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1 Signals

1.1 Signal Definition: Z = {. . . ,−1, 0, 1, . . .}
Continuous Time (CT): x(t) : t, t ∈ R, x(t) ∈ R
Discrete Time (DT): x[n] : n, n ∈ Z, x[n] ∈ R/Z
Sequence: {x[n]} = {. . . , x[−1], x[0], x[1], . . .}
1.2 Signal Classification

Even Signal: x[−n] = x[n] Odd Signal: x[−n] = −x[n]

Periodic Signal:

x[n + N] = x[n] = x[n + m · N], N ∈ N,m ∈ Z
Sum of two periodic DT sequences is always periodic.

x[n] = cos(Ω1n + φ1) + cos(Ω2n + φ2)

Period: N0 = 2π
Ω

, N = 2πk
Ω

N0 = lcm

(
2π

Ω1

,
2π

Ω1

)
= lcm (N1, N2)

Constant signal N = 1
1.3 Basic Signals
Unit Impulse:

δ[n − k] =

{
1 n = k
0 n ̸= k

, δ[n] = s[n] − s[n − 1]

Unit Step:

s[n − k] =

{
1 n ≥ k
0 n < k

, s[n] =
n∑

k=−∞
δ[k]

Complex Exponential:

x[n] = z
n

= |z|ne
jΩ0n

= |z|n(cos(Ω0n) + j sin(Ω0n))

Sinusoidal:

x[n] = A cos(Ω0n + θ)

1.4 Signal Discretization

CT→ DT: Uniform Sampling

x[n] = x(nTs)

Ts = sampling period. fs = 1
Ts

= sampling frequency

DT→ CT: Zero Order Hold

x(t) = x[n], nTs ≤ t < (n + 1)Ts

Periodic Sampling: CT allways periodic with T = 2π
|ω| , f = 1

T

x(t) = cos(ωt) = cos(2πft) ⇒ x[n] = cos(Ωn)

x[n] only periodic if

ωTs

2π
=

Ω

2π
=

m

N
, m,N ∈ N

Ts = sampling time, Ω = ωTs , N0 fundamental period.
When sampling starts at t0 , we get t = nTs + t0 .

2 Systems

2.1 System Definition

Operator wich transforms the input u to an output y.

y(t) = GCu(t), y[n] = Gdu[n] Gd = SGcH

H is a zero order hold, so u̇(t) = 0, u(t) = u[0] for 0 ≤ t < Ts .

2.2 System Discretization

2.2.1 Exact Discretization

Given CT System:

q̇(t) = Ac · q(t) + BC · u(t), q(0) = q[0]

y(t) = CC · q(t) + DC · u(t), u(0) = u[0]

As we have a zero order hold we can write:[
q̇(t)
u̇(t)

]
=

[
AC BC
0 0

]
︸ ︷︷ ︸

=M

[
q(t)
u(t)

]
⇒ ṙ(t) = Mr(t)

The DT system-response is the same if the CT-input is constant during the sampling period.
If not the response differs.

Adjunkte:

adj

[
a b
c d

]
⇒
[

d −b
−c a

]
Limit of sum:

∞∑
k=0

a
k

=
1

1 − a
,
∞∑

k=1

a
k

=
a

1 − a

Solution of this ODE: r(t) = eMtr(0)

e
Mt

=
∞∑

k=0

(Mt)k

k!
= I + Mt +

(Mt)2

2
+ . . .

As we set q(0) = q[0] and u(0) = u[0] we get:[
q(T−s )

u(T−s )

]
= F

[
q(0)
u(0)

]
⇒ F =

[
F11 F12
F21 F22

]
= e

MTs

⇒ F21 = 0 and F22 = I.
Discretization: q[n + 1] = Adq[n] + Bdu[n]

Ad = F11, Bd = F12, Cd = Cc, Dd = Dc

Exact Discrete System

q[n + 1] = Adq[n] + Bdu[n]

y[n] = Cdq[n] + Ddu[n]

2.2.2 Euler Forward Discretization

Approximating the Matrix Exponential we get:

e
MT−s ≈ I + MT

−
s =

[
I + ACT−s BCT−s

0 I

]
We therefore get (Stability is not guaranteed)[

q[n + 1]
u[n + 1]

]
=

[
I + ACT−s BCT−s

0 I

] [
q[n]
u[n]

]
Other Derivation also possible with Euler Forward approximation.

q̇(t) ≈
q(t + T−s ) − q(t)

T
−
s

, witht = n · T−s

2.3 System Classification

• Memoryless: y[n] = fn(u[n]), output depends only on the current input.

• Causal: y[n] = fk(u[k]), k ≤ n output depends only ond past or present inputs.

LTI Sys causal iff h[n] = 0 for n < 0
If sys is causal and input is causal then output is also causal.

• Linear: G{α1u1[n] + α2u2[n]} = α1G{u1} + α2G{u2}
Define y1 = G{u1} and y2 = G{u2}
now check if G{α1u1 + α2u2} = α1y1 + α2y2

• Time-Invariant: u2[n] = u1[n − k], y1 = Gu1, y2 = Gu2
→ {y2[n]} = {y1[n − k]}, ∀n, k ∈ Z. Delay has no effect

• BIBO Stable: |x[n] ≤ M| ∀ n, |u[n]| ≤ 1
Also when:

∑
|h[n]| < ∞

2.4 LTI System Response

Every Signal can be represendet by:

{x[n]} =
∞∑

k=−∞
x[k]{δ[n − k]}

Convolution:

x ∗ h =
∞∑

k=−∞
x[k]{h[n − k]}

Properties:

• Commutative: x ∗ h = h ∗ x

• Associative: (x ∗ h1) ∗ h2 = x ∗ (h1 ∗ h2)

• Distributive: x ∗ (h1 + h2) = x ∗ h1 + x ∗ h2

Impulse Response:

{h[n]} = G{δ[n]}
Step Response:

{r[n]} = G{s[n]} = {s[n]} ∗ {h[n]} = G{
n∑

k=−∞
h[k]}

r[n] − r[n − 1] = h[n]

Arbitrary Input Response: can also be swapped

{y[n]} = G{u[n]} = {u[n]} ∗ {h[n]} =
∞∑

k=−∞
u[k]{h[n − k]}

Finite Impulse Respones FIR: h[n] = 0, ∀n ≥ N,N ∈ Z
Systems with a FIR response have all the poles at zp = 0.

Systems of the following form allways have a FIR response:

y[n] =
M∑

k=0

bku[n − k], M ∈ Z

Causality:

h[n − k] = 0, k > n, ⇐⇒ h[n] = 0, ∀n < 0

so we get:

y[n] =
n∑

k=0

h[k]u[n − k], ∀n

System is stable iff: ∑
|h[n]| < ∞

2.5 Linear Constant Coefficient Difference Equations

Linear Constant Coefficient Difference Equations (LCCDE):

N∑
k=0

aky[n − k] =
M∑

k=0

bku[n − k], ak, bk ∈ R

LCCDE to State Space: (a0 = 1 and bk = 0 for k > 0)

A =


0 1 0 . . . 0
0 0 1 . . . 0

.

.

.

.

.

.

.

.

.

.
.
. 1

−aN −aN−1 −aN−2 . . . −a1

 , B =


0

.

.

.
0
b0


C =

[−aN −aN−1 −aN−2 . . . −a1
]
, D = [b0]

Impulse Response of LTI System: (q[0] = 0, u[n] = δ[n])

h = {D,CB,CAB, . . . , CA
n−1

B, . . . } n ≥ 0

2.5.1 FIR/IIR↔ CCDE
Given an FIR the CCDE can be calculated really easily:

y[n] = ... + h[−1]u[n + 1] + h[0]u[n] + h[1]u[n − 1] + ...

A LTI system has a FIR iff it can be brought into the following form

y[n] =
M∑

k=0

bku[n − k]

3 Frequency Domain

Complex Number: z = a + jb = |z| ejΩ, Ω ∈ (−π, π]

3.1 Eigenfunction

for u[n] = zn the LTI System output is:

{y[n]} = G{zn} =
∞∑

k=−∞
h[k]z

−k{zn} = H(z){zn}

H(z) is called the eigenvalue and {zn} is an eigenfunction
3.2 Z-Transform
Definition: Given a sequence {x[n]}

X(z) =
∞∑

n=−∞
x[n]z

−n
, z ∈ C

Properties:

• Linearity: α1{x1[n]} + α2{x2[n]} ←→ α1X1(z) + α2X2(z)

• Time-Shifting: {x[n − k]} ←→ z−kX(z)

• Convolution: {x1[n]} ∗ {x2[n]} ←→ X1(z)X2(z)

• Accumulation: {
∑n

k=−∞ x[k]} ←→ z
z−1

X(z)

• Differentiation: {nx[n]} ←→ −z d
dz

X(z)

Non-Uniqueness:
The z-Transform is not unique (causal and non-causal interpretation yield the same trans-
from). Region of Convergence (ROC) should be included but will mostly be emitted as we
mostly use the causal sequence.
Usefull Transforms:

δ[n] ←→ 1 ans[n] ←→ z
z−a

, | a
z

< 1|

δ[n − k] ←→ z−k nx[n] ←→ −z d
dz

X(z)

x[−n] ←→ X
(
1
z

)
x∗[n] ←→ X∗(z∗)

x[n − k] ←→ z−kX(z) knx[n] ←→ X
(
z
k

)
3.2.1 Transfer Function (z-transform of the impuls response)

From LCCDE:

H(z) =
Y (z)

U(z)
=

b0 + b1z−1 + . . . + bMz−M

a0 + a1z−1 + . . . + aNz−N

From State Space: Inverse matrix noch reinschreiben.

H(z) = C(zI − A)
−1

B + D =
C · Adj(zI − A) · B

det(zI − A)
+ D

From Impulse Response: causal / acausal

H(z) =

∞∑
k=0

h[k] · z−k
, H(z) =

−1∑
k=−∞

h[k] · z−k

For h[n] = an, |z| > |a| , causal(n ≥ 0) / acausal (n < 0)

H(z) =
z

z − a
, H(z) = −

z

z − a

3.2.2 Stability & Causality (pi ̸= 1)
Causal and Stable: iff pi within unit circle |pi| < 1
Acausal and Stable: pi outside unit circle |pi| > 1
If a causal and stable interpretation exists, then a anti-causal unstable interpretation exists.

3.2.3 Stable on knowledge of causality

• causal⇒ Poles must lie inside unit circle

• anti-causal⇒ Poles must lie outside unit circle

• if you dont know you cant guarantee stability

3.2.4 Transformations

Insert Transformation into “From Impulse Response”.
G(z) = H(−z) → |G(Ω)| = |H(π − Ω)| : Mirroring

G(z) = H(z−1) → |G(Ω)| = |H(Ω)| : Stays the same

4 Descrete Time Fourier Transform

DTFT ∞-long abs. summable Theory & LTI analysis
DFS ∞-long periodic Basis of DFT
DFT finite general Used in Practice

Definition: (z-Transform at z = ejΩ)

X(Ω) = Fx =
∞∑

n=−∞
x[n]e

−jΩn
, Ω ∈ (−π, π]

X(Ω) is finite for all Ω and it is continuous.

Fourier Spectra: X(Ω) = |X(Ω)| ejΘX (Ω) Inverse:

{x[n]} = F−1
X :=

{
1

2π

∫ π

−π
X(Ω)e

jΩn
dΩ

}
Properties:

• Linearity: a1{x1[n]} + a2{x2[n]} = a1X1(Ω) + a2X2(Ω)

• Convolution: {x1[n]} ∗ {x2[n]} = X1(Ω)X2(Ω)

• Parseval’s Theorem:
∑

n |x[n]|2 = 1
2π

∫π
−π |X(Ω)|2dΩ

• X(Ω) = ejaΩ → x[n] = δ[n + a]

For periodic signals we have diracs at the frequency Ω.
4.1 Frequency Response of LTI System
Definition:

H(Ω) = H(z)|
z=ejΩ

= |H(Ω)|ejΘH (Ω)

Output of an LTI System: Y (Ω) = H(Ω)U(Ω)

|Y (Ω)| = |H(Ω)| |U(Ω)| ,∠Y (Ω) = ∠H(Ω) + ∠U(Ω)

Delay: |H2| = |H1| , ∠H2 ̸= ∠H1

h2[n] = h1[n + d], H2[k] = e
j·d·Ω

H1[k]

For a Real System:

|H(Ω)| = |H(−Ω)| , ∠H(Ω) = −∠H(−Ω)

From LCCDE:

H(z) =

∑M
k=0 bkz−k∑N
k=0

akz−k
←→ H(Ω) =

∑M
k=0 bke−jΩk∑N
k=0

ake−jΩk

Response to Complex Exponential: {u[n]} = {ejΩ0n}

y[n] = |H(Ω0)|ej
(
Ω0n+ΘH (Ω0)

)
Response to Real Sinusoid: {u[n]} = cos(Ω0n)

y[n] = |H(Ω0)| cos
(
Ω0n + ΘH (Ω0)

)
Both are only valid if n ∈ (−∞,∞).

5 Discrete Fourier Series

Definition: periodic signal with periodicity N

x[n] =
1

N

N−1∑
k=0

X[k]e
jk 2π

N
n
, X[k] ∈ C

DFS Coefficients: X = Fsx ⇔ x = F−1
s X

X[k] =

N−1∑
n=0

x[n]e
−jk 2π

N
n
, X[k + N] = X[k]

Properties:

• Linearity: a1{x1[n]} + a2{x2[n]} = a1X1[k] + a2X2[k]

• Parseval’s Theorem:
∑N−1

n=0 |x[n]|2 = 1
N

∑N−1
k=0

|X[k]|2

DFS Coefficients for a Real Signal: X[0] is allways real.

X[N − γ] = X
∗
[γ], x[n] ∈ R, γ ∈ Z

For N even, X[N/2] must be real.
LTI Response to a Perdiodic Signal: input periodic then output periodic

Y [k] = H

(
e
jk 2π

N

)
U[k], H

(
e
jk 2π

N

)
= H(z)|

z=e
jk 2π

N

DFS←→ DTFT:

X(Ω) =
2π

N

N−1∑
k−0

X[k]δ(Ω − k
2π

N
)

6 Discrete Fourier Transform (DFT) / (Algorithm FFT)

Discrete Frequency: Ωk = 2π
Nk

= 2π
N

k → X[K]

Signal Representation:

x[n] =
1

N

N−1∑
k=0

X[k]e
jk 2π

N
n

for n = 0, . . . , N − 1

DFT Coefficients:

X[k] =

N−1∑
n=0

x[n]e
−jk 2π

N
n

for k = 0, . . . , N − 1

If the signal lenght is doubled the Coefficients are also doubeld.

{U[k]} = {4, j, 1,−j} → {U[k]} = {8, 0, 2j, 0, 2,−2j}
6.1 Shifting

x1[n] and x2[n] = x1[n] · ej
2π
N

an ⇔ X2[k] = X1[k − a]

x1[n] and x2[n] = x1[n + a] ⇔ X2[k] = X1[k] · ejk
2π
N

a

1



6.2 Checks if Sequence can be DFS Coefficients of x[n] which has period N

• DFS Coefficients have to be periodic with Period N

• X[0] =
N−1∑
n=0

x[n]

• if x[n] is real it has to hold: X[N − γ] = X∗[γ]
⇒ |X[N − γ]| = |X[γ]|

6.3 Aliasing

Multiple CT Frequencies map to the same DT Signal!

cos((Ω + 2πk)n) = cos(Ω), ∀ k ∈ Z
New Frequency: Ωnew = 2π − ωTs
Restrict the sampling frequency: fmax,signal < 1

2
fsample

−π

Ts
< ω <

π

Ts
, → |ω| <

π

Ts
= fsπ

7 System Identification

Causal, Stable LTI System. ue known input, ud unknown input noise (white), yd unknown

output noise (white), ym = Gue + GUd + yd system output.

7.1 Impulse Response, {ue[n]} = {δ[n]}
7.1.1 Without White Noise

LTI System characterized by Impulse Response .

ym = Gue, H(Ω) =
∞∑

n=0

ym[n]e
−jΩn

Usually the System are FIR not IIR. (Stop at N) Ωk = 2πk
N

Ĥ(Ωk) := Ym[k]︸ ︷︷ ︸
[0 to N−1]

= H(Ωk)︸ ︷︷ ︸
[0 to∞]

−
∞∑

n=N

h[n]e
−jΩkn

︸ ︷︷ ︸
HN (Ωk)[N to∞]

HN (Ω) → 0 for N → ∞. Larger N higher frequency resolution.
7.1.2 With White Noise
Given System:

ym[n] = h[n] + yd[n], n = 0, 1, . . . , N − 1

Frequency Response Estimation:

Ĥ(Ωk) = Ym[k] = H(Ωk) −HN (Ωk) + Yd[k]

White Noise:

E(yd[n]) = 0 E(yd[n]yd[m]) = σ
2
yδ[n −m]

⇒ E(Yd[k]) = 0 E(|Yd[k]|2) = Nσ
2
y

Mean Error:

⇒ E
(
Ĥ(Ωk) −H(Ωk)

)
= −HN (Ωk)

N→∞−−−−−→ 0

Mean Error Squared:

E
(
|Ĥ(Ωk) −H(Ωk)|2

)
= H

2
N (Ωk) + Nσ

2
y

N→∞−−−−−→ ∞

ud has similar effect. Bigger N results in bigger error!!!
Solution:
Increase Amplitude (could lead to saturation or non-linear effects).

7.2 Sinusoidal Response

Robustness: Both Energys grow linear with N .
Energy of Input is concentrated to one Frequency.
Energy of Noise is spread across all Frequencies.
Transient Behaviour: Choose NT to let Transient die down

System and Input: Base Frequency = Ωl = 2π
N

l.

ym = Gue + yd, ue[n] = e
j 2π

N
ln

, n ∈ [0, NT + N − 1]

Output: w[n] = transient

ye[n] = H(Ωl)ue[n] − w[n]

Take DFT: for n ≥ NT

Ĥ(Ωl) :=
Ym[l]
Ue[l]

= H(Ωl) −
W [l]
N

+
Yd[l]
N

W [l] DFT of transient, Yd[l] DFT of Noise
Mean Error:

E
(
Ĥ(Ωl) −H(Ωl)

)
= −W [l]

N
N→∞−−−−−→ 0

Mean Error Squared:

E
(
|Ĥ(Ωl) −H(Ωl)|

2
)

=
W2[l]

N2 +
σ2
y

N
N→∞−−−−−→ 0

7.2.1 Experimental Procedure (same for closed loop)

• Chose NT , N and A

• ue[n] = A cos
(
Ωln

)
, Ωl = 2πl

N
, l ∈ [0, N−1

2
]

• Calculate Ym[l] =
∑NT +N−1

n=Nt
ym[n]e−jΩln , Ue[l] = NA

2

• Estimate Ĥ(Ωl) :=
Ym[l]
Ue[l]

and repeat for all l.

Ω = 0: 1 equation, Ω ̸= 0: 2 equations→ N = 2 · l − 1 equations

7.2.2 Identifying the Transfer Function

Transfer Function: A and B known

H(Ω) =

∑B−1
k=0

bke−jΩk

1 +
∑A−1

k=1
akz−jΩk

Resulting Equation: Ĥ(Ωl)
!
= H(Ωl)(

1 +
∑A−1

k=1
ake−jΩlk

)
Ĥ(Ωl) =

∑B−1
k=0

bke−jΩlk

Splitting Real and Imaginary Part:

Re :Rl cos
(
ϕl
)
+
∑A−1

k=1
akRl cos (ϕl − kΩl) =

∑B−1
k=0

bk cos (kΩl)

Im :Rl sin
(
ϕl
)
+
∑A−1

k=0
akRl sin (ϕl − kΩl) =

∑B−1
k=1

−bk sin (kΩl)

Resulting Least Squares:

F · Θ = g g is red part in upper equation

argmin((FΘ − g)
T

(FΘ − g)) ⇒ Θ
∗

= (F
T

F )
−1

F
T

g

with

Θ = [a1 a2 . . . aA−1 b0 b1 . . . bB−1]
T

Weighted Least Squares:

W = diag(w0, w0, . . . , wl, wl) ∈ (2L) × (2L)

Θ
∗

= (F
⊤

W
⊤

WF )
−1

F
⊤

W
⊤

Wg

Least Squares has Solution for:

• 2L ≥ A + B − 1 if frequencies Ωl = 0 and Ωl = π were not tested

• 2L ≥ A + B if either Ωl = 0 or Ωl = π were tested

• 2L ≥ A + B + 1 if both Ωl = 0 and Ωl = π were tested

With A: number of ak coefficients (including a0), B: number of bk coefficients.

8 Filtering

8.1 Probebility Theory & Definition

Probebility Function:

p(x),

∫ ∞
−∞

p(x)dx = 1, p(x) ≥ 0, ∀ x ∈ R

Expected Value and Variance:

E(x) =
∫
R xp(x)dx, Var(x) = E

(
(x − E(x))2

)
Uniform and Normal Distribution:

p(x) =

{
1

b−1
a ≤ x ≤ b

0 else
, p(x) = 1√

2πσ2
e
− (x−µ)2

2σ2

White Noise: Signal with a flat and uncorrelated spectrum

E(X[k]) = 0, E
(
X
∗
[k]X[q]

)
= Nδ[k − q]

White Noise can be generate with different PDF for Example uniform or Normal. For unit

variance the amplitude of whitenoise has to be
√

3 (for unifrom dist.)
8.2 Non-Linear Filtering
Median Filter:

y[n] = median (u[n −M/2], . . . , u[n], . . . , u[n + M/2])

8.3 Non-Causal Filtering

Non-Causal Filters: Better but Computationally Expensive

{u[n]} DFT−−−−→ {U[k]}
FD−Manip
−−−−−−−−−→ {Y [k]}

(DFT)−1
−−−−−−−−→ {y[n]}

Non-Causal Filtering with a Causal Filter:
ỹ = Gu with G real, causal, LTI filter with H(z)

let G̃ real, anti-causal, LTI filter with H(z−1)⇒ y = G̃ỹ = G̃Gu

Y (e
jΩ

) = H(e
−jΩ

)H(e
jΩ

)U(e
jΩ

) = |H(e
jΩ

)|2U(e
jΩ

)

Because for Real Filters we have: H∗(ejΩ) = H(e−jΩ)

9 Finite Impulse Response Filters (FIR)

Difference Equation of an FIR Filter:

y[n] =

M−1∑
k=0

bku[n − k], bk ∈ R

M number of coefficients (filter length), M − 1 order, FIR always stable pi = 0.
A causal, LTI, FIR filter of order M − 1 has at least M − 1 poles at zp = 0.

Filter length is equal to the length of the impulse response given by:

h = {b0, b1, . . . , bM−1}

Frequency Response:

H(z) =

M−1∑
k=0

h[k]z
−k z=ejΩ−−−−−−→ H(Ω) =

M−1∑
k=0

bke
−jΩk

9.1 Moving Average Filter

Low-Pass (LP) FIR Filter:

y[n] = 1
M

∑M−1
k=0

u[n − k] ⇒ bk = 1
M

Frequency Response:

H(Ω) =
1

M

M−1∑
k=0

e
−jΩk

=
1

M

(1 − e−jΩM )

(1 − e−jΩ)

H(0) = 1. H(Ω) = 0 for k ̸= 0 or k ̸= λM . Ωzero = 2πk
M

.

Magnitude: sinc(x) =
sin(x)

x

|H(Ω)| =

∣∣∣∣∣ sinc (ΩM/2)

sinc (Ω/2)

∣∣∣∣∣ ≈ |sinc (ΩM
2

)
| for small Ω

Phase Response:

∠H(Ω) ≈ −
Ω(M − 1)

2

9.1.1 Fast Moving Average Filter

Fast MA Filter: Computationally more efficient

y[n] = y[n − 1] +
u[n]−u[n−M]

M
(+d[n])

Causion: Errors are summed up

Y (z) = 1
M

(
1−z−M

1−z−1

)
U(z) +

(
1

1−z−1

)
D(z)

y[n] = 1
M

∑M−1
k−0

u[n − k] +
∑n

k−0 d[n − k]

9.1.2 Weighted MA Filter
Definition: wk is a decreasing function of k

y[n] =
1

S

M−1∑
k=0

wku[n − k], S :

M−1∑
k=0

wk

S
= 1

Common Choice:

wk = (M − k), ⇒ S =
M(M+1)

2

Less emphasis on older inputs→ less aggressive with smaller phase response.
9.1.3 Non-Causal MA Filter
Impules Response: M odd, includes all inputs

h = {0,
1

M
, . . . ,

1

M
↑

, . . . ,
1

M
, 0}

Frequency Response:

H(Ω) =
1

M

M−1∑
k=0

e
−jΩ

(
k−M−1

2

)
= e

jΩM−1
2 HMA(Ω)

HMA(Ω) = freq. resp. of causal Filter, Added Phase of Ω(M−1
2

) Magnitude is the
same.
9.1.4 Non-Causal WMA Filter

h[n] =
1

S
h̃[n], S =

∞∑
k=−∞

h̃[n]

No Phase Delay and Good Low Pass Behaviour.

H(z)︸ ︷︷ ︸
causal

→ H(z
−1

)︸ ︷︷ ︸
anti−causal

→ H(z)H(z
−1

)︸ ︷︷ ︸
non−causal

H(z) causal M coeff. phase shift

H(z−1) anti-causal M coeff. phase shift

H(z)H(z−1) non-causal 2M − 1 coeff. no shift
9.1.5 Phase
−∠H(Ω)/Ω ⇒ Number of Samples being delayed
Linear Phase (constand delay) is good for audio but not necessary for control.
9.1.6 Differentiation With FIR Filters
Differentiating the Input Signal y(t) = u̇(t)

Causal A-Causal N-Causal

y(t)
u(t)−u(t−τ)

τ
u(t+τ)−u(t)

τ
u(t+τ)−u(t−τ)

2τ

y[n]
u[n]−u[n−1]

Ts

u[n+1]−u[n]
Ts

u[n+1]−u[n−1]
Ts

Frequency Response: u(t) = ejωt , u̇(t) = jωejωt

HC (Ω) = 1−e−jΩ

Ts
=

2je−jΩ/2

Ts
sin Ω

2

HA(Ω) =
2jejΩ/2

Ts
sin Ω

2
, HN (Ω) =

j
Ts

sin Ω

10 Infinite Impulse Response Filter (IIR)

Difference Equation of a causal IIR Filter:

y[n] =

M−1∑
k=0

bku[n − k] −
N−1∑
k=1

aky[n − k], ak, bk ∈ R

Usually Infinite Lenght. Not Nescessarily Stable!!!
Order of filter: max(M − 1, N − 1) equals:

• the number of delay elements an implementation of the filter would require

• the size of the state in a state-space description of the system

Advantage: Meets Specification at lower order.
Transfer Function and Frequency Response:

H(z) =

∑M−1
k=0

bkz−k

1 +
∑N−1

k=1
akz−k

→ H(Ω) =

∑M−1
k=0

bke−jΩk

1 +
∑N−1

k=1
akz−jΩk

10.1 First Order Low-Pass Filter

Definition: α → 1 more constant, stable: α ∈ [0, 1), H(0) = 1.

y[n] = αy[n − 1] + (1 − α)u[n] → H(z) =
1 − α

1 − αz−1

Magnitude Response: second inequality holds for Ω ∈ [0, π]

|H(Ω)| =
1 − α√

(1 − α cos Ω)2 + α2 sin2 Ω

,
d|H(Ω)|

dΩ
≤ 0

Phase Response: for Ω ∈ [0, π]

∠H(Ω) = arctan
( −α sin Ω
1−α cos Ω

)
Phase Limit: −π/2 < ∠H(Ω) ≤ 0
10.1.1 Desing Considirations

α to Determine Decay Time. y(T0) = e−1

y[α] = α
n !

= e
−1

=⇒ α = e
− 1

n = e
−Ts

T0 ≈ 1 − Ts
T0︸ ︷︷ ︸

1st Order

10.2 CT Butterworth Filter
Definition: K is the order. Butterworth is Maximally Flat

R(ω) =
1√

1 + ω2K
,

dR

dω
< 0, ∀ω > 0

Transfer Function: Steeper Slope = More Phase Delay

H(s) =
1∏K

k=1

(
s
ωc
− sk

) , sk = exp

[
j(2k+K−1)π

2K

]
10.3 Bilinear Transformation

Mapping: z = esTs = e
s
Ts
r

e
−s

Ts
r

≈
1+s

Ts
2

1−s
Ts
2

z =
1 + s

Ts
2

1 − s
Ts
2

, s =
2

Ts

(
z − 1

z + 1

)

Left Imaginary Plane in s is mapped into Unit Circle in z(stability guaranteed).
Frequency Mapping: s = jω, ω ∈ (−∞,∞) → Ω ∈ (−π, π).

⇒ Ω = 2 arctan
(
ω

Ts
2

)
≈ ωTs for ωTs ↓

10.3.1 Frequency Pre-Warping (Billinear Transformation)
Frequency Maping only good for Low ω!!!→ Pre-Wrap Frequency

ω̄c =
2

Ts
tan

(
ωcTs

2

)
ωc = Desired Frequency, ω̄c = Used Frequency
10.4 High-Pass Filter Design (CT/DT)

• Preserve Stability: left plane/inside circle to left plane/inside circle

• map jω-axis/unit circle to jω-axis/unit circle

• map ω = 0 → ω = ∞ and ω = ∞ → ω = 0

• map Ω = 0 → Ω = π and Ω = π → Ω = 0

s →
1

s
HHP

(
s

ωc

)
= HLP

( s

ωc

)−1


z → −z HHP (z) = HLP (−z)

Causion: This shift Ωc by π so Ωc,LP = π − Ωc,HP
10.5 Band-Pass Filter
CT Low-Pass and High-Pass to Band-Pass:

HBP(s) = HLP(s)HHP(s) if ω0/ω1 ≫ 1

CT Low-Pass to Band-Pass: s →
s2+ω2

s
s

HBP

(
s
ωc

)
= HLP

(
s2+ω2

s
s

1
ωc

)
ωc = ω1 − ω0 , ωs =

√
ω0ω1

DT Low-Pass to Band-Pass: z → −z2

10.6 Band-Stop Filter

HBS(s) = HLP(s) + HHP(s) if ω1/ω0 ≫ 1

10.7 Notch Filter
Band-Stop Filter with very narrow band and HNO(ωc) = 0.
Second Order Band-Stop Filter:

HNO(s) =
s2+ω2

c
s2+
√

2sωc+ω2
c

Cosine and Sine

cos(ω) =
ejω + e−jω

2
, sin(ω) =

ejω − e−jω

2j

cos

(
ω −

π

2

)
= sin(ω), sin

(
ω +

π

2

)
= cos(ω)

2


