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Lecture V — Differences between SISO and
MIMO Systems



Introduction

Counter-flow heat exchanger (one strand)

perfect insulation L Q(t)
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Heat exchanger simplified (warning: not sufficiently accurate for most

applications!)

T
95t =ua(t)] Ve (><) 9S(t) = ya(t)
—_ * m—
mec € (t) = 29 (t) Q(t>
I
e IB(t) = 21 (t) o
-~
00 (t) = yi(t) m Vi 07 (t) = u(t)
T

Note: use several such elements in series connection to increase model

prediction quality.



Causality:

1. state variables: x; = 9" =temperature of hot fluid,

r9 = V¢ =temperature of cold fluid

2. inputs: u; = 9" =temperature of hot fluid entering,

uz = ¥ =temperature of cold fluid entering

3. outputs: y; = 9 =temperature of hot fluid exiting,

Y2 = V. =temperature of cold fluid exiting
Simplifications and assumptions:
1. no mass storage (incompressible fluid, say water)
2. perfect insulation
3. pipe walls are very thin and store no heat
4. perfect mixing inside the heat exchanger ghle = yhle

5. constant specific heat c, heat transter coefficient k£, and fluid mass flow m
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Energy conservation:

Thermodynamics:

UMe(t)y=p-V-c-0)/(t)

« h/c

* h/c
H,;, (t) =m 'C'ﬁi//o

*

Qt)=k A (9" —v°)
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Control-oriented formulation

d x

pr Ve —ai(t) =m-c (ur(t) —21(t)) —k- A~ (21(t) —22(t))  (6)
p-V.c- %332(75) =m ¢ (ug(t) — 22(t)) + k- A+ (z1(t) — 22(t)) (7)

or ;
T - axl(t) = —a:l(t)—l—a-xg(t)—l—ﬁ-ul(t) (8)

d
T - %562(75) = —xo(t) + o - 21(t) + B - ua(?) (9)

with
__ *p°V'C R k. A 8= : m -c (10)
m-c+k-A m-c+k-A m-c+k-A

Note: since all physical parameters are greater than 0, the control-oriented
parameters satisfy the inequalities 7 > 0,1 >0 >0,and 1> 3> 0
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State-space form

where

Number of state variables n = 2

o/T

B/

(13)

(14)

“Square system,” i.e., number of inputs m = 2 equal to number of measurements

p=72

Obviously, system completely controllable and observable ...
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System stable?

Compute eigenvalues of A, i.e., roots of
det(s- I —A) =0 (15)

where

det(s-T— A) = (s +1/7)% — (a/7)? (16)

Eigenvalues

Ao = — ' ' = (17)
Recall: 1 >0 >0 and 7 > 0.

Therefore, for all physically meaningful parameter values, the system is
asymptotically stable and has two real (“non-oscillatory”) eigenvalues.
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Transfer function:

Insert {A, B,C, D}

= P(s) =

Using Cramer’s rule
~1

7_2

s+ 1/7

—o /T

1

- det(M)

= P(s) =

2.8242.7-5+ (1 —02)

—o/T

s+ 1/71

- Adj{M}

s+ 1/7

o/T

o/T

N

s+ 1/7

(18)

(19)

(20)

(21)



Transfer function (contd.)

B(75+1)

B-o

P(s) =

72.8242-7-54+(1—02)

B-o

72.8242-7-54+(1—02)

B(7:5+1)

(22)

72.8242-7-54+(1—02)

72.8242-7-54+(1—02)

Looking at the four SISO transfer functions it seems that

1. the system has 8 poles, but we know it has only two eigenvalues;

2. the system has 2 minimumphase zeros, but are these zeros really active?

Remark: using the definition of the zeros as the solution of the equation

det

(¢-I—A)

C

—B

D

=0 (23)

it is easy to see that there are no finite zeros (the determinant is constant

and equal to 3%/712).
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Transmaission zeros

(sl —A)-z—B-u =

C-z+D-u =

has a nontrivial solution [z;, u;| iff the matrix

is singular. The values s = (; for which this is true are exactly the

transmission zeros of (34).

(s — A)

C

11

—-B

D

(46)

(47)



Numerical values (just reasonable examples)
m=0.5kg/s, p=1000kg/m?>, ¢=4200.J/(kgK)
A=2m? V =0.01m> k=100W/(m* K)

Therefore
T~ 18.26s5, 0=~ 0.087, £ =~0.913

and eigenvalues
A =—0.055"1 Ay = —0.0595s!

12

(24)

(25)

(26)

(27)



Step responses plant

1

0.9
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0.7

0.3

0.2

0.1

solid=u7; — y1 and us — y2, dashed=u; — yo and us — y1

Physical interpretation?
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Bode diagrams plant

frequency responses P(jw)
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Physical interpretation? Coupling?

14



Controller design, chosen structure

1 ) 1
T;-s" Tro-s+1

(28)

Parameters k, = 3, T; = 7s, and 7, = 0.7 s yield following SISO loop gain

Nyquist diagram open loop L(jw)

0.5

-0.5 1

-1.5 1

-2.5
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SISO closed-loop time-domain behavior (one channel only)

Setup:

ui

u2

numQC(s)

r1

denC(s)
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SISO closed-loop time-domain behavior (one channel only)

Step responses: solid=closed-loop SISO r; — y1, dashed=open-loop SISO w1 — y1
1.4 T T T T T T T T T

— - - - - —— — T/ / /7

0.2 |

O | | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200

time t(s)

Looks OK, of course ...
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MIMO closed-loop time-domain behavior (both channels)

Setup:

y2

ut

u2

numaGC(s)

denC(s)

r1

numaC(s)

denC(s)

<«
-
4
- ——
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MIMO closed-loop time-domain behavior (both channels)

Solid=y1 (t) and y2(t); dashed=r3 ()

0 20 40 60 80 100 120 140 160 180 200
time t(s)

Looks still OK! MIMO and SISO close, why? Always the case?
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Assume much higher heat transfer coefficient

k = 10000 W/(m?K) (29)

frequency responses P(jw)

1
ot

magnitude(dB)
=

0
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= 1 1 1 1
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Use same controller and check closed-loop MIMO behavior

solid: k = 10000 W/K m?; dashed: k = 100 W/K m?

0 20 40 60 80 100 120 140 160 180 x11
time t (s)

Bad time-domain behavior, much slower convergence to desired value!
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Explanation:

In the first case (k = 100 W/(m? K)) the cross-coupling transfer functions
have a gain that is more than ten times smaller than the gain of the main

channel in all frequencies.

Note that this yields an attenuation of 1/10% when the loop is closed as a full
MIMO system.

In the second case (k = 10000 W/(m? K)) the cross-coupling transfer
functions have a gain that is close to the gain of the main channel in all

relevant frequencies.

Therefore, in this case the system is “a hundred times more MIMO” than in

the previous case.

Plants of the first type are called diagonally dominant. Such plants may be
controlled using SISO controller design techniques by “breaking one loop at

the time.” Plants of the second type require more powerful design techniques.
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SISO

x(t)=Ax(t) +bu(?)
y(t) =cx(t) + du(t)

easy

MIMO

x(t) = Ax(t) + Bu(t)
y(t) =Cx(t) + Du(t)

easy |
| by, (s)
a ()

P(s) =
bpl (s)
_ ap1(5)

‘ difficult

D (5)

a,, ()

Do (5)

a,(s)




MIMO System Representation

z(t) = A-xz(t)+B-u(t), z(t) € R", u(t)e R™
(30)
y(t) = C-z(t)+D-u(t), y(t) e R’

Such a description is well-defined only if it is obtained by a modeling process based

on “physical first laws.”

If only the input/output (IO) behavior is known (say, by measuring the impulse
responses of the m X p channels), then there are infinitely many sets of matrices
{A, B,C, D} that produce the same 10 behavior.

Moreover, most of these sets will have more than the minimum number of states n

required to reproduce the observed IO behavior.
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The Laplace transformation of equations (30) yields

s-X(s)=A-X(s)+ B-U(s) (31)
hence
X(s)=(sI—A)"t-B-U(s) (32)
and
Y(s)=[C-(sI—A)~" B+ D] -U(s) (33)

If only the input/output (IO) behavior is of interest, the frequency domain

representation
y(s) = [C(s] — A)"'B+ D] -u(s) = P(s) - u(s) (34)
is sufficient. Notice that P(s) contains only the controllable and observable

parts of (30).
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_ Pii(s)  Pia(s) Prm(s) _
P2,1(3) P272(8) e P2,m(8)
(35)
Ppa(s)  Ppals) Pp.m(s)
bm,i,jsm 4+ .o+ bl,i,js —+ bO,z’,j _ bi,j(s) (36)
P j(s) =

S+ Ap_158" o Far s+ ao;  ai(s)
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In the MIMO case the realization problem is more difficult to solve.

P(s) =

S

S

has the following “naive realization”

1 0
0 —2

%x(t) —
0 0
0 0
[ 2 3

y(t) =
0 0

which is not minimal.

2
+1
1

+1

26
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S + 2
1

s+ 1

(37)

(38)



System Stability, Controllability and Observability Most system

analysis results valid for SISO systems remain true for MIMO systems:

1. The stability properties of the system {A, B,C, D} are determined by
the eigenvalues of A.

2. The system {A, B,C, D} is completely controllable iff the matrix
R,=|[B,AB,... A" 'B] e R"*(n™) (39)
has full rank n.
3. The system {A, B, C, D} is completely observable iff the matrix
O, =[CT,ATCT, ... (A" H)TCT|T € RmP)xn (40)

has full rank n.
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Plant {A, B, C,0} and controller {F, G, H,0} connected in the standard
feedback configuration. Closed-loop system is asymptotically stable iff all

eigenvalues of the matrix

A BH |
(41)
—GC F
have stricly negative real parts.
Nyquist theorem for MIMO systems: closed-loop system stable iff
N =det[ll + P(jw) - C(jw)], w € [—00,+] (42)

encircles the origin ny + ng/2 times.
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System Poles and Zeros

The poles of P(s) are the roots of the least common denominator of all

minors of P(s).

Example:
- g -
s+ 1 s+ 2
P(s) = (43)
1 1
| s+ 1 s+ 1
The zeros and poles of the SISO entries are ( = oo and 71 = —1, My = —2.

The minors of P(s) are

2 3 1 1 1 —s

44
s+1 s+2 s+1's+1" (s+1)2(s+2) (44)

The least common denominator is
p(s) = (s+1)*(s +2) (45)

and the poles m; of P(s) are —2, —1, and —1. An internal description of the

system has order n < 3.
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Obviously, the internal description {A, B, C, D} of the IO description P(s)
must be of minimal order, otherwise additional zeros and poles appear, which
cancel out. Also, if P(s) is square, the zeros of P(s) are simply the poles of

P~1(s). Moreover

The zeros of P(s) are the roots of the greatest common divisor of the

numerators of the maximum minors of P(s) after normalization to have the

pole polynomial of P(s) as denominators.
Example, contd.: The only maximum minor of P(s) is
1 —s
(s+1)%(s+2)
which is already normalized by the pole polynomial. Therefore, one zero at

¢ = 1. None of the entries of P(s) had a finite zero. The zero found at 1 (a
non-minimumphase zero!) is due to the MIMO structure of the system.

(48)
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A MIMO system can have poles and zeros at the same frequency s without
incurring a pole-zero cancellation!

- )
s+1
P(s) = (49)
s+1
0
has a pole and a zero at s = —1 and s = —2. In fact, the minors of P(s) are

s+2 s+1 (s+2)-(s+1)

s+1° s4+2 (s+1) (s+2)

The led is (s + 1) - (s + 2). Therefore, one pole at s = —1 and one at s = —2.
Since P(s) is square, there is only one maximum minor equal to 1. After
normalization to have the pole polynomial (s 4+ 2) - (s + 1) as denominator,
this maximum minor is defined by the fraction

(s+2)-(s+1)

(s+2)-(s+1)
such that the gecd of the numerator is (s 4+ 2) - (s + 1). Accordingly, the

system has s = —2 and s = —1 as zeros.
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This seemingly contradictory result is a consequence of the fact that in
MIMO systems a direction is associated with each pole and zero. A
cancellation takes place only if the frequency and the direction of a pole and

a zero coincide.
Directions 5;7?7;’07“5 associated with pole m; are

P(8)]ucr, - 617 = 00 - 324 (50
where 6" is the input and 5O“t the output pole direction.

T,

Directions 52”1.’0“’5 associated zero (; are
P(s)|s=¢, - 08 =0 - 62% (51)

where 5C - is the input and 50“t the output zero direction.
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An approach to compute the directions is to use the singular value
decomposition introduced later. For square m X m systems, the directions

may be obtained by
P(s)|somiqpe =U -2 VI = 67 =V(;,1), 624 =U(:1),

or
P(s)|sseqe =U-Z- VI = 52”,& =V(;,m), o0& =U(:,m),

respectively, where ¢ is an arbitrary small number.
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Example, contd.

The pole directions associated with the three poles m; = —1, 719 = —1, and
T3 = —2 are
. 0.97 0.85
mo 5out —
7'(',1 7T71
0.23 0.53
. —0.23 —0.53
mo 5out —
7'(',2 7T72
0.97 0.85
. 0.00 —1.00
mo 5out —
7T73 7'(',3
—1.00 0.00

The zero directions associated with the zero ( =1 are

o =

—0.71

0.71

t __
oo =

0.45
—0.89




Lecture VI — Relative (Gain Array, Singular
Values and System (Gains
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Relative-Gain Array

Question: When can MIMO plants be controlled well by SISO controllers?

Answer: When their relative-gain array matric RGA(s) is close to 1.

General idea of RGA explained with a 2 x 2 plant. To compute the (1,1) elements

of RGA(s) close loop from ys to us and compute transfer function from u; to yi.

y1(t u (T (T u1(t
< ®) Pi1| Pio = ®) ®) Pi1| P2 = ®)
Y2 (t) us (t Y2 (1) s (t
P | Pao ®) |/ P | P22 () _
~ (a2 > (a1
Two cases:

e First assume open loop conditions (C2,2 = 0): in this case ui — y1 is P11(s).

e Second assume high controller gains (C2 2P 2 >> 1): in this case u; — y; is
P11 P2 — P21 P12
Pao
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The element (1, 1) of the matrix RGA(s) is then defined by

P11 Pos — Po1 Pro P11 Pso
RGA = P =
11(5) 1/ Pso P11 Pos — Po1 Pro

It’s easy to see that RG Az 2(s) = RGAj1(s). These scalars are close to 1 iff

P12 . P21 << P11 . ng. If RGAll — RGAQQ substantially differ from 1 the
MIMO interactions are substantial and a SISO-similar approach is not

recommended.

To compute the element RGAs 1(s) analyze the transfer function u; — ys.

The result is
— P12 Po

- P11 Py — Po1 Py

It’s easy to see that RGA; 2(s) = RG Az 1(s). These scalars are close to 0 iff
Pio - Pyy << Pyq - Pyy. If RGA15 = RG Ao substantially differ from O the
MIMO interactions (as defined by Pi5 and P»1) are substantial and a
SISO-similar approach is not recommended.

RGAQ’l(S)
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In general:
RGA(s) = P(s). x P(s)™" (52)

where the operator .x denotes element-wise mutiplication (as .* in Matlab) and
P~T = (P™HT (transpose, not conjugate transpose!).
It can be shown that

e The columns and the rows of RGA(s) always add up to 1.

e The RGA is invariant with respect to scaling, i.e., for any diagonal matrices D;
the equation RGA(P(s)) = RGA(D; - P(s) - D2) holds true.

e The RGA of a triangular matrix P(s) is the identity matrix 1.

The main result is: if RGA(P(s)) is substantially different from I for all frequencies
s, the cross-coupling gains are important and MIMO approaches must be used to
control the plant P(s). If RGA(P(s)) ~ I for all s, the individual channels can be
controlled “one loop at the time” using m SISO controllers. In feedback control
applications, the input/output pairing should be chosen such that input ¢ is paired
with output 7 when RGA;; is close to 1.
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Summary:

If RGA(P(s)) ~ I then “one loop at the time” OK

ut

u2

r1

numaGC(s) < -

denC(s) +

numC(s) +
~€

denC(s) -

i TT

If RGA(P(s)) # I then “true MIMO design” necessary
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For the example of the heat exchanger

B (t .S—I—l)2 o2 N
(1 5+1)2—02 (1 5+1)2—02
RGA(s) = (53)
—g2 (1 s4+1)2
L (7s5+1)2—02 (rs+1)2—02

or, at s = 0 (static gain)

- 2 -
1—o2 1—0o2
RGA(s) = (54)
2
- 1_—(;2 1—10'2 -

Pro memoria: y

o= — ke , 0<o<1 (55)

m-c+k-A

For small heat exchange capability (k- A <<m -c) the parameter o ~ 0 and the
RGA(P(s)) =~ I, i.e., SISO control loops are OK. However, if (k- A >>m .c) the
parameter o = 1 and the RGA(P(s)) becomes very large. Therefore, the plant can
only be controlled using a true MIMO approach.
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SISO

Betrag IP(jo)l, in dB

10f

10" 10°

Frequenz log(v) (radis)

10

A0+

Phase Arg(P(jv)), in Grad

Frequenz log(v) (radls)

30
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-40 |-

-a5
10

MIMO

singular value plot in dB

frequency w (rad/s)

10™

10°



Matrix Norms and Singular Values

Induced norm of any linear operator M
y = M(u) (56)
defined using a specific norm ||z|| by

M|| = max —— = max ||M(u 57

Important example u € R™, y € RP, M € RP*"™ and ||z|| = VT - z, where
x = {u,y} (“inner product norm”). In this case

1] = max {o; {M}} (58)

where the singular values o;{ M} are the positive square roots of the
eigenvalues of the matrix MT M. Since M1 M is symmetric (by

construction), its eigenvalues all are real and non-negative.

41



Lagrange Method Optimizations with Constraints
J:IR" — IR,, f:IR" — IR, uelR™

Problem: Find u* which maximizes J(u*) > J(u) and which simultaneously
satisfies f(u*) = 0.

Geometric interpretation:
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“Prootf”

Use Lagrange’s method for constrained optimization. Objective function to

be maximized:
J = P+ Xx-(1—]ul?) (59)

|

= u' MM -u+ X2 (1—-u' - u) =max (60)

Necessary conditions for a local maximum

0J
i 61
5 (61)
In this special case
0J
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Accordingly, the optimal solution ©* must satisfy the homogeneous equation
AN-T—=M'M) - u* =0 (63)
and a non-trivial u* exists iff
det {\- T —MTM} =0 (64)

The scalars \; = o7 that satisfy this equation are the eigenvalues of M M.
Since M1 M is a symmetric and positive semi-definite matrix (by
construction), its eigenvalues \; are real and non-negative, i.e., their square

root o; is real and non-negative as well.

With this result and using the definition of the induced norm it’s easy to see

that
2 T . MTM .
|M|]? = max Iyl — max — Y max {07} (65)
lull#0 [[u]]? Jlullz0  w!-w i
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Geometric interpretation for the case u,y € R? and

(1.3 0.1 |

15

—1

45




Obviously, repeating the analysis shown above for the minimum gain yields

o (M} < W o (a1}, ] £ 0 (66)

[l

where it is assumed that oy, {M} is the minimum and oy { M} the

maximum singular value of M.
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Geometric properties of linear mappings represented by the matrix M
M=U-%-V (67)
where U € IRP*? and V € IR™*™ are unitary matrices, i.e.

U’UT:Ipxp, V'VT:Ime

and where the only non-zero elements of ¥ € IRP*™ are the singular values of
M, i.e.,

Sy =0Vie[lp#j€Lm
and

X]ij =0k Vi=j=ke [1,min{p, m}]
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The geometric interpretation associated with this decomposition is that every
mapping represented by M can be decomposed into first a isometric
transformation® represented by V7', then a scaling projection represented by
>, and finally another isometry represented by U. Since fast and robust
numerical algorithms exist for the computation of the singular value
decomposition of high-order matrices M, this concept has many useful

applications in system theory.

@Such transformations are essentially rotations and, therefore, preserve the length of the

vectors transformed. In general, reflections through the origin are possible as well.
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Generalization to the case of M € CP*™ using definition of the Euclidean

norm of a complex scalar z =a+ jb (a, b € IR)

[2|]P =a® +b* = (a—jb) - (a+jb) =22 (68)
where z denotes complex conjugation.
For a complex vector v € ¢
ol =) "af +07 = (a;—jb;) - (a;+jb) =" v (69)
i=1 i=1
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For the linear mapping represented by the complex matrix M
y=M-u, vwe@™, yed®, Mc@’™ (70)

Repeating the analysis yields

M| = Gmax {M} = max /{07 - M} (1)
In particular, if ||u|| = 1 the norm of y must satisfy the inequality
Omin{ M} < |[|y|| £ omax{ M} (72)

Since the matrix Q = M7T - M is Hermitian® by definition, its eigenvalues are
all non-negative real numbers. Therefore, equation (72) makes sense. The
eigenvectors of ) = M” - M are always linearly independent, even if multiple

eigenvalues exist. However, in general they consist of complex-valued entries.

2 A matrix Q is Hermitian if Q = Q7 i.e., if it is equal to its complex conjugate and

transpose.
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Lecture VII — Frequency Response of MIMO
Systems

51



Assume a BIBO stable 2 x 2 system P(s) is driven by the input

u(t) =

p - cos(w (t + 1 /w)) - h(t)

| 12 cos(w (£ + 9 /w)) - h(D)

Laplace transformation of u(t) yields (use “shift law”)

Ul(s) =

or more compactly

S
82_|_w2

Ul(s) =

M T elw1/w)s
/’LQ . 32—|—L¢u2 . 6(902/“))'8

- €

d-s/w

S
82—|—UJ2

52

o1 /w)-s

0

o(92/w)-s

-, @ =diag(pr, p2), p=[p1,pe

]T

M1

L2




The system is linear and BIBO stable. Trefore, the output will be

y(t) = ye(t) + Yoo (t)

where y;(t) — 0 for limt — co. The steady-state output will have the form
S
g2 + w2

and since Y (s) = P(s) - U(s) this yields

Yoo(s) = Le¥s/w v, W =diag(y1,v2), v = v, VQ]T

| Phu(jw) Po(iw)

| Pa(fw) Pr(jw)
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Application to MIMO frequency responses

y(Jw) =Pjw) - u(jw) (73)

requires generalization to complex vectors u(j w), y(jw) and matrices
M = P(jw)

= e NG
1PGll = u(j w)[0 |[u(j w)|| (74)

In this case the norms are defined by

lu(i )l = \/a(w)Tuljw) (75)

where T denotes complex conjugate of x, i.e., forx =a+jb, x =a — jb.

In analogy to the real case, the singular values are now defined as

7 P(jwo)} = /eig{P(jwo)T - P(juwo)} (76
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The singular values 0;{P(jwg)} are again positive non negative real
numbers. This is always the case because the matrix P(j wg)? - P(jwp) is, by

construction, a “positive semi-definite” Hermitian matrix.

Note that the o;{P(jwo)} are functions of the frequency w, i.e., for each fired
frequency wg a singular-value problem must be solved. Matlab provides
dedicated commands (for instance “sigma,” use “help sigma” for more

information).

If you want to write your own software, note that in Matlab the operator ’

indicates transpose and conjugate complex.
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Frequency Response

y1¢(t) +vi-cos(wt+ Y1) =Y1 | =Ar+Bu | ui(t) = p1 - cos(wt+ ¢1) ) )
D e prtpy =1

y2¢(t) + vo - cos(wt + y2) = y2 y = Cz + Du u2(t) = pg - cos(wt + p2)

\ s \ - 7

transient
complicated Yoo (1) astab
v u(t)
N o
.
. eV1s/o 1 < -« s e% 0 751
Yils) + s w? [ 0 e\lfzs/w] . [1/2] =Y(s) D P(S) -~ Uls) = 52 +w? [ 0 ewfjs . [,UQ]
t — oo yt(t) — 0 s — jw

eIV1 0 V| -—— . <« [el¥1 0 751
S owl ) T PG T
£eC? £eC?
P(jw) € C?*2




General case: BIBO stable m x m MIMO-Plants P(s) and input

u(t) =

where M= [/’Lla H2, .

Yoo (t) =

where v(w) = (11 (w), 12(w), ...

cos(w -t + 1) - 11
cos(w - t + @2) - po

cos(w -t + ©m) * fhm

cos(w -t + 1 (w)) - v1(w)
cos(w -t + o (w)) - vo(w)

cos(w -t + Yp(w)) - Vm (w)

) Vm(w)] :
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= diag {cos(w -t + ;) } - p

1T, will have a steady state response

= diag {cos(w - t + p;(w))} - v(w)



If ||u]| = 1, the “output magnitude vector” v will always satisfy the

constraints

min o P(jw); < [[v(w)]] < maxoi{P(jw)} (77)

At each fixed frequency wp, the maximum and minimum singular values
Omax(wWo) and omin(wp) indicate the limits within which the norm of the

amplitude vector v(wg) of the output y(¢) must lie in steady-state conditions.

Most important drawback: phase information lost! Each channel has a
different phase lag and there is no neat way to extract a characteristic lag

information that is usetul, e.g., to assess the system stability.

Accordingly, the condition (77) only yields “worst worst-case” conditions, see

example below.
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Example Heat exchanger, now with different mass flows and volumes in the
hot and cold leg (mqy= 0.5kg/s, mo= 0.2kg/s, Vi = 0.01m3, Vo = 0.02m?).
Therefore, T1 7é T2 ﬁl 7é ﬁg, and 01 7é 09

A=

—1/m1 o1/m  Bi/m O

0'2/7'2 —1/7'2 O ﬁg/TQ

Taking wg = 0.1 rad/s yields

P(j wo)

= C-ljwy-I—A"'-B+D

0.186 — j0.199 —0.013 — j0.043

—0.033 — 5 0.107 0.0252 — 7 0.079

The singular values are

Veig{P(jwo)T - P(jwo)} ~ {0.300,0.079}
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and the corresponding eigenvectors of P(jwg)?

G =

o—J0.37

0

0.984

0.181

7C2:

- P(jwg) are
€j 2.77 0 ]
0 el

singular value plot in dB

-40r

-45
103

102

101

Frequency w (rad/sec)
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Input (1, output amplitudes v = [0.273, 0.123]
input u; (dashed) and output y; (solid)

1 N | N | L\~

0 50 100 150 200

. time t(s) _
input us(dashed) and output y2(solid)

250 300

-0.2

0 50 100 150 200 250 300
time t(s)
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channel 2

0.15 <

channel 1

62

time t (s)
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Input (o, output amplitudes v = [0.045, 0.067]

input u; (dashed) and output y; (solid)

0.2

0.1

0

-0.1

_0.2 | | | |
0 50 100 150 200 250 300

. time tcgs) .
input us(dashed) and output y2(solid)

0 50 100 150 200 250 300
time t(s)

64



Physical interpretation:

e Having the two inputs “in phase” (the temperature variations have the
same sign), yields a stronger output temperature variation than in the
case where the hot input temperature rises when the cold input

temperature falls.

e The gain from the hot to the cold leg (P> = —0.033 — 50.107) is larger
that the gain from the cold to the hot leg (P o = —0.013 — 5 0.043).
Accordingly, since the total temperature variations are limited by the
constraint ||u|| = 1, the amplitude of u; is chosen larger than that of us
if a large effect has to be achieved, as can be seen in (3.

e The same arguments show that in the case where the effect has to be as
small as possible, almost all input action needed to satisfy ||u|| =1 is
placed in us which has the smaller effect on the hot leg.
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Summary: In the MIMO case there are no immediate counterparts to the
SISO Nyquist or Bode diagrams. The only frequency response tools are
singular value plots. These plots are magnitude plots and they contain

“worst-case” information only. No phase information is available.

Besides the transfer function of the plant, other transfer functions can be

mapped by singular-value plots:

T(s) = [I—P(s)-C(s)]" - P(s)-C(s) (83)
S(s) = [ —P(s)-C(s)]" (84)
D(s) = I+ P(s)-C(s) (85)

These relations use a loop-breaking point at the controller input. Contrary to
the SISO case, for MIMO systems the choice of loop-breaking point is

relevant.
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Design of MIMO Systems in the FD

One of the main reasons why the Wi (s), Wa(s) formalism is so widely used is
that it can be easily generalized to MIMO systems. In this case, all assertions
related to the maximum magnitude of a transfer function must be replaced

by constraints on the maximum singular value of a transfer function matrix.

For instance the condition
15(s) - Wi(s)|leo = max{[S(jw) - Wi(jw)[} <1 (86)
valid for SISO systems can be written in the MIMO case as follows

15(5) - Wi(s)[loo = max{omax {S(Gw) - W1(jw)}} <1 (87)

(similar for all other constraints and equations).
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SISO MIMO
1+ L(jw) [+ L(jw)

u= n}uin{l 1+ L(jw) I} u= min{Umin {I + L(JCU)}}

D




Example: singular values of the return difference of the heat exchanger (LQG
controller, will be introduced later)

singular value plot in dB

30 e B

1073 1077 1071 10°
frequency w (rad/s)

Solid k& = 2000 W/(m? K), dashed k = 100 W/(m? K)
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Useful time-domain relationships

plant : %x(t) — Az(t) + Bu(t), y(t)=Cz(t) (88)
controller : %z(t) — Fat)+Ge(t), ult) = H 2(t) (89)
Open loop gain L(s):
d T A BH T 0 x
dt | » 0 F z G z
Return difference I + L(s):
A BH 0
- Tl e (91)
dt | » 0 F z G
X
y = [ C 0 } [ +1e
Z
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Complementary sensitivity 7'(s):

Sensitivity S(s):

-GC F

y=|C 0

-GC F

y=|C 0

70

A B H

A B H

(92)

(93)

(94)



Lecture VIII — Synthesis of MIMO Control
System, Pole Placement, LQR Approach
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State-Feedback Controllers

General problem formulation of a regulator problem
tt)=A -z(t)+ B-u(t), x(0)=x9#0

Find a state-feedback control signal

such that
lim z(t) =0

t— 00

Several methods available for the solution of this problem:
e cigenvalue placement

e linear-quadratic optimal control
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Eigenvalue Placement

Objective: use feedback to place eigenvalues of feedback-controlled system at

desired places.

Problem easy to solve in the state-feedback case (provided that the system
{A, B} is stabilizable) by using

u(t) = —K - x(t) (98)

Choose matrix K € R™*"™ such that all eigenvalues of A — B - K have
negative real parts and are located at some desired places (this is always

possible under these assumptions).
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Example (n = 3): SISO, {A, b} in controller-canonical form (obviously completely
controllable)

0 1 0 | 0
A= 0 0 1 , b= 0|, k=| ko ki k2}
| —aop —a1 —a2 | B 1 |

Closed-loop system

A—-b- k= 0 0 1

| —(ao+ ko) —(a1+ki) —(az+k2) |

Choose any desired real constants {ao, a1, a2} yielding a Hurwitz polynomial (all
roots in the negative complex plane)

a(s) =s"4+as-5° + o1 -5+ ao
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Comparing this polynomial to the closed-loop characteristic polynomial

det[s- I — (A —b- k)] = det

S

(CLO + ko)

—1

(a1 + k1)

0
—1

S + (Cl2 —|—k2)

= 5%+ (ag + k2) - s° + (a1 + k1) - s + (ao + ko)

yields the controller coefficients

ko =ag —ao, k1 = a1 — a1, ka = az — ag
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What happens if the system {A, b} has this state-space description?

0 1 0 0 | 0 ]
0 0 1 0 0
A: 7b:
—ai —Qa2 —Aas 1 1
|0 0 0 —a4 | 0
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General Case, SISO Systems

Many approaches known, for instance the ”Formula of Ackermann.” First,

choose a desired characteristic polynomial
a(s)=s"4oap_1-8"" 4+ ... +ar-s+ag (99)
Then form the vector g as follows

q¢=1[0,0,...0,1] - R~* (100)

The state-feedback gain k£ that places the eigenvalues of A — b - k at the

locations defined by the solutions of a(s) = 0 is given by
k=q-a(A) (101)
where
a(A)=A"+ap,_1 - A"+ o Adoag- 1 (102)
(for a proof see [Kailath]). QC: Apply Ackermanns formula to the 3 x 3

example shown above.
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Remarks:

e Obviously, complete controllability (det{R} # 0) is a necessary and
sufficient condition to be able to arbitrarily place the eigenvalues of

A—0b-k.
e This result holds true also in the MIMO case.

e Controller designs using eigenvalue placement approaches are tricky. In
the SISO case this approach can lead to acceptable results but only with

some care (robustness can be small).

e In the MIMO case this approach often fails and is not recommended (the
situation where the different channels work against each other is difficult

to avoid).
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MIMO Synthesis?

Model-based optimization!

H.. FD,W\
— later

H, (LQG), TD, “classic”

r(t) = A-x(t) + B - u(t)

y(t) =C-z(t) + D - u(t)

“a-posteriori” interpretation in FD!

new page numbers!



4. Many improvements

160



Example “regulator problem™?

All other control objectives (reference tracking,
disturbance rejection, ...) can be reformulated

In this framework o



Many solutions u(t) = f(x(t),t) possible

Find the one that minimizes
J(u) = / T () - Q- a(u(t)) + uT () - R-u(t)] dt
0

Q=QT e R™", Q>0, and R=RY c R"™"™ R>0

Interpretation:
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Special Case: SISO and ) = ¢! - ¢
Objective function:

I = [ [P(o) + )] d

B~ | TPt B, - [

Interpretation:

J(u)=E,+  E,

cheap expensive

control
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State Feedback Controllers

Solution to optimization problem:
u(t)= —K -2(t), where K =R '. B! . &

Riccati equation
- B-R'.Bl . o—p-A— A . d—Q=0
obviously ¢ = ¢!

Solution ®>0 exists if:

cl: the pair {A, B} is completely controllable; and
c2: the pair {A, C'} is completely observable.

Q=ct.cC
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Remarks:

IS a linear feedback law

e IS a time-invariant feedback law

A — B .- K 1s a Hurwitz matrix

165



Remarks:

. Q and K are the “tlll’lillg knohs”

* First guess
R=r- [‘m xmsy T > 0

Q=0cT.C

« CACSD K=1qr(A,B,Q,R)

* Proof: < sufficiency easy (see handouts)

* necessity difficult
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FD Interpretation:

TLQR(S) == [S[ — (A — B - K)]_l - B

Lior(s)=K-[sI—A]""'-B
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Question: Block diagram of SISO LQR controller
u(t)=-k x(t) (example n=3, y(t)=x,(t))?
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Question: SISO LQR controller u(t)=-k x(t) similar
to which ,classical” controller?
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Case Study: Levitating Sphere
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1

71
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eigenvalues of A — b - k(r) for r» € (0, c0)
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FD Interpretation

- k-Adj(sI —A)-D
~ det(sI — A)
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Bode Diagram (magnitude):

Obviously, relative degree = 1 (k = “full”)

P Ry
LLQR(S)_ n-—1 0

s" +...+a,
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imag

Nyquist Diagram of Ligr(s) =k [s]— A]"" b

imag

real

Main result: eal
1+ Lior(jw,r)|>1, VwelRand re IR,
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Quick Check:

What are the gain and phase margins for SISO LQR loops?
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Properties of LQR Controllers

A — B - K is always a Hurwitz matrix

For R = -1 (arbitrary @ =Q” ¢ ™", Q>0)
HLQR = Min omintd + Lror(s)} > 1
mMax omax{S(jw)}t <1

Max opax {70 w)} < 2
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—
—>
=
—>
—1O
—1>

e v

&
37T
Al
-
d
| |
)
<3
i
=
| |
|
‘pT
2
S

mny,

2000 W/(m? K)

I+K-[sI-A] -B
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Lecture IX — Extensions of LQR Control
Systems, State Observers

93



LQR-I Controller

e(t)

Other structures possible

Re-arrange as standard LQR problem
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e(t)

181



v > 0 1s a new tuning parameter

Solve standard LQR problem for the extended
System. Result:

s

K=[K -Ki]
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Robustness Enhancement

1 - .
=%5- B RY.B . @dg—Pg- A— Al . d5—-Q=0 (3.40)
{

g >1

ftg = min OminiB1+ L(jw)} > 3

In the limit case 3 — oc
—P - A-A D Q=0
Lo(s) =K. -[sI — A]~!. B strictly positive real

& exists iff A is a Hurwitz matrix
183



Re
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Finite Horizon LQR
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State Observers

Known: signals: u(t) and y(¢)
plant model {A,B,C,D}

Find: Estimation 2 (¢) of x(t)
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Plant
t(t) =A-x(t)+ B - u(t)

y(t) = C - x(1)

Observer
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Observation errors
r(t) = x(t) —2(t) € IR"

ldealcase: A=A B =B, and C = C

n.,(t) = n,(t) = 0
Error dynamics (t) 10

d_ d d

= A-a(t)+ B-u(t) — [A-2(t) + B-u(t) + L- (y(t) - §(0))]
— A (2(t) —2(t) — L-C - (2(t) — 2(t)) (3.46)

=|A—-L-C]-z(t), z(0)=2(0)—2(0)#0
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How to compute L

Dual LQR problem

191



1 o
.0t .cov—yg. AT _A.v—-—B.BT =0
q

One might be tempted to choose the eigenvalues of A—L-C' much “faster”
than those of A (or later A— B K). However, two unavoidable complications
impose limitations:

o The observer is synthesized using a model {AB C b of the true plant
{A, B,C}. Of course this model is never perfect. These and other modeling
errors impose limits on the loop gain of the error dynamics (3.46),

o The input signals to the observer will always be corrupted by some noise,

, Ny (t) # 0 and n,(t) # 0. This fact imposes limits on the loop gain.
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“slow” observer

“fast” observer

no
noise

some
noise
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Kalman Filters
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In the simplest case, the two noise signals n,, and n, are assumed to be uncor-
related white noise signals. Without entering into the mathematical details of
stochastic signals, a white noise signal n(t) is defined as a signal whose spec-
trum is constant for all frequencies.

The spectrum ¢,,(w) of a scalar signal n(t) € IR is obtained using its
Fourier transform

+00
n(t) = / A(w) cos (wt + d(w)) dw (3.55)
by the operation
b () = 4%(0) (3.56)

If the spectrum is constant for all frequencies, i.e., if
On(w)=1, >0€ R (3.57)

then the signal n(t) is a white noise signal. 195



¢n(w) of a scalar signal n(t) € IR is

“+00
n(t) = / A(w) cos (wt + p(w)) dw
Dn (w) = A2 (w)
Interpretation:
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These definitions can be easily extended to the case where n(t) € IR™ is a
vector signal. In this case the spectrum is a Hermitian m x m matrix @,,(w),
which, for white noise signals, is constant for all frequencies

Oy(w) =R, =R. >0e R™™ (3.58)

n —

This matrix describes the “intensity” of a noisy signal. Below, it is assumed
that both R, > 0, associated to n,(t), and R, > 0, associated to n,(t), are
known.

Ly that minimizes the expectation of the estimation error Z(t),| This optimal

gain is defined by

T p-1
Ly =P-C" .k (3.50)

where the matrix P = P € IR™*" is the positive (semi-)definite solution of
the Riccati equation

A-P+P-A"-P-C"R;'-C-P+B-R, B =0 (%60)



Lecture X — Observer-Based Output Feedback
Control
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Key idea:

u(t) = —K -

A
~
N—

LQG(aussian): observer gain computed using
dual LQR approach
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LQG = Output-Feedback, i.e., realizable!

State vector

System description:
a) open loop = robustness

b) closed loop = stability

200



Liocg(s)=C-[sI—A™ " B-K-[sI—-(A-B-K—-L-C)] 'L
201



A —B - K ]

L-C A-B-K-L-C
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In particular, two points must be verified:

1, the stability of the closed-loop system (3.58); and
Q\the robustness of the open-loop system (3.56).

later!
The Separation Principle

Assume
A—B-K and A—L-C are both Hurwitz

then A, is Hurwitz as well and its eigenvalues
are those of A—B-K and A-L-C
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The Separation Principle
A —B-K
Acl —

L-C A-B-K-L-C
r="T-7 with

Ian OTZXTL

T = — 71

Ian _[an B

- 'A—-B-K B K
On><n A-L-C
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Levitating Sphere — TD Behavior

-
O =lo|
_O_ A
ol
20)=|0| |
_O_ ‘
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LQG for Reference Tracking
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O [ d
1: 5 {dte(z‘)} =0

L
2 : tlim‘ y(t) =r(t), forr(t)=1| ... | -h(t)
- I'm
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LQG Controllers with Integral Action

P(s)

209



Open-Loop Description

Important for frequency-domain analysis
210



Closed-Loop Description

Important for time-domain analysis
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Robustness of LQG-Loops
Lioo(s)=C-[sI-A™"B-K-[sI-(A-B-K-L-C)]"" L
HLOG — II}i.Il {Umin {[ =+ LLQG (] W’)}}

can be arbitrarily
close to 0!

Example:
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Robustness R

ecovery

o First design a suitable state-feedback LOR controller that is known to
yield “nice” loop gains.
o et up a design procedure for an output-feedback controller with one iter-
ation parameter (the “LTR gain” ).
o Increase the LTR gain wntil the loop gain L{(s) of the output-feedback con

troller sufficiently approaches the loop gai
controller without vi

0 Liygn(s) of the state-feedback

olating the [imits im

108, 1ose and mode

uncertainty.

vosed by non-minimumphase ze-
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A “Naive” Approach to LTR
Given: simple plant (SISO, miniphase)

' - Adj(sI—A) -1
P(S) = C - (5]_4_4)—1 D = C A(lJ(5I »-1) h

det(sI—A)
Desired loop gain

C(s)- P(s) = Lrqr(s)
Lror(s)=k-(sI-A)~" b=

k- Adj(sI—A) -

det(sI—A)
Therefore, controller
, k-Adj(sI—A)-b
C(s) = —— _
C - AClJ(SI_j‘l) b (TS"l— l)h.
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Loop gain

L(s) k-Adj(sI—A)-b

- (let(’s]—;’4> . (7-8__1)}{.

The corner frequency 1/7 determines the bandwidth of the loop transfer re-

covery. On one hand, this LTR frequency may not be higher than the limits

imposed by the model uncertainty and the noise present in the system. On

the other hand, the LR frequency must be sufhciently high to compensate

for plant instabilities (see Figure 4.9),

QC: is the closed-loop system guaranteed to be

asymptotically stable? Separation principle?
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QC: What problems do you expect for t — 07?

217



1. Derive a linearized and normalized system model {A, B,, C} of the plant.
2. Design a suitable state-feedback control gain K as a solution of the LQR
problem defined by

K = 1qr(A, B_u, Q, r*eye(m,m));

3. Design an observer gain L for the standard system {A, B,, C'} using the
duality approach

L = 1qr(A’, C’, B_u*B_u’, g*eye(m,m))’;

Note: the choice B, - B! for the weight penalizing the dual states is nec-
essary.

4. Analyze the resulting open-loop frequency-domain (singular values of the
return difference) and closed-loop time-domain (disturbance steps) system
behavior.

5. Repeat steps 3 and 4 with decreasing values of ¢ (the numerical value of

¢ has no immediate interpretation). 18



Some Remarks

In general, perfect LTR is not recommended. Full LTR, if possible, yields
high-gain controllers at high frequencies that may cause noise amplification
and robustness problems.

It the plant is non-minimumphase, the LTR procedure often yields an
output-feedback controller that produces a loop gain that approaches the
LQR loop gain to the extent possible.

The control system enhancements discussed in the previous chapters (in-
tegral action and feedforward parts) can be used in the LTR framework

as well.
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0dB e ==
LOR
-20(1B ] (]:10_4
g=10""
16-2 ' “fof" I 1|02 I -
log w
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Case Study: Geostationary Satellite

SAR
Navigation

Communication
222



r(t)
state x(t)= gtt))

1)

* position control only

 attitude control more difficult
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circular orbit at ro ~ 4.22 - 107 m

sidereal angular velocity wg ~

(.29 - 10~

simplified and linearized dynamics

y(t)

_1/T0

0 0 O

0

1

0

° rad/s

224



Transfer function

SISO not easy to control (only P,,(Ss) is c.c./o.,
but not minimum phase!)

MIMO no finite zeros!
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" 5% — 3wy 4w
5% + w% 5% + wg
RGA(s)=
dwg 8" — 3wy
L 8% 4w s° +wp -

solid: [RGA(jw)] dashed: [RGA(jco)]1 5

1,17
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Specifications

The system must be stabilized robustly. In particular, the condition

e > 0.7 must be satisfied, where iz is defined in (3.71).

The crossover frequency must satisty the bounds 5 - 1072 <w, <107
rad/s.

All disturbances up to 10 wy must be attenuated by at least —40 dB.

i}

e disturbance amplification may not be larger than 3 dB at any fre-

(uency.
The noise attenuation must be larger than —40 dB for all frequencies
higher that 10 rads.
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K = 1gr(A,B,C’*C,r*xeye(2,2));
L = 1qr(A,C’,B*B’,q*eye(2,2))’;

1 LQG
change g
[ 1 LQR
change r
I ...}
y(f)

After some iterations: specifications
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LLQR(j )

LLQG(j )
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SLQG(j )
TLQG(j )
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U+ Ly or(j@)7

RI+Lpc(jw)}
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Test Case meteorite 10 kg

10* m/s

10° kg /
1y~ — 7y -
0 -0.001

Before & after impact: x(O)=| o | x(0p)=|

232



27 1, (9(t) - w,1)| < 0.0002 m

F.(1)]<0.062N
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Lecture XI — Outlook: Glover-McFarlane and
H.. Methods

127



Glover-McFarlane Method

In a nutshell, the Glover-McFarlane method consists of the following pre-
liminary steps:

| Amodel P(s) = C"[sI - A" B of the m xm MIMO plant is the starting
point. The RGA method introduced in Section 2.6 is used to obtain the
best possible input /output pairing.

) 'The specifications are formulated by choosing a cross-over frequency w, at
which all singular values of the loop have to have he approximately 1.

' Obviously, this scenario corresponds to requiring that all channels have approx-
imately the same bandwidth. If there is a large separation of the bandwidths,
several SISO loops designed following the cascaded-control paradigm might be
the better choice. 234
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The core of the Glover-McFarlane approach is quite similar to the stan-
dard LQG design method, 1.e., two Riccati equations must be solved, and
the controller uses an observer-hased state feedback. However, the method in-
cludes an additional tuning parameter a € (1,00) that can be used to choose
a desired trade-off between performance and robustness.

~

To be more specific, the controller C(s) is obtained solving the following
sef; of equations
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Two positive definite solutions to these two Riccati equations exist under the
usual conditions. The real positive scalar Ay,.y, which is the largest eigenvalue
of the matrix @ - ¥, is used to form a second real positive scalar

V= \/1 + )‘max CQ (390)

where the influence of the design parameter a € (1,00) will become clear
shortly. Using the parameter v the matrix

1
G=1-=(I+V-9) (3.91)

/

is formed yielding the state feedback gain
K=B" ¢ (3.92)

and the observation error feedback gain

L=G"t.w.Ct ya7
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This controller is guaranteed to yield a stable closed-loop system (Sep-
aration Theorem). For o — o0 the controller (3.94) simply represents the
standard LQG controller obtained using (3.10) with R = [ and Q) = ¢T.C ,
and using (3.51) with ¢ = 1. By decreasing « the robustness of the loop is
increased. It can be shown that for o — 1 the ability of the loop to tolerate
modeling errors is maximized [8]. Of course, this reduces the performance of

the loop, 1.e., the time constants of the closed-loop response become larger.

Experience has shown that a value of v ~ 2 indicates a very good ro-
bustness, whereas a value of v > 4 is a sign of a rather fragile design, and
further iterations on the compensators K(s), K}, and Ky are recommended
to decrease that value.
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2 G-McF

change «

change k;,, T;, K, , K

o{S(s)}, y(@), ... |

open loop ol specs
ol L(s)} -
closed loop
7/:7) G{I‘FL(S)}a cl Specs

240



4.3 Case Study: Engine Speed and Air/Fuel Ratio
Control
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AK knock sensor

CP camshaft sensor
1gnition command
MA air mass-flow sensor
SE engine speed sensor
FP fuel pressure control

manifold pressure sensor
electronic throttle

intake air temperature sensor
cooling water temperature sensor
active carbon canister

air/fuel ratio sensors

EGR valve
secondary air valve
3-way catalyst
controller

CC control valves
driver pedal
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U =

throttle valve position
intake manifold pressure

engine speed

(1
(1
(1
(1

air /fuel ratio

air/fuel ratio command (

air/fuel ratio (1 = 0.05 —)

engine speed (1 = 200 rpm)

"throttle valve command (1 =

1 =0.0

)

1°

0.05 bar)
200 rpm)
0.

05

19)

The system is of order four with the four state variables

-)

r’

)
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{
%x(t) =A- Ll?(t) + B - 'U(t) + bg - d(t)
at

external disturbance is the load torque d(t) (1 = 40 Nm)
245
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Figure 4.18 shows the singular values of the plant and Figure 4.19 the two
relevant components of the plant’s RGA(jw) matrix. Obviously, the plant has
finite gain at low frequencies (type-zero system ) and it is rather well decoupled
up to a frequency of approximately 1 rad/s. This frequency is, therefore,
chosen as the desired crossover frequency, yielding expected settling times of
the closed-loop system in the order of slightly below 2 s,
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According to the Glover-McFarlane procedure, in the first step the plant
is connected to a compensator

j
;—t;z:K(t) = Ak -2(t) + Bx -ug(t), (4.17)

u(t) = Ok - 2 (t) + Dic - e(t) (4.18)

such that the main desired loop characteristics are obtained. In this case a PI
element must be used in each channel to obtain the desired high gains at low
frequencies

00|20
Ax Bgl |0 00 2
_ | (4.19)
Gk Pl 0 [k 0
0 1|0 kyy »




After some iterations, the following parameters have been chosen

ko =k )= 05 Ti.l = le =015

pl~

Of course, these parameters are not the hest possible choice. However, they
vield reasonable results as shown helow,

How to choose K;? Not trivial, physical intuition

and some guidelines = [Ljung] 250
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change «

change k,, T;

open loop ol s
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...}
closed loop | cl specs
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Introduction Mixed-Sensitivity Approach
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Full problem not directly solvable

Relaxed problem solvable
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Problem

For system

Find control
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Such that

Where
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Solution: Observer-based state feedback
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H-infinity ,,Recipe®

1.Formulate plant dynamics P(s)

2.Find useful weights W.(s)

3.Build standard system description augw
4.Find solution with hinfsyn

5.Check for resulting v*, if y*>1 relax weights
and repeat step 3 » 5 until y*<1

6.Check if robust performance £<1 satisfied,
If not relax weights and repeat step 3 » 6
7/.Check time domain behavior
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