4. Many improvements



Use u(t)=-k x(t)
First idea: Place Eigenvalues of A-b k at desired locations
a(s)=s"+ap_1-s"" 4+ .. +oa-5+ o
¢=10,0,...0,1] - R~*
k=q-a(A)
Remarks:

e Obviously, complete controllability (det{R} # 0) is a necessary and
sufficient condition to be able to arbitrarily place the eigenvalues of

A—-b-k.

e Controller designs using eigenvalue placement approaches are tricky. In
the SISO case this approach can lead to acceptable results but only with

some care (robustness can be small).

e In the MIMO case this approach often fails and is not recommended (the
situation where the different channels work against each other is difficult

to avoid).



Linear-Quadratic Optimal Controllers

An approach well suited for MIMO systems that will prove to be very useful even
in output-feedback designs is obtained when the design problem is formulated as an

optimaization problem. Starting with the plant description
z(t)=A-z(t)+ B-u(t), x(0)=x0#0

a state-feedback control signal

is sought such that

lim z(t) =0
t— o0

and such that this transient minimizes a quadratic objective function

J(x(t),u(t)) = / e (t)-Q-x(t)+ult) - R-u(t)dt

=0
with
Q=Q" >0, and R=R" >0
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Solution
u(t) = —K - z(t), where K =R '.BT.®

The matrix ® is the only positive definite and stabilizing solution of the

matrix Riccati equation
. B-R!'. B -0 A—AT . d-Q=0

Note: ® = &' by construction. There are many solutions to that equation

but only one positive definite one.

Key points:
e the controller is a linear function of the state variable x(t);
e the controller is time invariant; and

e the controller requires a matrix-quadratic algebraic equation to be solved

(requires numerical procedures, “Iqr” in Matlab).
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MIMO structure of the control system

0

—+>Q—>B 1A f > ()

s
X

A

K

Loop gain (breaking at plant input)
Ligr(s)=K-[sI— A" B
Return difference (breaking at plant input)
I+ Ligr(s)=I+K-[sI—-A'-B
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Key properties:

1) Closed-loop system always asymptotically stable, i.e., all eigenvalues of A-B K
have negative real parts (A-B K is Hurwitz).

2) Robustness properties of LQR controllers (SISO case):

pror =min |l + Lrgr(jw)| =1
Graphical interpretation:

ImA

Lrgr(jw)




Robustness properties of LQR controllers in the MIMO case
PLQR = MiNomint] + Lrgr(s)} = 1
From this it follows that
mjmxamax{S(j w)} =1 and mjmxamax{T(j w)t =2

Singular-values of loop gains of heat exchanger example (k = 2000 (-) and 100 (- -)
W/m?)

singular value plot in dB

35

107? 1072 107! 10° 10"
frequency w (rad/s)
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Lecture IX — Extensions of LQR Control
Systems, State Observers
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LQR-I Controllers (more see "Theorieblitter”, here main idea)

The LQR controllers introduced so far are essentially PD"~! controllers
(assume the system to be in observability canonical form). No integral action
is included and, hence, persistent unmeasurable disturbances cannot fully be
compensated for (unless the plant itself includes integral action in each

channel). Therefore, additional integrators must be included.

d(t)
r(t)=0 o(t) o u(t) ¥+ ; z(t) y(t)
—O— ] K ~0O——O— B J e >
B R + N
A |«
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Redraw the previous block diagram to better see how this problem can be
reformulated as a regular LQR problem
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Define the new extended system state variable

d N ~ —~ ~ ~ o~
—@(t) = AZ(t) + Buu(t) + Brr(t) + Bad(t), y(t) = CE(t)
where
~ A 0 ~ ~ B ~ 0 ~ C 0
A = 3 Bu — Bd — Y Br ) C
—-C 0 0 I 0 ~I

and the full-state feedback is u(t) = K z(t) where K is obtained solving a standard
LQR problem for the system {A, B, C'}. Using the partition
F[x i)

the solution to the original problem is obtained (v is a new tuning parameter).
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Robusthness Enhancement

1 . .
=03 B-R'-B d5-03 - A-A - P5-Q=0

g >1

pg =minoy {61+ L(jw)} >

In the limit case 8 — oc
T
_@x°A_A .@'OC‘_Q:O

Lo(s) =K. -[s] — A]~! . B strictly positive real, but

&, exists iff A is a Hurwitz matrix
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Re
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Finite Horizon LQR

#(t) = A(t) - 2(t) + B(t) -ult)  x(t)=x,

J(u) =2 (ty)-P-x(ty) +

/t'b [:I‘T(U(t)) - Q(t) - x((u(t)) + U'T(t) - R(t) U(t)] At
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%gp(t)

O(t)-B(t)-R™'(t)-B (t)-B(t)— (1) A(t) — A" (1) -D(t) —Q(t)

X(t)=X,
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State Observers

State-feedback controllers cannot be realized in practice, only the system
output (and its input) are available for further processing in control

algorithms.

Nevertheless, the state-feedback approach is very powerful when combined
with a filter that is able to produce an estimate Z(t) of the system’s true

state variables x(t) using the system’s input and output signals only.
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The key idea of the observer-based state feedback approach is illustrated

below.

Y
=
Ve
~
N——"

Y

u(t) y(t) observer
plant >

JD
Y

Key question: how to design the "observer"?



Main idea: Copy plant and use "input injection”

observer n

Uo(t)
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Plant

Observer

d ) .
— (1) = A-2(t) + B - uo(t) + L - (yo(t) — 9(1))

i(t) = C - 2(t)
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Observation errors
r(t) = x(t) —2(t) € IR"

Simplified case: A = A, B = B, and C = C

n.,(t) = n,(t) = 0
Error dynamics Q (1)

d_ d d

= A-2(t)+ B u(t)— [A-2(t) + B -u(t) + L- (y(t) — 4(t))]
=A-(x(t)—2(t) — L-C-(x(t) — x(t))

=[A-L-C]-z2(t), 2(0)=2(0)—2(0)#0
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How to compute L

Dual LQR problem
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1 o
.0t .cov—yg. AT _A.v—-—B.BT =0
q

One might be tempted to choose the eigenvalues of A—L-C' much “faster”
than those of A (or later A— B K). However, two unavoidable complications
impose limitations:

o The observer is synthesized using a model {AB C b of the true plant
{A, B,C}. Of course this model is never perfect. These and other modeling
errors impose limits on the loop gain of the error dynamics (3.46),

o The input signals to the observer will always be corrupted by some noise,

, Ny (t) # 0 and n,(t) # 0. This fact imposes limits on the loop gain.
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“slow” observer

“fast” observer

no
noise

some
noise
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3.7 Kalman Filters

—x(t) = A-x(t) + B - (uo(t) + ny(t))
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In the simplest case, the two noise signals n,, and n, are assumed to be uncor-
related white noise signals. Without entering into the mathematical details of
stochastic signals, a white noise signal n(t) is defined as a signal whose spec-
trum is constant for all frequencies.

The spectrum ¢,,(w) of a scalar signal n(t) € IR is obtained using its
Fourier transform

400

n(t) = / A(w) cos (wt + d(w)) dw

by the operation
On(w) = AQ(W)

If the spectrum is constant for all frequencies, i.e., if
On(w)=m1, >0€ R

then the signal n(t) is a white noise signal. 195



¢n(w) of a scalar signal n(t) € IR is

“+00
n(t) = / A(w) cos (wt + p(w)) dw
Dn (w) = A2 (w)
Interpretation:
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These definitions can be easily extended to the case where n(t) € IR™ is a
vector signal. In this case the spectrum is a Hermitian m x m matrix @,,(w),
which, for white noise signals, is constant for all frequencies

,(w)=R, =Rl >0e R™™

n —

This matrix describes the “intensity” of a noisy signal. Below, it is assumed
that both R, > 0, associated to n,(t), and R, > 0, associated to n,(t), are
known.

Ly that minimizes the expectation of the estimation error Z(t),| This optimal

gain is defined by

Lg=P.C" R

where the matrix P = P € IR™*" is the positive (semi-)definite solution of
the Riccati equation

A-P+P-A"-P-C"R;'-C-P+B-R, B =0
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