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Continuous Time (CT): z(t) : t, t E€R, z(t) €R
Discrete Time (DT): z[n] : n €7, z{n]] € ]R{Z
Sequence: {z[n]} = {.. ., z[—1], z[0], =[1], ...

12 signal Classification
[ 0dd signal: |

|Ever| Signal: z[—n] = xz[n

z[—n] —ax[n]

Periodic Signal:
z[n + N] = z[n] = z[n + m - N],
Sum of two periodic DT sequences is always periodic.
x[n] = cos(21n + ¢1) + cos(Qgn + pg)
27 — 27k
N=5G

NeNmEezZ

Period: N

Q

27w 2w
Ng =lem | —, —
2

Constant signal N = 1

N = lem (N1, N
- ) cm (N1, N2)

nit Impulse:
5[n_k]:{(1) ::Z S[n] = s(n] — s[n — 1]
Unit Step:
1 n>k <
[n—k]:{o M slnl=
Complex Exponential:
z[n] = 2™ = |2| "eI0™ = 2] ™ (cos(Qon) + j sin(Qgn))
Sinusoidal:

z[n] = Acos(Qqn + 6)
{14 Signal Discretization
CT — DT: Uniform Sampling
@n] = @(nTs)

Ts = sampling period. fg = T
s

DT — CT: Zero Order Hold
@(t) = =[n],
Periodic Sampling: CT allways periodic with T = -ﬁd—"l, f=

= sampling frequency

nTs <t < (n+1)Ts
1

T
x(t) = cos(wt) = cos(27 ft) = x[n] = cos(2n)
n] only periodic if

Q m

wTs

— , m, N €N
27 27 N
Ts = sampling time, 2 = wTg, N fundamental period.
When sampling starts at t(, we get t = nTs + tq.

2

Systems

Operator wich transforms the input u to an output y.
y[n] = Gquln]

y(t) = Gou(t), Gy = SGcH

H is a zero order hold, so @ (t) = 0, u(t) = u[0] for 0 < t < Ts.

221 Exact Discretization

Given CT System:
q(t) = Ac - q(t) + Bo - u(t),  q(0) = q[0]
¥(t) = Co - a(t) + Do - u(®),  u(0) = u[0]

As we have a zero order hold we can write:
q(t)y] _ [A B q(t)
{ﬂ(t)} - [ Oc Oc u(t)
—_—
=M

The DT system-response is the same if the CT-input is constant during the sampling period.
If not the response differs.

} = #(t) = Mr(t)

Adjunkte:

Limit of sum:

Solution of this ODE: r(t) = eMtr(0)

< (MR Mt)2
Mt = MOT 4 oare s 8
k=0 !
As we set g(0) = q[0] and u(0) = u[0] we get:
a(Tg) a(0) Fi1 Fi2 MTs
=F F = =
[u(T;) u(0)| = Fp1  Fa3| T ¢
= Fpq = Oand Fag = I.
Discretization: g[n + 1] = A q[n] + Bgu[n]
Ag = F11, Bg=Fi2, Cq=Cc, Dg=Dec
Exact Discrete System
aln +1] = Agaln] + Bgulnl

y[n] = Cgaln] + Dguln]
Euler Forward Discretization

ing the Matrix E: ial we get:

MTT &g M = [1 + AOCTS— BCITS_}
We therefore get (Stability is not guaranteed)

222

A
PP!

Linear Constant Coefficient Difference Equations (LCCDE):

N M
Z apy[n — k] = Z bpuln — K], ap, b €R
k=0 k=0
LCCDE to State Space: (ag = 1 and by, = 0 for & > 0)
0 1 0 0 0
0 0 1 0
A= B=|"
. . : 1 0
—aN  TeN-1 TAN-2 —ay bo
C=[-aNy —aN-1 —aN-2 —a1], D = [b]

Impulse Response of LTI System: (¢[0] = 0, u[n] = §[n])

h={D,CB,CAB,...,CcA™ 'B, . ..
2.5.1 FIR/IIR +» CCDE
Given an FIR the CCDE can be calculated really easily:
y[n] = ... + h[=1]u[n 4+ 1] + h[0]u[n] + hA[1]u[n — 1] + ...
A LTI system has a FIR iff it can be brought into the following form

}

n >0

ER] = [ raem Pere] ]

Other Derivation also possible with Euler Forward approximation.
a(t+Tg ) —a(t) _
— 2 witht =n . T,

q(t) =
Ts
® Memoryless: y[n] = fp, (u[n]), output depends only on the current input.

o Causal: y[n] = fj (ulk]), k < n output depends only ond past or present inputs.

LTI Sys causal iff h[n] = O for n < 0O

If sys is causal and input is causal then output is also causal.

Linear: G{ajug[n] + agug[n]} = a1 G{u} + apG{uz}
Define y; = G{uy} and yo = G{ug}

now check if G{aju] + agug} = ajy; + agys
Time-Invariant: ug[n] = uj[n — k], y1 = Guy,ygy = Gug
— {y2[n]} = {y1ln — K]}, V n, k € Z. Delay has no effect

BIBO Stable: [z[n] < M| V n, |
Also when: 3 |h[n]| < oo

Every Signal can be represendet by:

[n]l <1

{z[n]} = @[k]{s[n — k]}

)
k

Convolution:

>

=—o0

@ h = x[k]{h[n — k]}

Properties:

o Commutative: x * h = h * x

® Associative: (z * hy) * hg = x * (h] * hg)

o Distributive:  * (h1 + hg) = x * h] + @ * hg
Impulse Response:

{h[n]} = G{s[n]}

Step Response:

{s[n]} = {hin]} = G{ >_ h[k]}

k=—o0

{r[n]} = G{s[n]}

r[n] — r[n — 1] = h[n]
Arbitrary Input Response: can also be swapped
o0

>

k=—o0

{y[n]} = G{uln]} = {u[n]} * {h[n]} = ulk]{h[n — K]}
Finite Impulse Respones FIR: h[n] = 0,vn > N, N € Z

Systems with a FIR response have all the poles at zj, = 0.

Systems of the following form allways have a FIR response:

M
yln] = > bpuln — k], MeZ
k=0

Causality:

hln — k] =0,k >n, <= h[n]=0,vyn<O0

so we get:
n
y[n] = Z hlk]uln — k], Vvn
k=0

System is stable iff:

> Ihln]l < oo

M
ylnl = > bpuln — k|
k=0

3 Frequency Domain

Complex Number: z = a + jb = |z]| ejQ, Qe (—n,
for u[n 2™ the LTI System output is:
=)
—k
{yln]} = G{z"} = > hlklz" "{z"} = H(=){z"}
k=—o0

is an eigenfunction

X(2) =

>

n=-—oo
Properties:

o Linearity: vy {@q[n]} + ag{za[n]} «— a1 X1 (2) + agXa(z)
o Time-Shifting: {z[n — k]} +— 2z~ KX (z)
Convolution: {x1[n]} * {wa[n]} «— Xq(2)Xg(2)

X(2)

z
z—1

® Accumulation: {Eg‘=i®0 z[k]} «—

e Differentiation: {nz[n]} +— —zdizX(z)

Non-Uniqueness:

The z-Transform is not unique (causal and non-causal interpretation yield the same trans-
from). Region of Convergence (ROC) should be included but will mostly be emitted as we
mostly use the causal sequence.

Usefull Transforms:

§[n] «—— 1 as[n] «— Z 12 < 1]
S[n — k] +— 27k nan] +— —zLX(2)
z[—n] +—— X(%) z*[n] —— X*(2%)
zln — k] «— 27 Fx(2)|k"2n] X(%)

3.2.1 Transfer Function (z-!
From LCCDE:

of the impuls

Cbg izl bpyem M

U(z) ag+ajz=t+.. . +anyz—N
From State Space: Inverse matrix noch reinschreiben.

1 C - Adj(zI — A) - B
H(z) = C(zI — A) B+D=——"—/—/—/——+D
det(zI — A)
From Impulse Response: causal / acausal
= k & k
H(z) = Y hlkl-2"", H(z)= > h[k] 2"
k=0 k=—o0
For h[n] = a™, |z| > |a|, causal(n > 0) / acausal (n < 0)
z z
H(z) = ——, H(z)=—
— z—a
3.2.2 Stability & Causality (p; # 1)
Causal and Stable: iff p; within unit circle |p;| < 1
Acausal and Stable: p; outside unit circle  |[p;| > 1

If a causal and stable interpretation exists, then a anti-causal unstable interpretation exists.
3.23 Stable on knowledge of causality

® causal = Poles must lie inside unit circle
® anti-causal = Poles must lie outside unit circle

o if you dont know you cant guarantee stability
3.24 Transformations
Insert Transformation into “From Impulse Response”.
G(z) = H(—z) = |G(Q)| = |H(x — Q)] : Mirroring
G(z) = H(z~1) = |G(Q)| = |H(Q)]|: Stays the same

4 Descrete Time Fourier Transform

DTFT oo-long abs. summable Theory & LTI analysis

DFS oco-long  periodic Basis of DFT
DFT finite general Used in Practice
Definition: (z-Transform at z = EjQ)
o iQ
X(Q) = Fx = Z z[nle 7 Q€ (—n, 7w

n=-—oo
X (£2) is finite for all €2 and it is continuous.
Fourier Spectra: X (2) = | X (Q)] IOX () Inverse:

1 .
{2[n]} = F~lx = {7 /" X(Q)ejnndﬂ}
27w J—m
Properties:

Linearity: a3 {1 [n]} 4+ ag{xz[n]} = a1 X1(Q) + a2 X2(2)
Convolution: {z1 [n]} * {zo[n]} = X1 (2)X2(Q)

® Parseval's Theorem: 3=, \m[n]\Q = ﬁ fl"" |X(Q)\2dﬂ

o X(Q) = el 5 2n] = §[n + a]

For ieriodic siinals we have diracs at the freiuenci Q.
tion:

H(Q) = HG)I___jo = [H(@)|SOHED
Output of an LTI System: Y (Q2) = H(Q)U (Q2)
[Y(Q)] = [HQ)]U@Q)], £Y(Q) = LH(Q) + £U(Q)
Delay: |Ho| = |Hq|, £Hy # ZHq
ha[n] = hi[n + d],
For a Real System:

Hok] = 7 42 Hy (k)

[H(Q)| = [H(=Q)|, ZH(Q)=—-ZH(-9Q)
From LCCDE:
=M bk SM b eIk
H) =N = “ HO® = O ———ar
Zk:O apz™ Zk:O ape=J

ial: {u[n]} = {eI}07}
yln] = |H(Q0)|ed (207 +OH(20))

to Complex E:

Response to Real Sinusoid: {u[n]} = cos(Qqgn)
y[n] = [H(Qq)| cos (27 + © g (20))
Both are only valid if n € (—o0, o).

5 Discrete Fourier Series
D on: periodic signal with periodicity N
N-—1
1 k2T
— 3 xmIENT, xmec
N k=0

DFS Coefficients: X = Fsz & o= F; X

N-1 ik 27
XK= > znle V"N, X[k+ N = X[k]
n=0
Properties:
e Linearity: ay {x1[n]} + ag{xz2[n]} = a1 X1 [k] + ag Xo[k]
o Parseval's Theorem: SN~ 1 [2[n]12 = L N1 | x[k])2
DFS Coefficients for a Real Signal: X [0] is allways real.
X[N -] = X"[v],

For N even, X [N /2] must be real.
LTI Response to a Perdiodic Signal: input periodic then output periodic

Yk] = H <ejk2WW> Ulk], H (JkZWW) = H(2)|

z[n] €ER, v €Z

2T
z:eJk N
DFS <— DTFT:
N-—1
27 27
X(Q)=— > X[k]§(Q2—k—)
N T N
6 Discrete Fourier Ti
Discrete Frequency: Q;, = I%fi = 2W”k — X[K]
Signal Representation:
form=0,...,N—1
fork=0,..., N —1

If the signal lenght is doubled the Coefficients are also doubeld.
{U[k]} = {4,4,1, —j} — {U[k]} = {8,0,25,0,2, —2j}

zl[n]andmZ[n]=m1[n]‘ej%an & Xolk] = Xq[k — a]

xy[n]and zg[n] = z1[n +a] <& Xg[k]:Xl[k]vejk%a




® DFS Coefficients have to be periodic with Period N

N-—-1
z

o X[0] = z[n]

has to

. ifz‘n] is real it hold: X [N — ~v] = X ™ [v]
RN SR

Multiple CT Frequencies map to the same DT Signal!
cos((2 4+ 27k)n) = cos(Q2),

New Frequency: Qp e = 27 — wTs

Restrict the sampling frequency: fmam,signal < %fsample

Vk €L

™
|w] < — = fsm
Ts

—m kg
— <w < —,
Ts Ts
System ldentification

—

|

Causal, Stable LTI System. ue known input, u g unknown input noise (white), Y4 unknown

utput noise (white), ¥y = Gue + GUg + y 4 system output.

i

7.1.1 Without White Noise
LTI System characterized by Impulse Response .

o0
—iQ
ym = Gue, H(Q) = > ym[n]le 75"
n=0
2nk

Usually the System are FIR not IIR. (Stop at N) Q2 = 2%/

> .

H(Qp) — S hnle I%km
n=N
—_—

Hy (2N to o]

Hpn(22) — 0for N — oco. Larger N higher frequency resolution.
7.1.2 With White Noise
Given System:

H(Qp) = Ymlk]

[0to N—1] [0 to o]

ym/(n] = hln] + ygqln], n
Frequency Response Estimation:
H(Qyp) = Ymlk] = H(Qy) — Hy () + Yglk]
White Noise:
E(yqln]) =0 E(yglnlyqlm]) = 055[" —m]
= E(Yqlk]) =0 E(|Yg[k]I?) = NoJ
Mean Error:

= E(F () - Hy)) N—roo

—Hp () X225 0

Mean Error Squared:

ifying the Transfer Function
Transfer Function: A and B known

B-1 —iQk
H(Q) = I
- A-1 —jiQk

1+ 30 akz"7

- !
Resulting Equation: H (2;) = H(Q;)

A-1 —iQ kN 77, B-1 —iQk

(1+Ek=1 age” 7T )H(Ql) =Sk bke T
Splitting Real and Imaginary Part:
A—1 —1
Re iRy cos(d)) + Sy ag Ry cos (¢ — k) = S by, cos (k)
s A—1 . _ «B-1 .
Im :R; sin(¢;) + g ekrRysin (¢ — kQy) = 37717 —by sin (kQy)
Resulting Least Squares:
F . © = g gisred part in upper equation

argmin((FO — )T (FO — g)) = 0* = (FTFr)~1FTy,
with

T
© = [ay a3 - bp_1l

L ap_q b by
Weighted Least Squares:

W = diag(wq, wq, - - -, w, w;) € (2L) X (2L)

o =(F wlwrm 'rTwTwy
Least Squares has Solution for:

e 2L > A + B — 1 if frequencies €2; = 0 and £2; = 7 were not tested
® 2L > A+ B ifeither Q; = 0or Q; = 7 were tested
® 2L > A+ B+ lifboth Q; = 0and Q; = 7 were tested

With A: number of a, coefficients (including ag), B: number of by, coefficients.

8 Filtering

Probebility Function:
oo
p@). [T pe)as
— 00
Expected Value and Variance:

E(z) = [p ep(x)de, Var(z) =E ((z - ]E(m))Q)

Uniform and Normal Distribution:

1, p(z) >0,vzeRr

GRS
202

<z<b
z)=4b-1 ¢=%=
(@) {0 else ’
White Noise: Signal with a flat and uncorrelated spectrum

E(X[k]) = 0, E(X*[kX[q]) = N&[k - q]

p(x) = e

2wo

White Noise can be generate with different PDF for Example uniform or Normal. For unit

q 2 2 2 N—oo
JE(|H(Qk) — H(Qp)| ) = HY (Qp) + No2 T2 oo
wu g has similar effect. Bigger IV results in bigger error!!!

Solution:
Increase Amplitude (could lead to saturation or non-linear effects).

Robustness: Both Energys grow linear with N.

Energy of Input is concentrated to one Frequency.

Energy of Noise is spread across all Frequencies.

Transient Behaviour: Choose N to let Transient die down

System and Input: Base Frequency = ; = Zﬁ"l.
2T 0n
ym = Gue +yq, uel e N'", ne€[0,Np+ N -—1]

Output: w[n] = transient
veln] = H(Q)ueln] — wn]
Take DFT: for n > N

T — Ym[l] _ _w o Yqlll
H(y) = o = H) e+ 4
W [l] DFT of transient, Y4 [] DFT of Noise
Mean Error:
=3 W] N—
]E(H(Ql) _ H(Ql)) - _4NL1 Nooo

Mean Error Squared:

2

2 o

= 2 w2 N—

E(1H(Q) — HQ)I?) = T[1 + 7y Noee,y

7.21 Experimental Procedure (same for closed loop)

e Chose N, N and A

o weln] = Acos(n), o = 28L, 1¢e[o, N71
Np+N—1 _

o Calculate Yy, [I] = anzvt ymlnle TN U ) = NA

o Estimate H(Q;) := }z,};l[[zl]] and repeat for all L.

= 0: 1 equation, £ # 0: 2 equations — N = 2 - [ — 1 equations

variance the amplitude of whitenoise has to be v/3 ifor unifrom dist.i

Median Filter:
y[n] = median n—M/2],...,uln],...,uln+ M/2])
Non-Causal Filters: Better but Computationally Expensive
. -1
DFT FD—Manip (DFT)
{u[n]} {U[k]} {YIk]} {y[n]}

Non-Causal Filtering with a Causal Filter:
¥ = Gu with G real, causal, LTI filter with H (z)

let G real, anti-causal, LTl filter with H (2~ 1) = ¢y = Gy = GGu
Y (1) = HEe I H (YU (I = [H(ID2U (D)
Because for Real Filters we have: H* (ejﬂ> = H(eijg)

9 Finite Impulse Response Filters (FIR

Difference Equation of an FIR Filter:

—1
y[n] Z bruln — k], by €R
k=0
M number of coefficients (filter length), M — 1 order, FIR always stable p; = 0.
A causal, LTI, FIR filter of order M — 1 has at least M — 1 poles at zp = 0.
Filter length is equal to the length of the impulse response given by:

ho={bg,by,-.- bpr_1}
Frequency Response:
M-—1 b med® M-—1 )
H(z)= 3 hiklz"F 22 mo) = 3 be 9920
k=0 k=0

Low-Pass (LP) FIR Filter:

M—-1
yinl = 4 Theo uln—k = b= <+
Frequency Response:
M—1 —iQM
1 ; 1 (1—e
H(Q) = — R L Gl i )
M = M (1 - ei9)

H(0) = 1. H(Q) =0fork # Oork # AM. Qzepo = 2ZE.

Magnitude: sinc(z) = %w—)

sinc (QM/2)

|H(Q)| = ~ |sinc (QTM)|fovsmaIIQ
sinc (92/2)
Phase Response:
Q(M — 1)
LH(Q) ~ —
2

9.1.1 Fast Moving Average Filter
Fast MA Filter: Computationally more efficient

yln] = yln — 1] 4 wrl=uln=M] 4 4

Causion: Errors are summed up

v(z) = Jue + (1= ) oo
yinl = 2 SM P uln — k] + SP_g dln — k]

9.1.2 Weighted MA Filter
D on: w, is a decreasing function of k
M-1 M—-1
1 w
k
ylnl = — > wiuln—k], S: > —F =1
S k=0 k=0 S

Common Choice:

- 5= MM+

wy = (M — k),
Less emphasis on older inputs — less aggressive with smaller phase response.
9.13 Non-Causal MA Filter
Impules Response: M odd, includes all inputs

Definition: o — 1 more constant, stable: o € [0, 1), H(0) =

1—-«a
y[n] = ay[n — 1] 4+ (1 — a)u[n] — H(z) =
1—az— 1
Resp second i lity holds for Q € [0, ]
11—« d|H(Q)|
[H(Q)| = , <
V(1 = acos )2 +a2sin2 0 aQ
Phase Response: for 2 € [0, 7]
_ —asin Q
ZH(Q) = arctan ([=5%550)
Phase Limit: —7 /2 < ZH(Q) <0
10.1.1 ions.
« to Determine Decay Time. y(T(g) = e~ 1
, oy _Is -
y[a]:ani671 — a=e n =c 10 NI—TS
———
1st Order

Ee!lmtmn: K is t!e or!er. Eutterwort! is Haxima ly Flat
1 dR
R(w) = s
V14 w2K

Transfer Function: Steeper Slope = More Phase Delay
1

— <0,Vw>0
dw

_ _ J(2k+E—1)7
A ———
k=1 \w¢ k
! T
sTs _ S s
()
o z+1

Ts ~
I3
s is mapped into Unit Circle in z(stability guaranteed).

Mapping: z =
apping: z e i T5
=jw, w € (—00,0) = Q€ (-7, 7).

:
Ts '’

2

Ts

s

1—s

Left Imaginary Plane in
F :

1 1 1
h={0, —,..., —, , —,0}
M M M
T
Frequency Response:
M-—1 ) M-—1 ) —1
1 — (k- 22—
HO) = — 3 o’ (+=37) ¥y o
M g=o
" _ y M—1,, de i
M A (§2) = freq. resp. of causal Filter, Added Phase of Q(—5—) is the
same.
9.1.4 Non-Causal WMA Filter
1 > .
h[n] = —h[n], S = Z h[n]
5 k=—o0

No Phase Delay and Good Low Pass Behaviour.

H(z) — H(z"') — H()HGEY
iz Jz_ ) H)Hz )

causal anti—causal non—causal
H(z) causal M coeff. phase shift
H(z— 1 ) anti-causal M coeff. phase shift
H(z)H(z— 1 ) non-causal 2M — 1 coeff. no shift
9.15 Phase

— ZH(£2)/Q = Number of Samples being delayed

Linear Phase (constand delay) is good for audio but not necessary for control.
9.1.6 Differentiation With FIR Filters

Differentiating the Input Signal y(t) = ()

Causal A-Causal N-Causal
u(t) u(t)—u(t—7) uw(+r)—u(t) ul+7)—ult—71)
T T
yin] lnl=tln—1] wntl]—uln] ulntl]—uln—1]
Ts Ts s

Frequency Response: u(t) = e/t u(t) = jwel @t

1_e—dQ  gje—i/2
Ho(@) = 154" = “Tsmﬂ
Hy(Q) = h%issinj, HN(m:TLSsinQ

10 Infinite Impulse Response Filter (IIR)

Difference Equation of a causal IR Filter:

M—1 N-1
ylnl = Y bpuln —kl — > apyln — k], ap,by €R
k=0 k=1

Usually Infinite Lenght. Not Nescessarily Stable!!!
Order of filter: max(M — 1, N — 1) equals:

@ the number of delay elements an implementation of the filter would require
@ the size of the state in a state-space description of the system

Advantage: Meets Specification at lower order.
Transfer Function and Frequency Response:

M-1, _—k
Zk:o by z
1+ SN ek

M-—1 —JiQk
g bre ™’

H(z) = T N—1  _on
14 Z,’C\’:ll ap =ik

— H(Q) =

s

g

— Q = 2arctan ( WTs for wTs |

)

ST
10.3.1 q y Pi ping (Billinear )
Frequency Maping only good for Low w!!l — Pre-Wrap Frequency
2
— tan | ———

-)

Ts
wi = Desired Freiuenci, Di = Used Freiuenci

weTs

©e

Preserve Stability: left plane/inside circle to left plane/inside circle
® map jw-axis/unit circle to jw-axis/unit circle

mapw=0—> w=ocandw =00 - w =20

mapR=0—->Q=wandQ=m - Q=0

1 s
s— — Hgp|— | =Hpp
s we

z =

s

>7l>
Hpp(z) = Hpp(—=2)
Causion: This shift Qc by 150 Q. 1 p =7 — Q. gp

!T Low-Pass and High-Pass to Band-Pass:

Hpp(s) = HLp(s)Hpp(s) ifwg/w; > 1
s
we = w] — wo, ws = /WoW]

s2+w§
s
DT Low-Pass to Band-Pass: = — — =z
(106 Band-Stop Filter
Hpg(s) = Hyp(s) + Hyp(s) ifwy/wg > 1

We

-z

CT Low-Pass to Band-Pass: s —

2+w2

Hpp (%c) = HLp (875 oo

Band-Stop Filter with very narrow band and H 5y (we) = 0.
Second Order Band-Stop Filter:

2 2
s +AL)
HNO(s) = 55—

() s +\/§swc+wc
Cosine and Sine

W 4 e—iw Jjw —Jjw
cos(w) = ———,
2

e
sin(w) =

—e

23

cos(w - g) = sin(w), sin(w + g) = cos(w)




