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As expected, the loop gains satisfy the inequality

|1 + LLQR(j ω, r)| ≥ 1, ∀ ω ∈ IR and r ∈ IR+ (4.3)

As mentioned in Section 3.5, this is one of the key properties of LQR con-
trollers: the loop gains obtained with this approach have excellent robustness
and can tolerate large modeling errors. The minimum return difference ob-
tained with this design is

µLQR = min
ω

{|1 + LLQR(j ω, r)|} ≥ 1 (4.4)

The robustness margins of standard LQR design can be improved using the
modified Riccati equation (3.40). Choosing a parameter β > 1 yields designs
with loop gains similar to the one shown in Figure 4.7 for the levitating sphere.
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Fig. 4.7. Example levitating sphere: Nyquist diagram of the open-loop gain transfer
function LLQRβ (s) = kβ [s I − A]−1b, with kβ computed using (3.40).

As mentioned in Section 3.8, the picture changes completely if only output
feedback is possible. In this case, the loop gain LLQG(j ω) can pass arbitrarily
close to the critical point −1, and very small modeling errors can destabilize
the closed-loop system. Figure 4.8 shows the two loop gains for the levitating
sphere example

LLQR(s) = k · [s I − A]−1 · b (4.5)

LLQG(s) = c · [s I − A]−1 · b · k · [s I − (A − b · k − l · c)]−1 · l (4.6)

where the gains k and l have been computed using the following weighting
factors (in Matlab notation):

k=lqr(A,b,c’*c,0.1);

l=lqr(A’,c’,b’*b,0.001)’;



LQR-I Controller

Other structures possible

Re-arrange as standard LQR problem

r=0



Full solution: See Section 4.4.3

r(t)= h(t)r

Reference Tracking LQR-I



,

Time-Varying Systems and Finite Horizons



Known: signals: u(t) and y(t)
plant model {A,B,C,D}

Find:Estimation  of 





How to compute L? 

Dual LQR problem







“slow” observer “fast” observer

no
noise

some
noise



Lecture X – Observer-Based Output Feedback
Control
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LQG(aussian):    observer gain computed using
dual LQR approach







LQG = Output-Feedback, i.e., realizable!

State vector

System description:

a) open loop  ⇒ robustness

b) closed loop  ⇒ stability







Ad. 1.: Analyze      , i.e., is this matrix Hurwitz 
(all of its Eigenvalues negative real part)?
Result know as "Separation Principle", today.

Ad. 2:  Analyze return difference I+LLQG(jω)



The Separation Principle

Assume A−B ·K and A− L · C are both Hurwitz matrices. Then the

output-feedback closed-loop system is asymptotically stable and n of its eigenvalues

coincide with the eigenvalues of A−B ·K and its other n eigenvalues coincide with

the eigenvalues of A− L · C.

Proof: The closed-loop system can be compactly described using the

2n-dimensional vector

xcl(t) =




x(t)

x̂(t)




using the ODE

d

dt
xcl(t) = Acl · xc(t) +Bcl · r(t), y(t) = Ccl · xcl(t)

where the matrix Acl, which fully determines the stability properties, is

Acl =




A −B ·K

L · C A−B ·K − L · C






Using the coordinate transformation xcl = T · zcl with

T =



In×n 0n×n

In×n −In×n


 = T−1

yields the following transformed system equation

d

dt
zcl(t) = T−1 ·Acl · T · zcl(t) + T−1 ·Bcl · r(t), y(t) = Ccl · T · zcl(t) (139)

with

T−1 · Acl · T =



A−B ·K B ·K

0n×n A− L · C


 (140)

The Separation Principle immediately follows from the fact that the

eigenvalues of block-triangular matrices are equal to the eigenvalues of the

triangular blocks and from the fact that the eigenvalues are invariant with

respect to coordinate (“similarity”) transformations. Ω
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Levitating Sphere – TD Behavior
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Observer-Based Output Feedback for Reference Tracking

Applying a reference step to

−

++

+
+

+

A

B C

C(s) P (s)

-K-L
r(t) ∫ ∫

x(0)x̂(0)

x̂(t) y(t)x(t)u(t)

A-BK-LC

yields curve a)

a)

a)

b)

b)

r(t)

error

output

time t

0
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Unnecessary excitation of error by reference signal may be avoided (curve b)

by an appropriate feedforward action (“2-dof controller”)

−
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+

+
+

+

+

A

B C

G Γ

-K-L
r(t) ∫∫ x̂(t) y(t)x(t)

A-BK-LC

Choose gains G ∈ ℜm×m and Φ ∈ ℜm×m such that:

• the error dynamics do not depend on r(t),

• the static gain r → y is equal to I .

Of course more general feedforward systems can be formulated (specifications

for all frequencies, not just for ω = 0)!
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Solution

G = L+ BΦ, Φ = −
[
C̃ Ã−1B̃

]−1

where the new matrices define the closed-loop system shown in the last

figure, i.e.

and

Notice: Without loss of generality one may assume that det Ã 6= 0. If the 

ranks of B and C are full (which is always the case in well-posed problems)

then it is also true that det{C̃ Ã−1B̃} 6= 0.
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Output Feedback with Integral Action and Feedforward Part
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State-space description open-loop gain e → y

State-space description closed-loop [r, d]T → y 



Design procedure:

1. Form the extended system {Ã, B̃, C̃} following the approach outlined
in the LQRI section.

2. Design a suitable state-feedback control gain K̃ as a solution of the LQR

problem defined by

K̃ = [K, −KI ] = lqr(Ã, B̃, C̃T C̃, ρ I)

3. Design a observer gain L for the standard system {A, B, C} using the

duality approach

L = lqr(AT , CT , B B
T , µ I)T

Note: the state v is known and needs not to be included into the

observer.

4. The feedforward part is straightforward because the closed-loop feedback

system is known to have a DC gain of 1.
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