are substantial and a

SISO-similar approach is not recommended.
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In general:

RGA(s) = P (s).× P (s)−T (52)

where the operator .× denotes element-wise mutiplication (as .∗ in Matlab) and

P−T = (P−1)T (transpose, not conjugate transpose!).

It can be shown that

• The columns and the rows of RGA(s) always add up to 1.

• The RGA is invariant with respect to scaling, i.e., for any diagonal matrices Di

the equation RGA(P (s)) = RGA(D1 · P (s) ·D2) holds true.

• The RGA of a triangular matrix P (s) is the identity matrix I.

The main result is: if RGA(P (s)) is substantially different from I for all frequencies

s, the cross-coupling gains are important and MIMO approaches must be used to

control the plant P (s). If RGA(P (s)) ≈ I for all s, the individual channels can be

controlled “one loop at the time” using m SISO controllers. In feedback control

applications, the input/output pairing should be chosen such that input i is paired

with output j when RGAj,i is close to 1.
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Summary:

If RGA(P (s)) ≈ I then “one loop at the time” OK

0

u1

u2

y1

y2

P(s)

numC(s)

denC(s)

numC(s)

denC(s)

y2

y1

r1

If RGA(P (s)) 6= I then “true MIMO design” necessary
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For the example of the heat exchanger

RGA(s) =




(τ s+1)2

(τ s+1)2−σ2

−σ2

(τ s+1)2−σ2

−σ2

(τ s+1)2−σ2

(τ s+1)2

(τ s+1)2−σ2


 (53)

or, at s = 0 (static gain)

RGA(s) =




1
1−σ2

−σ2

1−σ2

−σ2

1−σ2
1

1−σ2


 (54)

Pro memoria:

σ =
k ·A

∗

m ·c+ k · A
, 0 < σ < 1 (55)

For small heat exchange capability (k ·A <<
∗

m ·c) the parameter σ ≈ 0 and the

RGA(P (s)) ≈ I, i.e., SISO control loops are OK. However, if (k ·A >>
∗

m ·c) the

parameter σ ≈ 1 and the RGA(P (s)) becomes very large. Therefore, the plant can

only be controlled using a true MIMO approach.

40



MIMOSISO
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Matrix Norms and Singular Values

Induced norm of any linear operator M

y =M(u) (56)

defined using a specific norm ||x|| by

||M || = max
u6=0

||y||
||u|| = max

||u||=1
||M(u)|| (57)

Important example u ∈ ℜm, y ∈ ℜp, M ∈ ℜp×m and ||x|| =
√
xT · x, where

x = {u, y} (“inner product norm”). In this case

||M || = max
i

{σi{M}} (58)

where the singular values σi{M} are the positive square roots of the

eigenvalues of the matrix MTM . Since MTM is symmetric (by

construction), its eigenvalues all are real and non-negative.
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Lagrange Method Optimizations with Constraints

J : IRm → IR+, f : IRm → IR, u ∈ IRm

Problem: Find u∗ which maximizes J(u∗) ≥ J(u) and which simultaneously

satisfies f(u∗) = 0.

Geometric interpretation:

.
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“Proof”

Use Lagrange’s method for constrained optimization. Objective function to

be maximized:

J = ||y||2 + λ · (1− ||u||2) (59)

= uT ·MTM · u+ λ · (1− uT · u) !
= max (60)

Necessary conditions for a local maximum

∂J

∂u
= 0 (61)

In this special case

∂J

∂u
= 2 ·MTM · u− 2 · λ · u (62)
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Accordingly, the optimal solution u∗ must satisfy the homogeneous equation

(λ · I −MTM) · u∗ = 0 (63)

and a non-trivial u∗ exists iff

det
{
λ · I −MTM

} !
= 0 (64)

The scalars λi = σ2
i that satisfy this equation are the eigenvalues of MTM .

Since MTM is a symmetric and positive semi-definite matrix (by

construction), its eigenvalues λi are real and non-negative, i.e., their square

root σi is real and non-negative as well.

With this result and using the definition of the induced norm it’s easy to see

that

||M ||2 = max
||u||6=0

||y||2
||u||2 = max

||u||6=0

uT ·MTM · u
uT · u = max

i

{
σ2
i

}
(65)
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Geometric interpretation for the case u, y ∈ ℜ2 and

M =



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Obviously, repeating the analysis shown above for the minimum gain yields

σmin{M} ≤ ||y||
||u|| ≤ σmax{M}, ||u|| 6= 0 (66)

where it is assumed that σmin{M} is the minimum and σmax{M} the

maximum singular value of M .
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Geometric properties of linear mappings represented by the matrix M

M = U · Σ · V T (67)

where U ∈ IRp×p and V ∈ IRm×m are unitary matrices, i.e.

U · UT = Ip×p, V · V T = Im×m

and where the only non-zero elements of Σ ∈ IRp×m are the singular values of

M , i.e.,

[Σ]i,j = 0 ∀ i ∈ [1, p] 6= j ∈ [1,m]

and

[Σ]i,j = σk ∀ i = j = k ∈ [1,min{p,m}]
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The geometric interpretation associated with this decomposition is that every

mapping represented by M can be decomposed into first a isometric

transformationa represented by V T , then a scaling projection represented by

Σ, and finally another isometry represented by U . Since fast and robust

numerical algorithms exist for the computation of the singular value

decomposition of high-order matrices M , this concept has many useful

applications in system theory.

aSuch transformations are essentially rotations and, therefore, preserve the length of the

vectors transformed. In general, reflections through the origin are possible as well.
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Generalization to the case of M ∈ CI p×m using definition of the Euclidean

norm of a complex scalar z = a+ j b (a, b ∈ IR)

||z||2 = a2 + b2 = (a− j b) · (a+ j b) = z̄ · z (68)

where z̄ denotes complex conjugation.

For a complex vector v ∈ CI n

||v||2 =
n∑

i=1

a2i + b2i =
n∑

i=1

(ai − j bi) · (ai + j bi) = v̄T · v (69)
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For the linear mapping represented by the complex matrix M

y =M · u, u ∈ CIm, y ∈ CI p, M ∈ CI p×m (70)

Repeating the analysis yields

||M || = σmax{M} = max
i

√
λi{M̄T ·M} (71)

In particular, if ||u|| = 1 the norm of y must satisfy the inequality

σmin{M} ≤ ||y|| ≤ σmax{M} (72)

Since the matrix Q = M̄T ·M is Hermitiana by definition, its eigenvalues are

all non-negative real numbers. Therefore, equation (72) makes sense. The

eigenvectors of Q = M̄T ·M are always linearly independent, even if multiple

eigenvalues exist. However, in general they consist of complex-valued entries.

aA matrix Q is Hermitian if Q = Q̄T , i.e., if it is equal to its complex conjugate and

transpose.
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Lecture VII – Frequency Response of MIMO
Systems
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Assume a BIBO stable 2× 2 system P (s) is driven by the input

u(t) =



u1(t)

u2(t)


 =



µ1 · cos(ω (t+ ϕ1/ω)) · h(t)

µ2 · cos(ω (t+ ϕ2/ω)) · h(t)




Laplace transformation of u(t) yields (use “shift law”)

U(s) =



µ1 · s

s2+ω2 · e(ϕ1/ω)·s

µ2 · s
s2+ω2 · e(ϕ2/ω)·s


 =

s

s2 + ω2
·



e(ϕ1/ω)·s 0

0 e(ϕ2/ω)·s


·



µ1

µ2




or more compactly

U(s) =
s

s2 + ω2
· eΦ·s/ω · µ, Φ = diag(ϕ1, ϕ2), µ = [µ1, µ2]

T
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The system is linear and BIBO stable. Trefore, the output will be

y(t) = yt(t) + y∞(t)

where yt(t) → 0 for lim t→ ∞. The steady-state output will have the form

Y∞(s) =
s

s2 + ω2
· eΨ·s/ω · ν, Ψ = diag(ψ1, ψ2), ν = [ν1, ν2]

T

and since Y (s) = P (s) · U(s) this yields

ejΨ · ν =



P11(j ω) P12(j ω)

P21(j ω) P22(j ω)


 · ejΦ · µ
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Application to MIMO frequency responses

y(j ω) = P (j ω) · u(j ω) (73)

requires generalization to complex vectors u(j ω), y(j ω) and matrices

M = P (j ω)

||P (j ω)|| = max
||u(j ω)||6=0

||y(j ω)||
||u(j ω)|| (74)

In this case the norms are defined by

||u(j ω)|| =
√
ū(j ω)Tu(j ω) (75)

where x̄ denotes complex conjugate of x, i.e., for x = a+ j b, x̄ = a− j b.

In analogy to the real case, the singular values are now defined as

σi{P (j ω0)} =
√

eig{P̄ (j ω0)T · P (j ω0)} (76)
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The singular values σi{P (j ω0)} are again positive non negative real

numbers. This is always the case because the matrix P̄ (j ω0)
T · P (j ω0) is, by

construction, a “positive semi-definite” Hermitian matrix.

Note that the σi{P (j ω0)} are functions of the frequency ω, i.e., for each fixed

frequency ω0 a singular-value problem must be solved. Matlab provides

dedicated commands (for instance “sigma,” use “help sigma” for more

information).

If you want to write your own software, note that in Matlab the operator ’

indicates transpose and conjugate complex.
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Frequency Response

ẋ = Ax+Bu

y = Cx+Du

y1t(t) + ν1 · cos(ωt + ψ1) = y1

y2t(t)︸ ︷︷ ︸
transient

complicated

+ ν2 · cos(ωt + ψ2)︸ ︷︷ ︸ = y2

u1(t) = µ1 · cos(ωt+ ϕ1)

u2(t) = µ2 · cos(ωt+ ϕ2)

u(t)
u2

u1

y2

y1

y∞(t) astab

µ21 + µ22 = 1

P (s) U(s) = s
s2+ω2

[
e

ϕ1s
ω 0

0 e
ϕ2s
ω

]
·
[
µ1
µ2

]
Yt(s) +

s
s2+ω2

[
0

0

]
·
[
ν1
ν2

]
= Y (s)

yt(t)→ 0

P (jω)
[
ejψ1 0
0 ejψ2

]
·
[
ν1
ν2

]
︸ ︷︷ ︸

ξ∈C2

t→∞ s→ jω

[
ejϕ1 0
0 ejϕ2

]
·
[
µ1
µ2

]
︸ ︷︷ ︸

ξ∈C2

P (jω) ∈ C2×2

1

eψ1 s/ω

eψ2 s/ω



General case: BIBO stable m×m MIMO-Plants P (s) and input

u(t) =




cos(ω · t+ ϕ1) · µ1

cos(ω · t+ ϕ2) · µ2

. . .

cos(ω · t+ ϕm) · µm



= diag {cos(ω · t+ ϕi)} · µ

where µ = [µ1, µ2, . . . , µm]T , will have a steady state response

y∞(t) =




cos(ω · t+ ψ1(ω)) · ν1(ω)
cos(ω · t+ ψ2(ω)) · ν2(ω)

. . .

cos(ω · t+ ψp(ω)) · νm(ω)



= diag {cos(ω · t+ ϕi(ω))} · ν(ω)

where ν(ω) = [ν1(ω), ν2(ω), . . . , νm(ω)]T .
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If ||µ|| = 1, the “output magnitude vector” ν will always satisfy the

constraints

min
i
σi{P (j ω)} ≤ ||ν(ω)|| ≤ max

i
σi{P (j ω)} (77)

At each fixed frequency ω0, the maximum and minimum singular values

σmax(ω0) and σmin(ω0) indicate the limits within which the norm of the

amplitude vector ν(ω0) of the output y(t) must lie in steady-state conditions.

Most important drawback: phase information lost! Each channel has a

different phase lag and there is no neat way to extract a characteristic lag

information that is useful, e.g., to assess the system stability.

Accordingly, the condition (77) only yields “worst worst-case” conditions, see

example below.
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Example Heat exchanger, now with different mass flows and volumes in the

hot and cold leg (
∗
m1= 0.5 kg/s,

∗
m2= 0.2 kg/s, V1 = 0.01m3, V2 = 0.02m3).

Therefore, τ1 6= τ2 β1 6= β2, and σ1 6= σ2

A =




−1/τ1 σ1/τ1

σ2/τ2 −1/τ2


 , B =



β1/τ1 0

0 β2/τ2


 (78)

Taking ω0 = 0.1 rad/s yields

P (j ω0) = C · [j ω0 · I −A]−1 · B +D (79)

=




0.186− j 0.199 −0.013− j 0.043

−0.033− j 0.107 0.0252− j 0.079


 (80)

The singular values are
√
eig{P̄ (j ω0)T · P (j ω0)} ≈ {0.300, 0.079} (81)
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and the corresponding eigenvectors of P (j ω0)
T · P (j ω0) are

ζ1 =


 e−j 0.37 0

0 e0


 ·


 0.984

0.181


 , ζ2 =


 ej 2.77 0

0 e0


 ·


 0.181

0.984



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Input ζ1, output amplitudes ν = [0.273, 0.123]
input u1(dashed) and output y1(solid)

time t(s)
input u2(dashed) and output y2(solid)
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Input ζ2, output amplitudes ν = [0.045, 0.067]

input u1(dashed) and output y1(solid)

time t(s)
input u2(dashed) and output y2(solid)

time t(s)
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Physical interpretation:

• Having the two inputs “in phase” (the temperature variations have the

same sign), yields a stronger output temperature variation than in the

case where the hot input temperature rises when the cold input

temperature falls.

• The gain from the hot to the cold leg (P2,1 = −0.033− j 0.107) is larger

that the gain from the cold to the hot leg (P1,2 = −0.013− j 0.043).

Accordingly, since the total temperature variations are limited by the

constraint ||u|| = 1, the amplitude of u1 is chosen larger than that of u2

if a large effect has to be achieved, as can be seen in ζ1.

• The same arguments show that in the case where the effect has to be as

small as possible, almost all input action needed to satisfy ||u|| = 1 is

placed in u2 which has the smaller effect on the hot leg.

65



Summary: In the MIMO case there are no immediate counterparts to the

SISO Nyquist or Bode diagrams. The only frequency response tools are

singular value plots. These plots are magnitude plots and they contain

“worst-case” information only. No phase information is available.

Besides the transfer function of the plant, other transfer functions can be

mapped by singular-value plots:

T (s) = [I − P (s) · C(s)]−1 · P (s) · C(s) (83)

S(s) = [I − P (s) · C(s)]−1 (84)

D(s) = I + P (s) · C(s) (85)

These relations use a loop-breaking point at the controller input. Contrary to

the SISO case, for MIMO systems the choice of loop-breaking point is

relevant.
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Design of MIMO Systems in the FD

One of the main reasons why the W1(s), W2(s) formalism is so widely used is

that it can be easily generalized to MIMO systems. In this case, all assertions

related to the maximum magnitude of a transfer function must be replaced

by constraints on the maximum singular value of a transfer function matrix.

For instance the condition

||S(s) ·W1(s)||∞ = max
ω

{|S(j ω) ·W1(j ω)|} < 1 (86)

valid for SISO systems can be written in the MIMO case as follows

||S(s) ·W1(s)||∞ = max
ω

{σmax {S(j ω) ·W1(j ω)}} < 1 (87)

(similar for all other constraints and equations).
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Example: singular values of the return difference of the heat exchanger (LQG

controller, will be introduced later)
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singular value plot in dB

Solid k = 2000W/(m2K), dashed k = 100W/(m2K)
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Useful time-domain relationships

plant :
d

dt
x(t) = Ax(t) +B u(t), y(t) = C x(t) (88)

controller :
d

dt
z(t) = F z(t) +Ge(t), u(t) = H z(t) (89)

Open loop gain L(s):

d

dt

[
x

z

]
=

[
A BH

0 F

][
x

z

]
+

[
0

G

]
e, y =

[
C 0

][ x

z

]
(90)

Return difference I + L(s):

d

dt

[
x

z

]
=

[
A BH

0 F

][
x

z

]
+

[
0

G

]
e, (91)

y =
[

C 0

][ x

z

]
+ I e
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Complementary sensitivity T (s):

d

dt


 x

z


 =


 A BH

−GC F




 x

z


+


 0

G


 r, (92)

y =
[
C 0

]

 x

z




Sensitivity S(s):

d

dt


 x

z


 =


 A BH

−GC F




 x

z


+


 0

−G


 d, (93)

y =
[
C 0

]

 x

z


+ I d (94)
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Lecture VIII – Synthesis of MIMO Control
System, Pole Placement, LQR Approach
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State-Feedback Controllers

General problem formulation of a regulator problem

ẋ(t) = A · x(t) +B · u(t), x(0) = x0 6= 0 (95)

Find a state-feedback control signal

u(t) = f(x(t)) (96)

such that

lim
t→∞

x(t) = 0 (97)

Several methods available for the solution of this problem:

• eigenvalue placement

• linear-quadratic optimal control
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Eigenvalue Placement

Objective: use feedback to place eigenvalues of feedback-controlled system at

desired places.

Problem easy to solve in the state-feedback case (provided that the system

{A,B} is stabilizable) by using

u(t) = −K · x(t) (98)

Choose matrix K ∈ ℜm×n such that all eigenvalues of A− B ·K have

negative real parts and are located at some desired places (this is always

possible under these assumptions).
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Example (n = 3): SISO, {A, b} in controller-canonical form (obviously completely

controllable)

A =




0 1 0

0 0 1

−a0 −a1 −a2



, b =




0

0

1



, k =

[
k0 k1 k2

]

Closed-loop system

A− b · k =




0 1 0

0 0 1

−(a0 + k0) −(a1 + k1) −(a2 + k2)




Choose any desired real constants {α0, α1, α2} yielding a Hurwitz polynomial (all

roots in the negative complex plane)

α(s) = s3 + α2 · s
2 + α1 · s+ α0
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Comparing this polynomial to the closed-loop characteristic polynomial

det[s · I − (A− b · k)] = det




s −1 0

0 s −1

(a0 + k0) (a1 + k1) s+ (a2 + k2)




= s3 + (a2 + k2) · s2 + (a1 + k1) · s+ (a0 + k0)

yields the controller coefficients

k0 = α0 − a0, k1 = α1 − a1, k2 = α2 − a2
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What happens if the system {A, b} has this state-space description?

A =




0 1 0 0

0 0 1 0

−a1 −a2 −a3 1

0 0 0 −a4




, b =




0

0

1

0



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General Case, SISO Systems

Many approaches known, for instance the ”Formula of Ackermann.” First,

choose a desired characteristic polynomial

α(s) = sn + αn−1 · sn−1 + . . .+ α1 · s+ α0 (99)

Then form the vector q as follows

q = [0, 0, . . . 0, 1] · R−1 (100)

The state-feedback gain k that places the eigenvalues of A− b · k at the

locations defined by the solutions of α(s) = 0 is given by

k = q · α(A) (101)

where

α(A) = An + αn−1 ·An−1 + . . .+ α1 ·A+ α0 · I (102)

(for a proof see [Kailath]). QC: Apply Ackermanns formula to the 3× 3

example shown above.
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Remarks:

• Obviously, complete controllability (det{R} 6= 0) is a necessary and

sufficient condition to be able to arbitrarily place the eigenvalues of

A− b · k.

• This result holds true also in the MIMO case.

• Controller designs using eigenvalue placement approaches are tricky. In

the SISO case this approach can lead to acceptable results but only with

some care (robustness can be small).

• In the MIMO case this approach often fails and is not recommended (the

situation where the different channels work against each other is difficult

to avoid).
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MIMO Synthesis?

Model-based optimization!

H∞, FD, �modern�
later

H2 (LQG), TD, �classic�

�a-posteriori� interpretation in FD!
new page numbers!



Plan:
1.

2.

3.

4. Many improvements
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Example �regulator problem�?

All other control objectives (reference tracking, 
disturbance rejection, …) can be reformulated
in this framework
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Many solutions possible

Find the one that minimizes

Interpretation:
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Special Case: SISO and

Objective function:

+
Interpretation:

cheap     expensive 
control

42 3 Synthesis of MIMO Control Systems

Of course, there are many solutions to the problem formulated above. In
the LQR setting that solution is sought which minimizes the criterion

J(u) =

∫ ∞

0

[
xT (u(t)) · Q · x(u(t)) + uT (t) · R · u(t)

]
dt (3.4)

The controller (3.2) must accomplish the best possible tradeoff between a fast
approach to the setpoint x = 0 and the amount of control “energy” spent to
achieve this goal. For the problem to be well-posed, the weighting matrices Q
and R must satisfy the conditions

Q = QT ∈ IRn×n, Q ≥ 0, and R = RT ∈ IRm×m, R > 0 (3.5)

The existence of a stabilizing controller (3.2) requires additional conditions,
which will be introduced later.

In the SISO case the LQR problem formulation has a “nice” interpretation,
in particular if the plant output matrix c is used4 to form the weighting matrix
Q = cT · c. In this case the objective function (3.4) has the form

J(u) =

∫ ∞

0

[
y2(u(t)) + r · u2(t)

]
dt (3.6)

and only one scalar design parameter r > 0 needs to be considered.

A small r indicates that the energy of the control signal

Eu =

∫ ∞

0
u2(t)dt (3.7)

is not important. Accordingly, the optimal controller (3.2) will produce a large
value of Eu in order to minimize the energy of the error signal5

Ey =

∫ ∞

0
y2(u(t))dt (3.8)

This situation is often referred to as the “cheap control” case.6 Obviously, the
other limiting case r → ∞ is referred to as the “expensive control” solution.
In this case Eu will be small and Ey large. More on these asymptotic solutions
will be said below.

4 The pair {A, c} is assumed to be completely observable in this formulation.
5 Remember that the control system solves a regulator problem, in which 0 is the

reference value for y(t).
6 Control energy is “cheap” and, therefore, the control law utilizes a large Eu to

produce a small Ey.
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Of course, there are many solutions to the problem formulated above. In
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[
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]
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The controller (3.2) must accomplish the best possible tradeoff between a fast
approach to the setpoint x = 0 and the amount of control “energy” spent to
achieve this goal. For the problem to be well-posed, the weighting matrices Q
and R must satisfy the conditions

Q = QT ∈ IRn×n, Q ≥ 0, and R = RT ∈ IRm×m, R > 0 (3.5)

The existence of a stabilizing controller (3.2) requires additional conditions,
which will be introduced later.

In the SISO case the LQR problem formulation has a “nice” interpretation,
in particular if the plant output matrix c is used4 to form the weighting matrix
Q = cT · c. In this case the objective function (3.4) has the form

J(u) =

∫ ∞

0

[
y2(u(t)) + r · u2(t)

]
dt (3.6)

and only one scalar design parameter r > 0 needs to be considered.

A small r indicates that the energy of the control signal

Eu =

∫ ∞

0
u2(t)dt (3.7)

is not important. Accordingly, the optimal controller (3.2) will produce a large
value of Eu in order to minimize the energy of the error signal5

Ey =

∫ ∞

0
y2(u(t))dt (3.8)

This situation is often referred to as the “cheap control” case.6 Obviously, the
other limiting case r → ∞ is referred to as the “expensive control” solution.
In this case Eu will be small and Ey large. More on these asymptotic solutions
will be said below.

4 The pair {A, c} is assumed to be completely observable in this formulation.
5 Remember that the control system solves a regulator problem, in which 0 is the

reference value for y(t).
6 Control energy is “cheap” and, therefore, the control law utilizes a large Eu to

produce a small Ey.
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Solution to optimization problem:

obviously

Solution F>0 exists if:

Riccati equation
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State Feedback Controllers



Remarks:

• is a linear feedback law

• is a time-invariant feedback law

• 
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Remarks:

•

• First guess

• CACSD

• Proof: • sufficiency easy (see handouts) 
• necessity difficult

166



FD Interpretation:
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Question: Block diagram of SISO LQR controller 
u(t)=-k x(t) (example n=3, y(t)=x1(t))? 
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Question: SISO LQR controller u(t)=-k x(t) similar 
to which „classical� controller? 
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Case Study: Levitating Sphere
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FD Interpretation

174



Bode Diagram (magnitude):

Obviously, relative degree = 1 (k = �full�)

€ 

LLQR (s) =
bn−1 ⋅ s

n−1 +…+ b0
sn +…+ a0
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Main result:

Nyquist Diagram of
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real
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For (arbitrary )

178

Properties of LQR Controllers
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I +K ⋅ sI − A[ ]−1 ⋅B



Lecture IX – Extensions of LQR Control
Systems, State Observers
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LQR-I Controller

Other structures possible

Re-arrange as standard LQR problem
180

e(t)



181

e(t)



Solve standard LQR problem for the extended 
System. Result:
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Robustness Enhancement

183



74 4 Case Studies

As expected, the loop gains satisfy the inequality

|1 + LLQR(j ω, r)| ≥ 1, ∀ ω ∈ IR and r ∈ IR+ (4.3)

As mentioned in Section 3.5, this is one of the key properties of LQR con-
trollers: the loop gains obtained with this approach have excellent robustness
and can tolerate large modeling errors. The minimum return difference ob-
tained with this design is

µLQR = min
ω

{|1 + LLQR(j ω, r)|} ≥ 1 (4.4)

The robustness margins of standard LQR design can be improved using the
modified Riccati equation (3.40). Choosing a parameter β > 1 yields designs
with loop gains similar to the one shown in Figure 4.7 for the levitating sphere.

−1

−β

β

LLQRβ (jω)

Re

Im

Fig. 4.7. Example levitating sphere: Nyquist diagram of the open-loop gain transfer
function LLQRβ (s) = kβ [s I − A]−1b, with kβ computed using (3.40).

As mentioned in Section 3.8, the picture changes completely if only output
feedback is possible. In this case, the loop gain LLQG(j ω) can pass arbitrarily
close to the critical point −1, and very small modeling errors can destabilize
the closed-loop system. Figure 4.8 shows the two loop gains for the levitating
sphere example

LLQR(s) = k · [s I − A]−1 · b (4.5)

LLQG(s) = c · [s I − A]−1 · b · k · [s I − (A − b · k − l · c)]−1 · l (4.6)

where the gains k and l have been computed using the following weighting
factors (in Matlab notation):

k=lqr(A,b,c’*c,0.1);

l=lqr(A’,c’,b’*b,0.001)’;
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Known: signals: u(t) and y(t)
plant model {A,B,C,D}

Find:        Estimation  of 
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State Observers
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Plant

Observer

189



Error dynamics

Observation errors

Ideal case:
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How to compute L

Dual LQR problem
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�slow� observer �fast� observer
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no
noise

some
noise
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Kalman Filters
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Interpretation:
196
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Lecture X – Observer-Based Output Feedback
Control

105



LQG(aussian):    observer gain computed using
dual LQR approach

198

Key idea:
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LQG = Output-Feedback, i.e., realizable!

State vector

System description:

a) open loop  ⇒ robustness

b) closed loop  ⇒ stability
200
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Assume

then  is Hurwitz as well and its eigenvalues
are those of

later!
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Levitating Sphere – TD Behavior

yLQR(t)

yLQG(t)€ 
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LQG for Reference Tracking
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P(s)
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Open-Loop Description

Important for frequency-domain analysis
210



Closed-Loop Description

Important for time-domain analysis
211
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Robustness of LQG-Loops

can be arbitrarily 
close to 0!

Example:

213
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Robustness Recovery



Given: simple plant (SISO, miniphase)

Desired loop gain

Therefore, controller
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Loop gain

QC: is the closed-loop system guaranteed to be
asymptotically stable? Separation principle?

216



QC: What problems do you expect for t → 0?
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SAR
Navigation 
Communication

222

Case  Study: Geostationary Satellite



• position control only
• attitude control more difficult

state x(t)=

r(t)
v(t)
j(t)
w(t)

223
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Transfer function 

SISO not easy to control (only P22(s) is c.c./o., 
but not minimum phase!)

MIMO no finite zeros!
225



RGA(s)=

226



Specifications

227

80 4 Case Studies

the matrix RGA(s) converges to the identity matrix, and hence the cross
couplings disappear.

Since the satellite is unstable, a stabilizing feedback control system is ab-
solutely necessary. No measurable disturbances are present and the satellite
reference position is not assumed to change. The problem to be solved is,
therefore, a simple regulator problem. The expected disturbances are either
impulses (impact of meteorites) or zero-mean periodic disturbances of low
frequency (gravitational influence of the moon and the sun). Accordingly, no
integral action is needed. Thruster efficiency and other system parameters are
not very well known and can vary. Accordingly, the control system must be
very robust against modeling errors. The RGA analysis shows that on one side
the crossover frequency ωc should be substantially larger than 10−4 rad/sec
to avoid the severe cross couplings around ω0. On the other side, ωc should
not be too large to avoid large control signals and thus large thruster fuel
consumption.

The following quantitative specifications for the design of the control sys-
tem formalize these requirements:

• The system must be stabilized robustly. In particular, the condition
µLQG ≥ 0.7 must be satisfied, where µLQG is defined in (3.71).

• The crossover frequency must satisfy the bounds 5 · 10−2 ≤ ωc ≤ 10−1

rad/s.
• All disturbances up to 10 · ω0 must be attenuated by at least −40 dB.
• The disturbance amplification may not be larger than 3 dB at any fre-

quency.
• The noise attenuation must be larger than −40 dB for all frequencies

higher that 10 rad/s.

The design follows the LQG/LTR procedure. Only two scalar design pa-
rameters are used, first the scalar r in the LQR step

K = lqr(A,B,C’*C,r*eye(2,2));

and second the scalar q in the observer-design step

L = lqr(A,C’,B*B’,q*eye(2,2))’;

After several iterations the following two values were found

r = 4 · 10−10, q = 1 · 10−13

The specific numerical values of these parameters have no physical meaning
and such small numbers are quite common.

Figure 4.14 shows the open-loop gains when applying LQR and LQG
control. As recommended above, LTR is not pushed too far to avoid high-
frequency noise amplification. The crossover frequency is in the order of



LQR

s{…}
y(t)

specifications

change r

After some iterations:

LQG
change q
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LLQR(jw)

LLQG(jw)
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SLQG(jw)
TLQG(jw)
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s{I+LLQG(jw)}

s{I+LLQR(jw)}

231



meteorite 10-4 kg
104 m/s103 kg

Test Case

Before & after impact: x(0-)=    x(0+)=

r0
0
0
w0

r0
-0.001

0
w0
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Fr (t) < 0.062 N

233

2π r0 ϕ(t)−ω0t( ) < 0.0002 m



Lecture XI – Outlook: Glover-McFarlane and
H∞ Methods
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G-McF

open loop
s{L(s)} ol specs

change klp, Tli, K1 , K2

change a

closed loop
g=?, s{I+L(s)},
s{S(s)}, y(t), … cl specs
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How to choose Ki? Not trivial, physical intuition 
and some guidelines ⇒ [Ljung]
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G-McF

open loop
s{…} ol specs

change kp, Ti

change a

closed loop
g=?, s{…}

cl specs
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Introduction Mixed-Sensitivity Approach



256

Full problem not directly solvable

Relaxed problem solvable



257



258



259

For system

Find control

Problem
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Such that

Where



261



262



263

Solution: Observer-based state feedback
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270

H-infinity „Recipe“

1.Formulate plant dynamics P(s)
2.Find useful weights Wi(s)
3.Build standard system description augw
4.Find solution with hinfsyn
5.Check for resulting g*, if g*>1 relax weights
and repeat step 3 � 5 until g*≤1
6.Check if robust performance x≤1 satisfied,
if not relax weights and repeat step 3 � 6
7.Check time domain behavior
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