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1.

2.

3.

4. Many improvements



Remarks:

• Obviously, complete controllability (det{R} 6= 0) is a necessary and

sufficient condition to be able to arbitrarily place the eigenvalues of

A− b · k.

• Controller designs using eigenvalue placement approaches are tricky. In

the SISO case this approach can lead to acceptable results but only with

some care (robustness can be small).

• In the MIMO case this approach often fails and is not recommended (the

situation where the different channels work against each other is difficult

to avoid).

First idea: Place Eigenvalues of A-b k at desired locations

q = [0, 0, . . . 0, 1] · R−1

k = q · α(A)

· sn−1 + . . .+ α1 · s+ α0α(s) = sn + αn−1

Use u(t)=-k x(t)



Linear-Quadratic Optimal Controllers

An approach well suited for MIMO systems that will prove to be very useful even

in output-feedback designs is obtained when the design problem is formulated as an

optimization problem. Starting with the plant description

ẋ(t) = A · x(t) +B · u(t), x(0) = x0 6= 0 (103)

a state-feedback control signal

u(t) = f(x(t)) (104)

is sought such that

lim
t→∞

x(t) = 0 (105)

and such that this transient minimizes a quadratic objective function

J(x(t), u(t)) =

∫
∞

t=0

xT (t) ·Q · x(t) + u(t)T ·R · u(t) dt (106)

with

Q = QT ≥ 0, and R = RT > 0 (107)
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Solution

u(t) = −K · x(t), where K = R−1 ·BT · Φ (112)

The matrix Φ is the only positive definite and stabilizing solution of the

matrix Riccati equation

Φ ·B ·R−1 ·BT · Φ− Φ ·A−AT · Φ−Q = 0 (113)

Note: Φ = ΦT by construction. There are many solutions to that equation

but only one positive definite one.

Key points:

• the controller is a linear function of the state variable x(t);

• the controller is time invariant; and

• the controller requires a matrix-quadratic algebraic equation to be solved

(requires numerical procedures, “lqr” in Matlab).
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MIMO structure of the control system

0

−

+

+

+
B

A

∫

K

C

x(0) 6= 0

y(t)x(t)

Loop gain (breaking at plant input)

LLQR(s) = K · [s I − A]−1 ·B (116)

Return difference (breaking at plant input)

I + LLQR(s) = I +K · [s I −A]−1 ·B (117)
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µLQR = min
ω

|1 + LLQR(j ω)| = 1

Graphical interpretation:

Im

Re

1

-1

LLQR(jω)

Key properties:

Closed-loop system always asymptotically stable, i.e., all eigenvalues of A-B K  
have negative real parts (A-B K is Hurwitz).

Robustness properties of LQR controllers (SISO case):

1)

2)



Robustness properties of LQR controllers in the MIMO case

µLQR = min
ω

σmin{I + LLQR(s)} = 1 (120)

From this it follows that

max
ω

σmax{S(j ω)} = 1 and max
ω

σmax{T (j ω)} = 2 (121)

Singular-values of loop gains of heat exchanger example (k = 2000 (–) and 100 (- -)

W/m2)
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Lecture IX – Extensions of LQR Control
Systems, State Observers
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LQR-I Controllers (more see "Theorieblätter", here main idea)

The LQR controllers introduced so far are essentially PDn−1 controllers

(assume the system to be in observability canonical form). No integral action
is included and, hence, persistent unmeasurable disturbances cannot fully be
compensated for (unless the plant itself includes integral action in each
channel). Therefore, additional integrators must be included.

ts

r(t)=0

− −

+

+

+

+

+
B

A

∫∫

K

KI C
u(t) y(t)x(t)v(t)

d(t)
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Redraw the previous block diagram to better see how this problem can be
reformulated as a regular LQR problem

r(t)=0

−
−

+

+

+

+

+

+

B

A

∫ ∫

K

−KI

C
u(t) y(t)x(t) v(t)

d(t)

K̃
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Define the new extended system state variable

x̃(t) =

[
x(t)

v(t)

]
(125)

Then the open-loop system is described by

d

dt
x̃(t) = Ã x̃(t) + B̃u u(t) + B̃r r(t) + B̃d d(t), y(t) = C̃ x̃(t) (126)

where

Ã =

[
A 0

−C 0

]
, B̃u = B̃d =

[
B

0

]
, B̃r

[
0

I

]
, C̃

[
C 0

0 γ I

]
(127)

and the full-state feedback is u(t) = K̃ x̃(t) where K̃ is obtained solving a standard

LQR problem for the system {Ã, B̃, C̃}. Using the partition

K̃ =
[

K −KI

]
(128)

the solution to the original problem is obtained (γ is a new tuning parameter).

96



Robustness Enhancement

183
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74 4 Case Studies

As expected, the loop gains satisfy the inequality

|1 + LLQR(j ω, r)| ≥ 1, ∀ ω ∈ IR and r ∈ IR+ (4.3)

As mentioned in Section 3.5, this is one of the key properties of LQR con-
trollers: the loop gains obtained with this approach have excellent robustness
and can tolerate large modeling errors. The minimum return difference ob-
tained with this design is

µLQR = min
ω

{|1 + LLQR(j ω, r)|} ≥ 1 (4.4)

The robustness margins of standard LQR design can be improved using the
modified Riccati equation (3.40). Choosing a parameter β > 1 yields designs
with loop gains similar to the one shown in Figure 4.7 for the levitating sphere.

−1

−β

β

LLQRβ (jω)

Re

Im

Fig. 4.7. Example levitating sphere: Nyquist diagram of the open-loop gain transfer
function LLQRβ (s) = kβ [s I − A]−1b, with kβ computed using (3.40).

As mentioned in Section 3.8, the picture changes completely if only output
feedback is possible. In this case, the loop gain LLQG(j ω) can pass arbitrarily
close to the critical point −1, and very small modeling errors can destabilize
the closed-loop system. Figure 4.8 shows the two loop gains for the levitating
sphere example

LLQR(s) = k · [s I − A]−1 · b (4.5)

LLQG(s) = c · [s I − A]−1 · b · k · [s I − (A − b · k − l · c)]−1 · l (4.6)

where the gains k and l have been computed using the following weighting
factors (in Matlab notation):

k=lqr(A,b,c’*c,0.1);

l=lqr(A’,c’,b’*b,0.001)’;
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x(ta)=xa
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!  x(ta)=xa



State Observers

State-feedback controllers cannot be realized in practice, only the system 
output (and its input) are available for further processing in control 
algorithms.

Nevertheless, the state-feedback approach is very powerful when combined 
with a filter that is able to produce an estimate x̂(t) of the system’s true 
state variables x(t) using the system’s input and output signals only.
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The key idea of the observer-based state feedback approach is illustrated

below.

−
u(t)

plant
observery(t)

x̂(t)

K

Key question: how to design the "observer"?
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B̂
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Ĉ

L

ny(t)

yo(t)

∫

∫

x(0)

x̂(0)

x̂(t)

x̂(t)

y(t)

ŷ(t)

x(t)u(t)

uo(t)

observer
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Main idea: Copy plant and use "input injection"



Plant

Observer
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Observation errors

Simplified case: 

Error dynamics
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How to compute L

Dual LQR problem
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“slow” observer “fast” observer
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no
noise

some
noise
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Interpretation:
196
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