System Modeling	1.5 Reservoir Based Approach	2.3 Control Systems		
Jorit Geurts, jgeurts@student.ethz.ch	Reservoir:	Transfer Function		
Version: 4. Februar 2022	Accumulative Elements (e.g. mass, heat, energy). Only	$P(s) = C(s\mathbb{I} - A)^{-1}B = \frac{C\operatorname{Adj}(s\mathbb{I} - A)B}{2}$		
1 Basic Modeling	Every reservoir is associated with a level variable (state	$\det(s\mathbb{I}-A)$		
	variable).	2.3.1 MIMO		
1.1 System Models	Flows:	Poles		
White Box Model:	Flow of the quantity between the elements. (e.g. massflow,	The poles of $P(s)$ are the roots of the least common		
Everything is known in form of ODE/PDEs.	neattiow). Are driven by differences in reservoir leves.	denominator of all minors of $P(s)$		
Physics is known but some Parameters are unknown and	Precedure:	Zeros		
we need experiments.	1. Define System Boundaries: what can be controled,	The zeros of $P(s)$ are the roots of the greatest com-		
Black Box Model:		mon divisor of the numerator of the maximum minors of $P(s)$ after normalization to have the nole polynomial		
Nothing is known and has to be derived from experiments.	2. Identify the relevant reservoirs and corresponding	of $P(s)$ as denominators		
1.2 Parametric and Nonparametric	2. Formulate concernation lowe for each recornicit			
Parametric Model:	3. Formulate conservation laws for each reservoir	2.4 Matrix Math		
(ODE, PDE, TF)	$\frac{a}{dt}$ (Reservoir) = \sum Inflows - \sum Outflows	2X2 Inverse		
Nonparametric Model:		$\begin{bmatrix} a & b \end{bmatrix}^{-1}$ 1 $\begin{bmatrix} d & -b \end{bmatrix}$		
System Description through a known system response.	4. Formulate the Algebraic Relations that describe the	$=\frac{1}{\det(M)}$		
1.3 Forward and Backwards	E Salva the Implicit Algebraic Leans	$\begin{bmatrix} c & a \end{bmatrix} \qquad \operatorname{det}(M) \begin{bmatrix} -c & a \end{bmatrix}$		
Parametric Models can be:	5. Solve the implicit Algebraic Loops	Positive Definite Symmetric and all Eigenvalues positive		
Forward: Popular Caucality (E.g. Civen $F(t)$ what is $y(t)$)	6. Identify Unknonw System Parameters with Experi-	or if $x + Ax > 0$ $\forall x \neq 0$ Minore determinants of all square submatrices		
Backwards:	7 Malata Madal with Exercite ante	Scalar-by-vector derivative:		
Inverted Causality. (E.g. Given $v(t)$ what is the needed	7. Validate Model with Experiments	af [af af af]		
F(t).)	2 Extras	$\frac{\partial f}{\partial \vec{x}} = \left[\frac{\partial f}{\partial \vec{x}_1} \frac{\partial f}{\partial \vec{x}_2} \dots \frac{\partial f}{\partial \vec{x}_n} \right]$		
$v(t) \longrightarrow$	2.1 Algebraic Stability			
	Polynomial $n(s) = a_n s^n + \dots + a_1 s + a_0$			
$F(t)$ m $k_0 + k_1 v^2(t)$	Hurwitz Matrix	$\begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \end{bmatrix}$		
		$\frac{\partial^2 f}{\partial r^2} = 1$:		
	$\begin{bmatrix} a_n - 1 & a_n & 0 & \dots & 0 \end{bmatrix}$	$\partial \vec{x}^2$		
1.4 System Dynamics	$\begin{vmatrix} a_n - 3 & a_n - 2 & a_n - 1 & a_n & \dots & 0 \end{vmatrix}$	$\begin{bmatrix} \frac{\partial}{\partial x_n \partial x_1} & \frac{\partial}{\partial x_n \partial x_2} & \cdots & \frac{\partial}{\partial x_n \partial x_n} \end{bmatrix}$		
		positiv semi-definite $\left(\frac{\partial^2 f}{\partial f} > 0\right)$ if all eigenvalues $\lambda > 0$		
variables (a)	$H_n = \begin{bmatrix} & & & & & & \\ & & & & & & \\ & & & & &$	positiv serii definite $\left(\frac{\partial \vec{x}^2}{\partial \vec{x}^2} \neq 0\right)$ if an eigenvalues $x_i \neq 0$.		
	\ldots a_0 a_1 a_2 a_3 a_4	2.5 Analysis		
c)	$0 \qquad \dots \qquad 0 \qquad a_0 a_1 a_2$	Chainrule:		
		$df(x(t)) = \partial f dx$		
exitation time		$f(x(t)) \rightarrow \frac{dx(t)}{dt} = \frac{d}{\partial x} \cdot \frac{dt}{dt}$		
	H_i : square $i \times i$ matrix aligned to top left	DGL first order solution:		
(a) Algebraic fast	$d_i = \det(H_i)$	$\frac{dy}{dt} = A + By(t) = y(0) = y_0$		
(b) Dynamic relevant	$d_1 = a_{n-1}$	$\frac{1}{dt} = A + Dg(t), g(0) = g_0$		
(c) Static slow	$d_2 = a_{n-1}a_{n-2} - a_n a_{n-3}$	$y(t) = -rac{A}{R} + \left(rac{A}{R} + y_0 ight)e^{B\cdot t}$		
State Variable is Static	$d_3 = d_2 \cdot a_{n-3} - a_{n-1}(a_{n-1}a_{n-4} - a_na_{n-5})$			
$\frac{d}{dt}x(t) = 0$	Hurwitz Criterion	2.5.1 1 Ordnung		
	Roots p_i all have $\operatorname{Re} < 0$ iff all det strictly positive	$\dot{y} + a(t) \cdot y = b(t)$		
Solve algebraic equation	2.2 Trigonometrie	Lösung:		
1.4.1 Causality Diagramms		$u(t) = \left(\int b(t) \cdot c^{A(t)} dt + K\right) \cdot c^{-A(t)}$		
Graphical representation of the systems equation. There are multiple ways to draw a causality diagramm	Shift by one quarter period Shift by one half period ^[10] Shift by full periods ^[11] Period	$g(\iota) = \left(\int \partial(\iota) \cdot e^{-\iota} \partial(\iota + \Lambda)\right) \cdot e^{-\iota} \partial(\iota + \Lambda)$		
are maniple ways to draw a causality diagrammi.	$\frac{\sin(\theta \pm \frac{\pi}{2}) = \pm \cos\theta}{\sin(\theta + \pi) = -\sin\theta} \sin(\theta + k \cdot 2\pi) = +\sin\theta 2\pi$			
Dyanamia Black	$\frac{\cos(\theta \pm \frac{\pi}{2}) = \mp \sin \theta}{\tan(\theta \pm \frac{\pi}{2}) = \tan \theta \pm 1} \qquad \cos(\theta + \pi) = -\cos \theta \qquad \cos(\theta + k \cdot 2\pi) = +\cos \theta \qquad 2\pi$			
Algebraic Block Algebraic Block	$\tan(\theta \pm \frac{1}{4}) = \frac{1}{1 \mp \tan \theta} \qquad \tan(\theta \pm \frac{1}{2}) = -\cot \theta \qquad \tan(\theta \pm k \cdot \pi) = +\tan \theta \qquad \pi$			

3.2

v(t)

h

_____*

6 Mechanical Systems	6.2 Euler Method	6.5 Lagrange Formalism	6.5.4 Procedure
6.1 Mechanical Energy	Power: $P_{-} = \vec{F} \cdot \vec{n}$ $P_{-} = \vec{T} \cdot \vec{n}$	Degrees of Freedom:	1. Identify a set of generalized coordinates $ec{q}(t)$
6.1.1 Kintetic Energy	$T_F = T \cdot v \qquad T_T = T \cdot \omega$	2D DOF $= 3n - k$	2. Is the System Holonomic or Non-Holonomic
Translational:	F(t) = T(t) + U(t)	3D DOF = 6n - k	3. Define the Lagrange Function
$T_t(t) = \frac{1}{2}mv^2(t)$	E(t) = I(t) + O(t)	k = holonomic constraints, $n =$ number if bodies	$L(\vec{q},\vec{q}) = T(\vec{q},\vec{q}) - U(\vec{q},\vec{q})$
Rotational:		Set of independent coordinates that describes the beha-	4. Compute the generalized Forces \vec{Q}_i
$T_r(t) = \frac{1}{2}\Theta\omega^2(t)$	$\frac{d}{dt}E(t) = \sum_{i=1}^{n} P_i(t)$	viour of the constrained system.	5. Comput the Equation
Complete Kinetic Energy:	$at \qquad i=i$	$\vec{q}(t) = [q_1(t), \dots, q_{DOF}(t)]^T$	Holonomic System:
$T = \frac{1}{2} m \vec{v}_{\rm P}^T \vec{v}_{\rm P} + m \vec{v}_{\rm P}^T (\vec{\omega} \times \vec{r}_{\rm PS}) + \frac{1}{2} \vec{\omega}^T \Theta \vec{\omega}$	6.3 Newton	Generalzied Coordinates are not unique!!!	$d \int \partial L \int \partial L = O^{nc}$
$\frac{1}{2} = \frac{1}{2} $	Translational:	equalts the number of degrees of freedom (DOF).	$\overline{dt}\left\{ \overline{\partial \dot{q}_k} \right\} - \overline{\partial q_k} = Q_k$
• \vec{v}_P velocity of the point P	$rac{d}{dt}m\cdotec v(t)=\sum F_i(t)$	6.5.2 Constraints	• Non-Holonomic System: $n + \nu$ equations
 r_{PS} is the position vector from P to the center of gravity S 	Rotational:	Holonomic Constraint:	$\left(\frac{d}{dt}\right)\left(\frac{\partial L}{\partial L}\right) = \frac{\partial L}{\partial L} = \sum_{\nu}^{\nu} \mu_{\nu} \alpha_{\nu\nu} = O^{nc}$
• $\vec{\omega}$ rotational speed of the body (same for each point)	$\frac{d}{dt}\Theta\cdot\vec{w}(t) = \sum T_i(t)$	Restriction of the reachable configuration. Reduce the number of variables used to describe the system. Inde-	$\overline{dt} \left(\overline{\partial \dot{q}_k} \int - \frac{\partial q_k}{\partial q_k} - \sum_{j=1}^{\mu_j \alpha_{j,k}} - \mathcal{Q}_k \right)$
• <i>m</i> mass of the body		pendent of $\vec{q}(t)$.	$\alpha_i^T \dot{\vec{q}}(t) = 0, i = 1, \dots, \nu$
• Θ_P Moment of Inertia of the body in point P.	0.4 Drag Forces	f(q,t) = 0	$\alpha^T = [\alpha_1, \ldots, \alpha_n] \alpha_n \in \mathbb{P}$
If \boldsymbol{P} is chosen to be equal to $0 \text{ or } \boldsymbol{S}$ the equation simplifies.		Non-Holonomic Constraint: (no change in DOFs)	$\alpha_j = [\alpha_{j,1}, \dots, \alpha_{j,n}], \alpha_{j,k} \in \mathbb{R}$
6.1.2 Potential Energy	$F_a = \frac{1}{2}\rho c_w A v_{rel}^2$	Restriction of the trajectory. Dependent on $\vec{q}(t)$.	$M(q(t)) \cdot \ddot{q}(t) = f(q(t), \dot{q}(t), u(t))$
Function of the Position: (Not velocity)	Rolling Friction:	$f(ec q(t), \dot{ec q}(t), t) = 0$	M is allways a symmetric matrix.
$U(t) = U(\vec{r}(t))$	$F_r = c_r F_N$	Do not decrease the number of DOFs.	
Gravity Linear Spring Torsional Spring	Equation of motion of a pendulum:	If a Non-Holonomic constraint can be integrated over time	
$U = mgh \qquad U = \frac{1}{2}k_{\rm lin}x^2 \qquad U = \frac{1}{2}k_{\rm rot}\varphi^2$	$d^2\theta$ g $d^2\theta$ g^2 $d^2\theta$ g^2	it is Holonomic.	
	$\frac{1}{dt^2} + \frac{1}{l}\sin(\theta) = 0 \longrightarrow \frac{1}{dt^2} + \frac{1}{l}\theta = 0$	Non-Holonomic: $x = 2xy$	
A force is conservative if it can be written as the gradient	Solution:	Holonomic: $\dot{x} = \dot{\varphi}R \xrightarrow{g \to x} x = \varphi R - x_0$	
of a potential. ∂U^T	$\theta(t) = \theta_0 \cdot \cos\left(\sqrt{\frac{g}{t}}t\right), T_0 = 2\pi\sqrt{\frac{g}{t}}$	6.5.3 Generalized Forces	
$F = -\frac{\partial U}{\partial \vec{a}}$		Non-Conservativ Forces Acting in the System Force Acting in A:	
612 Moment of Inortic		$ec{Q}_A = J_A^T ec{F}$	
Definition:		$ec{v}_A = J_A \cdot \dot{ec{q}} + \xi_A$	
$\Theta = \iiint r(\vec{r}) dm$		\vec{v}_A velocity in A, ξ_A is the offset term.	
$JJJJ_B$		I orque Acting in B: $\vec{Q}_B = J_D^T \vec{M}$	
Steiners Theorem:		$\vec{a}_{B} = \vec{a}_{B} + \vec{c}_{B}$	
$\Theta = \Theta_{CM} + m \cdot d^2$		$\omega_B - J_B \cdot q + \zeta_B$	
Rod: $\Theta_{CM} = \frac{ML^2}{12}$		ω_B angular velocity in B, ζ_B is the obset term.	
Cylinder: $\Theta_{CM} = \frac{MR^2}{2}$			
Hoop: $\Theta_{CM} = MR^2$			
Solid Ball: $\Theta_{CM} = \frac{2MR^2}{5}$			
<i>m-t</i> Ball: $\Theta_{CM} = \frac{2MR^2}{3}$			
Pointmass has zero moment of intertia with respect to its center of gravity.			

7 Thermodynamic Systems	7.5 Gas Receiver	7.7 Isentropic Relations
7.1 First Law	V, R, c_p, c_v constant	Temperature and Pressure:
Open System:		$\frac{T_2}{\gamma} = \left(\frac{p_2}{\gamma}\right)^{\frac{\gamma-1}{\gamma}}$
$\frac{dU}{dt} = \dot{Q} - \dot{W} + \sum \dot{H}_{in} - \sum \dot{H}_{out}$	$\begin{array}{c} & & \\$	$T_1 \stackrel{-}{\frown} igl(p_1 igr)$
dt	$\frac{m_{in}(t), H_{in}(t), U_{in}(t)}{U(t), \vartheta(t)} \qquad \qquad$	Temperature and Volume:
Enthalpy: $H(t) = c_p \cdot m \cdot \vartheta$		$\frac{T_2}{T} = \left(\frac{v_1}{v_1}\right)^{\gamma-1}$
Enthalpy Flow: $\dot{H}(t) = c_p \cdot \dot{m} \cdot \vartheta$		$T_1 (v_2)$
Q(t) Heat Flow, $W(t)$ Mechanical Power. For incompressible Solids and Fluids we have $c_v = c_p$.	Reservoirs:	Pressure and Volume: $n_2 (v_1 \setminus \gamma)$
7.1.1 Heat Transfer	Energy $U(t)$: $\vartheta(t)$, Mass $m(t)$: $p(t)$	$\frac{p_2}{p_1} = \left(\frac{v_1}{v_2}\right)$
	Assumptions: V, R, c_p, c_v are Constant Starting Equations:	Pressure:
Conduction $\dot{Q} = \frac{\kappa A}{l}(T_1 - T_2)$ Fourier		$\frac{\rho_2}{\gamma} = \left(\frac{p_2}{\gamma}\right)^{\frac{1}{\gamma}}$
Convection $\dot{Q} = kA(T_1 - T_2)$ Newton	$rac{dm}{dt} = \dot{m}_{in} - \dot{m}_{out}$	$\rho_1 (p_1)$
$\label{eq:relation} {\bf Radiation} \qquad \dot{Q} = \epsilon \sigma A (T_1^4 - T_2^4) \qquad {\rm Ste} \ \& \ {\rm Boltz}.$	$\frac{dU}{dU} = \dot{Q} - \dot{W} + \sum \dot{H}_{in} - \sum \dot{H}_{int}$	Energy of a Fluid:
• κ' thermal conductivity [W/Km]	$dt = Q m + \sum m_m \sum m_{out}$	$c_p \cdot T_1 + \frac{v_1^2}{2} = c_p \cdot T_2 + \frac{v_2^2}{2}$
• k: heat transfer coeff $[W/Km^2]$	Don't forget the energy of fluid flowing in or flowing out.	7.8 Increasing Engine Power
 <i>ϵ</i>: emissivity < 1 	7.5.1 Adiabatic Gas Receiver $Q = 0$	1.0 Increasing Engine Power If \dot{m}_{ml} (into the cylinder) is model with a isenthalpic
• σ : Stefan-Boltzmann const. $4.670 \cdot 10^{-8} \mathrm{W/K^4m^2}$	da Ba	throttel and EGR throttel is closed at max engine power.
7.2 Ideal Cases	$\frac{d\vartheta}{dt} = \frac{H\vartheta}{c_V V p} \left[\dot{m}_{\rm in} c_p \vartheta_{\rm in} - \dot{m}_{\rm out} c_p \vartheta - (\dot{m}_{\rm in} - \dot{m}_{\rm out}) c_V \vartheta \right]$	- Historius afficienzy — historius
Ideal Gas Law:	Pressure (Mass):	 Higher turbine efficiency = higher power Increasing heat removal by interceder (Before the
$pV = n\bar{R}\vartheta = nMR\vartheta = mR\vartheta$	$dp(t) \kappa \cdot R (1 \alpha \beta \beta c_p$	intake) = higher power
• Pressure: p , Volume: V , Temperature: ϑ	$\frac{dt}{dt} = \frac{1}{V} \left(m_{in} \cdot \vartheta_{in} - m_{out} \cdot \vartheta \right), \kappa = \frac{1}{c_v}$	• Insulating exhaust manifold = higher power
• # of Molecules: n [mol], Mass: m [kg]	7.5.2 Isothermal Gas Receiver $\vartheta = const.$	• Reducing the intake volume = no effect
• Molar Mass: $M = \frac{m}{n} [\text{kg mol}^{-1}]$	Temperature (Energy):	 Reducing the moment of inertai of the turbocharger no offect
Gas Constant	$\frac{d\vartheta}{d\theta} = 0 \implies nV = mR\vartheta$	7.0 Turbochargor
• Universal: $\bar{R} = 8.314 \text{J} \text{ mol}^{-1} \text{ K}^{-1}$		Usually all massflows are algebraic equations and are the-
• Specific: $R = \frac{\bar{R}}{M} = c_p - c_v$	Pressure (Mass): $(\vartheta = \vartheta_{in} = \vartheta_{out})$	refore no state variables. Pressures and temperatures on
• $\kappa = \frac{c_p}{c_v}$	$rac{dp(t)}{dt} = rac{R\vartheta}{V} \left[\dot{m}_{ m in}(t) - \dot{m}_{ m out}(t) ight]$	situation).
7.2.1 Energy	7.6 Eiswürfel in Wasser	
Internal Energy:	Ein Eiswürfel in Wasser gibt einen Wärmestrom an das	
$U = mc_v(\vartheta - \vartheta_0) = mc_v\vartheta$	vvasser ab: $\overset{*}{O} = L_{c} \overset{*}{m}$	
Enthalpy:	$\sim - \Sigma_f m_s$	
$H = U + pV = mc_v\vartheta + mR\vartheta = mc_p\vartheta$	vvobei: L_f die spezifische Schmelenthalpie und m_s der Schmelzwasserstrom ist.	
7.3 Lumped Parameters	Der Eiswürfel gibt über den Schmelzwasserstrom auch	
For the lumped parameter assumption, the thermodyna- mic states are assumed to be constant inside the receiver	* *	
Therefor the outflow temeprature must be the same as	$H = \mathring{m}_s T_e c_w$	
the temperature in the receiver.	Wobei: T_e die Eistemperatur (constant) ist und	
7.4 Pipe Temperatur		
described by a PDE.		
7.4 Pipe Temperatur The pipe temperature of a insulated pipe, can only be described by a PDE.		

8Fluiddynamic Systems8.2Turbine8.3Compression8.1ValvesIncompressible: Bernoulli
$$\dot{m}(t) = c_d A(t) \sqrt{2\rho} \sqrt{p_{in} - p_{out} + \frac{1}{2}\rho v_{in}^2}$$
Caution: Algebraic Block not Dynamic.Caution: Algebraic Block not Dynamic.Caution: Algebraic Block not Dynamic. $\dot{m}(t) = c_d A(t) \sqrt{2\rho} \sqrt{p_{in} - p_{out} + \frac{1}{2}\rho v_{in}^2}$ $\dot{\Psi} \quad \dot{\Psi} \quad \dot{\Psi$

$$(2): p_{out} \ge p_{cr}$$

$$p_{out}(t)$$

$$p_{out}(t)$$

$$(2): p_{out}(t)$$

$$p_{out}(t)$$

$$(1 - \Pi_t^{\frac{1-\kappa}{\kappa}})$$

$$(2): p_{out} \ge p_{cr}$$

$$(1 - \Pi_t^{\frac{1-\kappa}{\kappa}})$$

$$(2): p_{out} \ge p_{cr}$$

$$(2): p_{cr}$$

 $\stackrel{*}{m}_{out}(t), \vartheta_{out}(t), p_{out}(t)$

 $\vartheta_{out}(t)$

aps or Charts

Mass Flow: $\dot{\mu}_t$ form Maps or Charts

$$\dot{m}_t = \frac{p_3}{p_{ref,0}} \sqrt{\frac{\vartheta_{ref,0}}{\vartheta_3}} \cdot \dot{\mu}_t$$

Torque:

$$T_t = \frac{P_t}{\omega_t} = \frac{\eta_t \cdot \dot{m}_t \cdot c_p \cdot \vartheta_3}{\omega_t} \left[1 - \Pi_t^{\frac{1-\kappa}{\kappa}}\right]$$
 Power:

$$P_t = \dot{m}_t \cdot c_p \cdot \vartheta_3 \cdot \eta_t \cdot \left[1 - \Pi_t^{\frac{1-\kappa}{\kappa}} \right]$$

Massflow Map Turbine

atic and Static:
$$\dot{Q} = 0$$
, $\frac{dE}{dt} = 0$.
 $P_c = \dot{W}_c = \dot{H}_{in} - \dot{H}_{out} = \dot{m}_c \cdot c_p \cdot (\vartheta_2 - \vartheta_2)$
pipe Relations:

 \dot{m}_c

 T_c

$$\frac{\vartheta_{2,is}}{\vartheta_1} = \left(\frac{p_2}{p_1}\right)^{\frac{\kappa-1}{\kappa}} = \Pi_c^{\frac{\kappa-1}{\kappa}}, \quad \eta_c = \frac{\vartheta_{2,is} - \vartheta_1}{\vartheta_2 - \vartheta_1}$$

aps or Charts

$$\vartheta_2 = \vartheta_1 \left[1 + \frac{1}{\eta_c} \left(\Pi_c^{\frac{\kappa-1}{\kappa}} - 1 \right) \right], \quad \Pi_c = \frac{p_2}{p_1}$$

Mass Flow: $\dot{\mu}_c$ form Maps or Charts

$$\dot{m}_t = \frac{p_1}{p_{ref,0}} \sqrt{\frac{\vartheta_{ref,0}}{\vartheta_1}} \cdot \dot{\mu}_c$$

Torque:

 $\Pi_t = \frac{p_3}{p_4}$

$$T_t = \frac{P_c}{\omega_c} = \frac{\dot{m}_c \cdot c_p \cdot \vartheta_1}{\eta_c \cdot \omega_t} \left[\Pi_c^{\frac{\kappa - 1}{\kappa}} - 1 \right]$$

1

Power:

$$P_c = \frac{\dot{m}_c \cdot c_p \cdot \vartheta_1}{\eta_c} \left[\Pi_c^{\frac{\kappa - 1}{\kappa}} - \right]$$

Compressor Efficiency & Massflow Map

Compressor Operational Limits

Choked Flow

 $\stackrel{*}{m}_{in}(t), \vartheta_{in}(t), p_{in}(t)$

 $\vartheta_{in}(t)$

For $p_{out} < p_{cr}$ we reached the sonic speed at the outlet and the flow is choked (can't go faster). For air $\gamma = 1.4$ sonic if

$$p_{out} < \frac{1}{2} \cdot p_{in}$$

When p_{out} reaches p_{cr} , the flow in the narrowest part reaches sonic conditions.

The flow is chocked at this velocity and no further speed increase can take place.

Approximation

We can also use an approximation for Ψ :

$$\Psi = \begin{cases} \frac{1}{\sqrt{2}}, & \text{for } p_{out} < 0.5 p_{in} \\ \sqrt{\frac{2p_{out}}{p_{in}} \cdot \left[1 - \frac{p_{out}}{p_{in}}\right]}, & \text{for } p_{out} \ge 0.5 p_{in} \end{cases}$$

Both of the formulations have singularity at $p_{out} = p_{in}$ **Opening Area**

$$A_v = \pi R_v^2 - \left((1-x) R_v^2 \right) \pi = A_{v0} \left(1 - (1-x)^2 \right)$$

 $\begin{array}{l} \mbox{Chemical Reaction Energy:} \\ dU = \frac{\partial U}{\partial \vartheta} \cdot d\vartheta + \frac{\partial U}{\partial n_A} \cdot dn_A + \frac{\partial U}{\partial n_B} \cdot dn_B + \frac{\partial U}{\partial n_C} \cdot dn_C \\ = \rho \cdot V \cdot c \cdot d\vartheta + H_A \cdot dn_A + H_B \cdot dn_B + H_C \cdot dn_C \\ \mbox{With } H_A, H_B, H_C \mbox{ being the enthalpies of formation. Sto-chiometry gives us: } -dn_A = -dn_B = dn_C \\ \end{array}$

Not every step satisfies $L(\pi(i+1)) < L(\pi(i))$ but will converge faster to the local minimum.

$$\frac{12}{q} \text{ Lorger Systems}$$

$$\frac{12}{q} \text{ Lorger Systems}$$

$$\frac{12}{q} (1 - 1/(2), (n), (n) = (n) - g(n) (n), (n), (n) - g(n) - g(n) (n), (n), (n) - g(n) - g(n)$$

C 1 ·

12.6 Reachability and Observability**12.8**Reachability: reach a stateWe willReachability Matrix:
$$\mathcal{R}_n = \begin{bmatrix} B & AB & \dots & A^{n-1}B \end{bmatrix}$$
The system is fully reachable if rank(\mathcal{R}_n) = n.For SISO Systems this means full rank.TransfControllability: bring a state to the originAfterThe set of all states $x(0) \neq 0$, that can be forced to the origin in finite time, by a suitable controll signal $u(t)$.After the system is completely reachable, it is also completely controllable.A completely controllable systems can force any $x(0) \neq 0$ The st are noObservability: doesen't depend on x_0 SystemObservability Matrix:System

$$\mathcal{O}_n = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

The system is fully observable if $rank(\mathcal{O}_n) = n$ For SISO Systems this means full rank.

12.7 **Balanced Realization**

 \mathcal{R}, \mathcal{O} deliver only yes/no answer \Rightarrow we want quantitative information System must be normalized!!!

1

Re

Fo

ori

Fo

and

to

Ob

12.7.1 Gramian Matrices

Controllability Gramian: symmetric & pos. definite

$$W_R = \int_0^\infty e^{A\sigma} B B^\top e^{A^\top \sigma} d\sigma$$

The closer W_R is to a singular matrix, the less controllable the corresponding system will be. **Observability Gramian:** symmetric & pos. definite

$$W_O = \int^{\infty} e^{A^{\top}\sigma} C^{\top} C e^{A\sigma} d\sigma$$

The closer W_{O} is to a singular matrix, the less observable the corresponding system will be.

Computation of the Gramian

If System is Hurwitz (A asymptotically stable) we use two Lyapunov Equations.

$$AW_R + W_R A^\top = -BB^\top$$
$$A^\top W_Q + W_Q A = -C^\top C$$

Facts about Grammians

- Gramians only exist iff system: $\{A, B, C, D\}$ is asymptot. stable.
- · Gramians are by construction symmetric and positive definite $\Rightarrow \sigma_i$ are all positive.

ill Transform the System $T \cdot x_b = x$, such that $W_{R,b} = W_{O,b} = \text{diag}(\sigma_i), \quad i = 1, ..., n$ formation: Trar $T_R T_O, \quad W_R = V_R \Lambda_R^2 V_R^\top \to T_R = V_R \Lambda_R$ $=T_R^{\top}W_O T_R = V_O \Lambda_O^2 V_O^{\top} \rightarrow T_O = V_O \Lambda_O^{-1/2}$ the Transformation the Gramians of the transforsystem: $T^{-1}AT, T^{-1}B, CT, D$ will have the following m: $a_{,b} = W_{O,b} = \begin{bmatrix} \sigma_1 & \dots & 0 \\ \dots & \dots & \dots \\ 0 & \dots & \sigma_n \end{bmatrix}, \sigma_1 \ge \dots \ge \sigma_n \ge 0$ tates that are nearest to 0 can be omitted as they ot good observable and not good controllable. m Order Reduction Algorithm trasnforming the system in the order reduction form, one can partition the system: System:

$$\frac{d}{dt} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} C_1 & C_2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + Du(t)$$

 $x_1 \in \mathbb{R}^{n-\nu}$ are the important states. $x_2 \in \mathbb{R}^{\nu}$ are the not important states.

Order Reduction

We can now just omit x_2 and end up with the system:

$$\frac{d}{dt}x_1(t) = A_{1,1}x_1(t) + B_1u(t)$$
$$y(t) = C_1x_1(t) + Du(t)$$
Just omitting x_2 will change the DC-Gain.

If this is to be avoided, a singular pertubation approach is better, where the dynamics of states x_2 is neglected but not their DC contributions.

$$\frac{d}{dt}x_2(t) \approx 0 \Rightarrow x_2(t) \approx -A_{2,2}^{-1} \left[A_{2,1}x_1(t) + B_2u(t) \right]$$

Resulting System:

$$\frac{d}{dt}x_{1}(t) = \left[A_{1,1} - A_{1,2}A_{2,2}^{-1}A_{2,1}\right]x_{1}(t) \\ + \left[B_{1} - A_{1,2}A_{2,2}^{-1}B_{2}\right]u(t) \\ y(t) = \left[C_{1} - C_{2}A_{2,2}^{-1}A_{2,1}\right]x_{1}(t) \\ + \left[D - C_{2}A_{2,2}^{-1}B_{2}\right]u(t)$$
in:

$$\dot{x} = Ax + b = 0, \quad u(t) = 1$$

 $P(s) = C \left[s\mathbb{I} - A \right]^{-1} B$

nsfertunction:
$$e^m \perp b$$

$$P(s) = k \frac{s^{m} + b_{m-1}s^{m-1} + \dots + b_1s + b_0}{s^n + a_{n-1}s^{m-1} + \dots + a_1s + a_0}$$

• n: highest power denominator. # of integrators

- *m*: highest power numerator
- r = n m: relative degree
- k: input gain

Canonial Coordinates with Gain k: Гол ~ T

	0	1	• • •	0		0		
	0	0		0		0		
$\frac{d}{dt}x(t) =$	÷	÷		÷	x(t) +		u(t)	
	0	0		1		0		
	$\left\lfloor -a_{0}\right\rfloor$	$-a_1$		$-a_{n-1}$		k		
$y(t) = \begin{bmatrix} b_0 & \dots & b_{m-1} & 1 & 0 & \dots \end{bmatrix} x(t)$								

This form has the minimum amount of parameters! They have no physical meaning.

Alternative Definition of *r*:

Number of derivatives necessary before u appears in yy(t) = Cx(t) $\dot{y}(t) = C\dot{x}(t) = CAx(t) + CBu(t) = CAx(t)$

$$y^{(r)}(t) = CA^{r}x(t) + CA^{r-1}Bu(t) = CA^{r}x(t) + ku(t)$$

Zerodynamics from State Space

Solve y(t) = 0 to get the zerodynamics. System:

$$\dot{x} = \begin{bmatrix} -2 & a \\ -1 & 0 \end{bmatrix} \cdot x + \begin{bmatrix} 1 \\ -1 \end{bmatrix} \cdot u$$
$$u = \begin{bmatrix} 1 & 0 \end{bmatrix} \cdot x$$

We get:

 $y(t) = x_1(t) = 0$

That x_1 staves zero we also have $\dot{x}_1 = 0$. As a result we get the zero dynamics.

 $\dot{x}_1 = ax_2 + u = 0 \rightarrow \dot{x}_2 = -u = ax_2$

Zero Dynamics:

Special inputs $u^*(t)$ and IC x^* for which y(t) = 0For $y(t) = 0 \ \forall t$ all derivatives of y must = 0

Coordinate Transform: $z = \Phi^{-1}x$ $x_1 = y = C x = [h_0 x_1 + \dots + h_{n-1} x_{n-1}]$

$$z_1 = y = 0x = [b_0x_1 + \dots + b_{m-1}x_m + x_{m+1}]$$

$$z_2 = \dot{y} = CAx = [b_0x_2 + \dots + b_{m-1}x_{m+1} + x_{m+2}]$$

....

$$z_r = y^{r-1} = CA^{r-1}x = [b_0x_r + \dots + b_{m-1}x_{n-1} + x_n]$$

$$z_{r+1} = x_1 \\ \dots \\ z_n = x_{n-r} \qquad z = \begin{bmatrix} \xi \\ \eta \end{bmatrix}, \xi = \begin{bmatrix} z_1 \\ \vdots \\ z_r \end{bmatrix}, \eta = \begin{bmatrix} z_{r+1} \\ \vdots \\ z_n \end{bmatrix}$$

New Coordinates: $y = \xi_1$

L°1

$$\frac{d}{dt} \begin{bmatrix} \xi \\ \eta \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 & \dots & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & \dots & \dots & 0 \\ 0 & \dots & \dots & 0 & 1 & 0 & \dots & \dots & 0 \\ 0 & \dots & \dots & 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & \dots & \dots & 0 & 0 & 0 & 1 & \dots & 0 \\ 0 & \dots & \dots & 0 & 0 & \dots & \dots & 0 & 1 \\ - & p^T & - & - & - & q^T & - \end{bmatrix} \cdot \begin{bmatrix} \xi \\ \eta \end{bmatrix} + \begin{bmatrix} 0 \\ \dots \\ k \\ 0 \\ \dots \\ 0 \end{bmatrix} \cdot u$$
$$r^\top, s^\top \text{ not important here } (m = n - r)$$

$$q^{\top} = [b_0, -b_1, \dots, -b_{n-r-1}] \quad p^{\top} = [1, 0, \dots, 0]$$

To have $y(t) = 0 \forall t$ we have to initialise the system with

$$\xi^*(0) = 0, \quad u^*(t) = -\frac{1}{k}s^{\top}\eta^*(t), \quad \eta^*(0) \neq 0$$

Zero Dynamic States:

$$\frac{d}{dt}\eta(t) = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ 0 & \dots & \dots & 0 & 1 \\ - & - & q^{\top} & - & - \end{bmatrix} \eta^*(t) = Q\eta^*(t)$$

 \Rightarrow Q asympt. stable \Rightarrow System is Minimum Phase (all zeros have negative Real parts)

Unstable Zero Dynamics zero with pos. real part if:

- system is non-min phase
- system's zero dynamics unstable
- internal states η can diverge without y affected

Consequences

• u may not be chosen such that y is (almost) 0 before states η associated with zero dynamics are (almost) zero

• Feedback control more difficult

• imposes constraint of bandwidth on CL-System \Rightarrow slower (smaller) than slowest nmp zero System has to first get the nmp zeros fixed, before it can start to controll the output.

DC-Ga

13 Nonlinear Systems

13.1 Equilibrium Sets

Linear Systems:

- 1 isolated equilibrium point
- entire equilibrium subspaces
- periodic orbits with the same frequency but arbitrary amplitude
- if linear system is asymp stable it is always exponentially asymp stable

Non-Linear Systems: Limit Sets

- can have infinitely many isolated equilibrium points
- equilibrium point can have finite region of attraction Sy
- equilibrium point can be non-exponetially asymptotically stable.
- if an equilibrium point is unstable the state of the system can "escape to infinity" in finite time
- can have isolated periodic orbits; all trajectories that start close enough converge to this orbit.
- "Strange attractors" bounded sets to which nonperiodic trajectories converge if sufficiently close

13.2 Lyapunov Stability

Lyapunov stability is always connected to a constant equilibrium point x_e of a system. System: Assume $x_e = 0$ w/o loss of generality

$$\frac{d}{dt}x(t) = f(x(t), t), \quad x(t_0) = x_0 \neq 0, \quad f(x_e, t) = 0$$

If $x_e \neq 0$ then use the transform:

```
\tilde{x} = x - x_e
```

Lyapunov Stable at $t = t_0$:

 $\begin{array}{l} \mbox{If you can find some } r(R,t_0) \mbox{ for any } R>0 \mbox{ such that:} \\ \mbox{if: } \|x_0\| < r \leq R \qquad \mbox{then} \qquad \|x(t)\| < R \, \forall \, t>t_0 \end{array}$

Uniformly Lyapunov Stable: if $r(R) \neq f(t_0)$

Asymptotically Stable:

Uniformly Lyapunov Stable and Attractive

 $\lim_{t \to \infty} x(t) = x_e = 0$

Exponentially Asymptotically Stable: if constant a > 0, b > 0 exist such that:

$$||x(t)|| \le ae^{-bt} ||x(0)||$$

Facts

Usually only exponetially asymptotically stable systems are accepteable for technical applications.

Linear Systems:

If an equilibrium point of a linear system is asymptotically stable, then it is always expontially asymptotically stable.

Non-Linear Systems:

If an equilibrium point of a non-linear system is asymptotically stable, then it is **not** always expontially asymptotically stable.

Local attractiveness does not imply global stability.

13.2.1 From Linear to Non-Linear

If the linear system is

- unstable (Any $\operatorname{Re}(\lambda_i) > 0$) the non-linear system is also unstable.
- asymptotically stable (All ${\rm Re}(\lambda_i)<0$) the non-linear system is also stable.
- stable (One or more $\operatorname{Re}(\lambda_i)=0$) we need further knowledge of the system to decide.
- If however through further analysis the system is unstable we can conclude that the non-linear system will be unstable.

13.3 2nd-Order Systems

System:

$$\frac{d}{dt}x_1(t) = f_1(x_1, x_2), \quad x_1(0) = x_{1,0}$$
(3)
$$\frac{d}{dt}x_2(t) = f_2(x_1, x_2), \quad x_2(0) = x_{2,0}$$
(4)

Poincaré-Bendixson Theorem

CT diff'bar systems cannot exhibit deterministic chaos

Linearized system

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad a_{i,j} = \frac{\partial f_i}{\partial x_j} \quad \frac{d}{dt} \delta x(t) = A \delta x(t)$$

Lyapunov Principle:

The local behavior of the original nonlinear system and of the linearized system have the same characteristics.

If some Eigenvalues have ${\rm Re}(\lambda)=0,$ the principle doesn't hold and we need further analysis of the system.

Also	applies	to	systems	of	higher	order!
Eiger	nvalues		Linearized Sys	s.	Nonlin. Sys.	
$\lambda_{1,2}$	$\in \mathbb{C}_{-}$		Stable Focus		Stable Focus	
$\lambda_{1,2}$	$\in \mathbb{R}_{-}$		Stable Node		Stable Node	
$\lambda_1 \in$	$\mathbb{R}_+, \lambda_2 \in$	\mathbb{R}_{-}	Saddle		Saddle	
$\lambda_{1,2}$	$\in \mathbb{R}_+$		Unstable Node	е	Unstable Noo	de
$\lambda_{1,2}$	$\in \mathbb{C}_+$		Unstable Focu	IS	Unstable Foo	us
$\operatorname{Re}(\lambda$	(1,2) = 0		Center		???	
ACHT						

strictly local concept! regions of stability can be small Lyapunov principle also holds for non-linear systems of higher order

 \Rightarrow the local stability properties of the isolated equilibrium point $x_e = 0$ of a time-invariant nonlinear system:

$$\frac{d}{dt}\vec{x}(t) = f(x(t)), \vec{x}(0) \neq 0$$

are fully described by the first-order approximation A of f(), provided A has no eigenvalues with zero real part.

Bottom right only valid for linear system.

13.4 Lyapunov Theory

If one is not interested in only local behaviour or $\operatorname{Re}\{\lambda_i\}=0$ for some *i* than one can use the lyapunov theory for stability analytics. **Definitions**

Nondecreasing function:

 $\alpha:\mathbb{R}_+\to\mathbb{R}_+,\quad \alpha(0)=0, \alpha(q)\geq \alpha(p)\,\forall\,p>q$ Strictly Positive Functon:

 $V(x,t) > 0 \quad \forall x \neq 0, \forall t, \qquad V(\vec{0},0) = 0$

Lyapunov Candidate Function: $V : \mathbb{R}^{n+1} \to \mathbb{R}_+$

- V(x,t) is strictly positive
- two functions $\beta(x), \alpha(x)$ exist that satisfy: $\beta(\|x\|) \le V(x, t) \le \alpha(\|x\|)$

13.4.1 Global Stability

Uniformly Globally/Locally Lyapunov Stable:

$$rac{d}{dt}V = rac{\partial V}{\partial t} + rac{\partial V}{\partial x}f(x,t) \leq 0 \quad orall x(t)
eq 0, \ orall t$$

Uniformly Globally/Locally Asymptotically Stable: $-\frac{d}{dt}V(x,t)$ has to be positive definite.

$$-\frac{d}{dt}V(x,t) > 0, \forall x \neq 0, \forall t \quad -\frac{d}{dt}V(\vec{0},0) = 0$$

Finding a Function is very difficult!!! Lyapunov Theorem provides sufficient but not necessary conditions

Function for Linear Systems:
$$Q = Q^T > 0$$
 arbitrary
 $PA + A^\top P = -Q \Rightarrow V(x) = x^\top P x$

$$\frac{d}{dt}V(x) = -x^T Q x$$

P is symmetric and positive definite ($P^T = P$). Solution only exists if A is is Hurwitz.

This is no new information but it can help find a function for the non-linear case.

Achtung:

If $\frac{d}{dt}V$ does not fulfill criteria, Lyapunov theorem does not provide any conclusion on stability of the equilibrium.

13.5 Circle Criterion

- L(s): LTI, SISO dynamic part
- $\phi(t,y)$: memoryless, time-varying nonlinearity

Nonlinearity assumed to be "sector bounded":

$$\alpha y < \phi(t,y)y < \beta y \quad \alpha,\beta \in \mathbb{R} \quad 0 < \alpha < \beta$$
 Circle Criterion

Assume L(s) is strictly proper transferfunction with n_+ unstable poles & n_0 purely Im. poles.

Assume $\phi(t,y)$ is sector bounded. CL system is asymptotically stable if:

- 1. Nyquist curve $L(j\omega)$ does not enter disk $D(\alpha,\beta)$
- 2. $L(j\omega)$ encircles $D(\alpha,\beta) n_+ + n_0/2$ times

This result is sufficient and necessary!

13.6 Popov Criterion

Powerful Result for fewer Systems. Additional Constraints (compared to circle criterion)

- $\bullet \ L(s)$ may not have unstable poles
- $\phi(.)$ must be time invariant

Popov Criterion Assume $L(s), \phi(.)$ fulfill above conditions. CL system asymptotically stable if:

$$\operatorname{Re}\left[(1+rj\omega)L(j\omega)\right] + \tfrac{1}{\beta-\alpha} + \tfrac{\alpha}{\beta+\alpha}|L(j\omega)|^2 > 0 \quad \forall\,\omega$$

Yields global results if the constraints are met. Special Case: $\alpha = 0$ Popov Plot:

$$PL = \operatorname{Re}[L] + j\omega \operatorname{Im}[L]$$

Criterion:

$$\operatorname{Re}[L] - r\omega \operatorname{Im}[L] + \frac{1}{\beta} > 0, \quad \Rightarrow \operatorname{Im}[PL] < \frac{1}{r} \operatorname{Re}[PL + \frac{1}{\beta}]$$

13.7 Describing Functions

Describing Function Special class of NL, SISO systems

- L(s): dynamic linear system, low-pass
- L(s) has to be asymptotically stable
- $\phi(e)$: static nonlinear system, odd $\phi(-e) = -\phi(e)$
- $\phi(e)$ must be time invariant

Objecitve:

Predict the presence of limit cycles. Only Approximations. Limit Cycle:

Sustained periodic oscillations of CL-system

Linear Systems

Linear case $\phi(e) = e \Rightarrow \mathsf{CL}$ stability boundary:

$$e = a\sin(\omega t)$$
 $y = a\sin(\omega t - \pi)$

Conditions

- amp. of e = amp. of y
- phase of y lags e by $-\pi$

$$|L(j\omega)|=1$$
 $\angle(L(j\omega))=-\pi$ or

$$L(j\omega) = e^{j\pi} = -1 \implies 1 + L(j\omega) = 0$$

Non Linear Case

 $\begin{array}{l} \mbox{Main Idea: if } e(t) \mbox{ periodic, } g \mbox{ periodic as well} \\ g(t) = \phi(a \sin(\omega t)) = \sum_{i=1}^\infty k_i(a) \sin(i\omega t + \varphi_i(a)) \\ \mbox{L is Low-Pass} \Rightarrow \mbox{ only first harmonic of } g \mbox{ important} \\ \end{array}$

 $g(t) \approx k_1(a)\sin(\omega t + \varphi_1(a))$

Describing Function:

$$DF(a) = \frac{k_1(a)e^{j\varphi_1(a)}}{a}$$

Changes induced by $\phi(.)$ on amp & phase of e(t). Only dependent on the amplitude a and not ω . Nyquist Diagram plot both DF(a) and $L(j\omega)$ \Rightarrow marginally stable when:

$$k_1(a) \cdot |L(j\omega)| = a |\mathrm{DF}(a)| \cdot |L(j\omega)| = a$$

$$\varphi_1(a) + \angle (L(j\omega)) = \angle (\mathrm{DF}(a)) + \angle (L(j\omega)) = -\pi$$

$$\Rightarrow 1 + \mathrm{DF}(a) \cdot L(j\omega) = 0$$

3 Cases can occur:

- $L(j\omega)$ neither intersects nor encircles $-DF^{-1}(a)$ \Rightarrow CL-system probably asymptotically stable w/o limit cycles
- $L(j\omega)$ does not intersect $-\mathrm{DF}^{-1}(a)$, but encircles it
- \Rightarrow CL-system probably **unstable**
- $L(j\omega)$ intersects $-DF^{-1}(a)$ \Rightarrow CL-system can produce limit cycle

Gedankenexperiment for stable

- system is on limit-cycle $\omega=\omega^*, a=a^*$
- at t_0 disturbance $\Rightarrow a \rightarrow a^+ > a^*$
- $L(j\omega)$ does not encircle $DF^{-1}(a^+) \Rightarrow$ stable $a \to a^*$

The curve -DF(a) is a generalization of the point -1 which, according to Nyquist, may not be part of $L(j\omega)$ to avoid sustained harmonic oscillations.

14 Chaos Theory	14.2 Time Variant Systems	14.4 Discrete Systems	4 Point Orbit
Key Ideas:	A <i>time-variant</i> system with n states, can be extended by	Discrete Systems can have chaos at any order.	$\mu_2 < \mu < \mu_\infty \approx 3.5699456\dots$
 Period doubling 	the state $t = 1, t(0) = 0$ and will then become a <i>time</i> -	Logistics Equation:	Periodic 4-orbit for $\mu = 3.54$
self similarity	<i>Invariant</i> system of order $n + 1$. A second order time-variant system in particular can thus	$x_{k+1} = f(x_k) = \mu \cdot x_k(1 - x_k), \mu \in [1, 4]$	
 sensitivity to ICs 	have chaotic solutions.	Equilibria:	
strange attractors	14.3 Limit Sets Extended	$x_0 = \mu \cdot x_0 (1 - x_0) \Rightarrow x_0 = \left\{ 0, 1 - \frac{1}{\mu} \right\}$	
Limit Set $x_{\infty} \in \mathbb{R}^n$ is limit point if there is a solution to	Chaotic Attractor (Strange Attractor): The limit set is neither a equilibrium point nor a periodic	Equilibrium Point is Asymptotically Stable if $ \frac{\partial f}{\partial x}(x_0) < 1$. Derivatives at Equilibria:	0.7
$\frac{a}{dt}x(t) = f(x(t)), x(0) \neq 0$	solution. But they do not diverge to infinity. So the set is	$\int d x_0 = 0$	0.5
that passes infintely many times arbitrarily close to x_{∞} .	still a liftlit set.	$\frac{1}{dx} \int (x) _{x_0} = \begin{cases} 2-\mu & x_0 = 1 - 1/\mu \end{cases}$	0.4
The limit set of the point x_0 is the set of all limit points	Region of Attraction: Onces this region is reached, it is never left.	• $x_0 = 0$ unstable for $\mu \in (1, r]$	
of the solution that start at $x(0) = 0$.	Limit Cycle:	• $x_0 = 1 - 1/\mu$ astable for $\mu \in (1,3)$	0.1
Closed, Bounded Region:	If a non linear system starts sufficiently close to the limit	Stability	
subset Ω of \mathbb{R}^n , Ω finite, $\partial \Omega \in \Omega$	cycle, will orbit around that limit cycle.	First 20 Iterations for $\mu = 2.5$	This can go on and on until we get a periodicity of ∞
14.1 Poincare-Bendixson Theorem		0.9 -	Infinite Period
System: time-invariant, 2nd order, CT, smooth, nonlinear d		0.8	$\mu_{\infty} < \mu$
$\frac{d}{dt}x_1(t) = f_1(x_1, x_2)$		0.7	Extremely complex behavior
$\frac{d}{dt}x_2(t) = f_2(x_1, x_2)$		0.6	Bifurcation Diagram
Theorem:		0.5	1
If L a limit set of system completely contained in Ω , L is either an axis in a second set of system.			0.9 -
\Rightarrow Chaos is not possible.			
Higher Order Systems:			
Chaos is possible but not guaranteed.			
Linear Systems		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Linear Systems of any order can't have chaotic behaviour.			
14.1.1 Rössler System		Periodic Orbit	
Simpelest Chaotic System.			
$\frac{d}{dt}x(t) = -y - z \tag{5}$		$x_{0,3} = \left(\frac{1+1/\mu + \sqrt{1-2/\mu - 3/\mu^2}}{2}\right)/2$	
$\frac{d}{dt}y(t) = x + ay \tag{6}$		$x_{0,4} = \left(1 + 1/\mu - \sqrt{1 - 2/\mu - 3/\mu^2}\right)/2$	
		so long as	
$\frac{dt}{dt}z(t) = b + xz - cz \tag{7}$		$\mu < \mu_2 \approx 3.4494897\dots$	The Phase diagramm of the following points are:
25		1 First 20 Iterations for $\mu = 3.05$	Fauilibrium: A single point
20 -		0.9	Berindia Solution: Closed trainetony
15		0.8	Oursi Deviadia Calution. National trainstance
N 10		0.7	Quasi-Periodic Solution: Not a closed trajectory
			Chaotic Attractor: Fractall ftructure
		0.5	
-5 5			
y -15 -5 -10 x			

Pressure 1

Downpipe

Valve

Compressibility

 $T_G T_T$

Turbine

Generator

I(t)

 U_C

C

 U_{R}

 U_C

 $\mathbf{\mathbf{v}}I(t)$

 U_L

 $\omega(t)$

16 Multiple Choice Questions	16.1.2 Thermodynamical Systems	16.1.4 Linear Systems	16.1.5 Non Linear Systems
16.1Modeling16.1.1Mechanical SystemsAllgemein	 (1 point) You want to perfectly describe an insulated pipe through which water flows. What will be the nature of the resulting mathematical model for the input/output temperature behavior? It is a system of ordinary differential equations. 	(1 point) Consider a linear, time-invariant, continuous-time and non-minimum phase system. Answer each of the following statements: Statement true false It has non-minimum phase zeros. X	(1 point) Answer each of the following statements:
 (1 point) A system can exhibit dynamic behaviour without having any reservoir. True. False. Explanation: If a system does not have any reservoirs, no quantities (which we call "level variables") can be stored. Thus, all relationships are algebraic and no dynamics can occur. Lagrange (1 point) The choice of a minimal set of generalized coordinates (meaning that the number of generalized coordinates matches the number of degrees of freedom) is unique. True. True. 	 It is a system of ordinary underlined equations. It is a system of algebraic equation. It is a system of algebraic equations. Explanation: The pure delay behavior resulting in this scenario can only be captured by a partial differential equation. (1 point) Which of the following statements is not implied by the lumped parameter assumption? The thermodynamic states are assumed to be the same all over the receiver. m̂_{uin} = n̂_{out}. ∂out = ∂(t), where ∂(t) is the temperature in the receiver. Explanation: It also requires that the outflowing gas has the same temperature as the gas indic the mercine. 	It has non-minimum phase zeros. X The bandwidth of the closed-loop system with a stabilizing controller should be higher than the "fastest" non-minimum phase zero. X The bandwidth of the closed-loop system with a stabilizing controller should be smaller than the "fastest" non-minimum phase zero. X The bandwidth of the closed-loop system with a stabilizing controller should be smaller than the "slowest" non-minimum phase zero. X The system's zero dynamics are unstable. X (1 point) Consider a linear time-invariant continuous-time system. Answer each of the following statements: X Statement true false The set of reachable and controllable states is identical. X If it is completely reachable or not depends on the initial conditions. X A completely controllable system can be brought to the origin only X	(1 point) Answer each of the following statements: Statement true false The specific type of stability of a certain equilibrium point x_e of a nonlinear system can always be deduced from the type of stability of the linearized system evaluated at x_e . X The stability of a nonlinear system around an equilibrium point can be studied using Lyapunov functions. If no Lyapunov function is found, you can conclude that the nonlinear system is unstable around x_e X Solution 1. See script page 142. If the linear system possesses eigenvalue(s) on the imaginary axis at a certain equilibrium point, then it is not possible to conclude about the type of stability of the corresponding nonlinear system at this equilibrium point. 2. See script page 146: "If no Lyapunov function is found, i.e., if a chosen Lyapunov function point on the unpunov theorems
 a raise. Explanation: A set of generalized coordinates is not unique. Its components only need to be independent, i.e., no component can be described by the others. The fact that the set is minimal still does not imply that the choice is unique. (1 point) A constraint in the form of f(q, q) = 0 is always non-holonomic. □ True. ⊠ False. Explanation: If the constraint in the form of f(q, q) = 0 can be integrated such that f(q) = 0, then the constraint is holonomic. (1 point) In order to compute the kinetic energy of a body, the point chosen as reference must lie on that body. □ True 	 the gas make the referred. However, the assimption does not require that hindwing and outflowing mass flows are equal. (1 point) Now assume that there is no outflow, i.e., mout(t) = 0∀t, and that the incoming mass flow m_{in} and temperature θ_{in} are constant. The receiver could be modeled using either an adiabatic or an isothermal assumption. Mark the correct ending for the following sentence: The rate at which pressure increases is identical for the isothermal and adiabatic assumptions. is faster for the isothermal assumption. is faster for the adiabatic assumption. <i>Explanation:</i> One needs to compare the differential equations for the pressure p(t). For the adiabatic assumption, the equation reads (remember, mout = 0): 	It or some well chosen initial conditions. (1 point) Answer each of the following statements: Statement If the equilibrium point of a linear time-invariant system is asymptotically stable, then it is always exponentially asymptotically stable. If the equilibrium point of a nonlinear system is asymptotically stable. If the equilibrium point of a nonlinear system is asymptotically stable. If the equilibrium point of a nonlinear system is asymptotically stable. If the equilibrium point of a nonlinear system is asymptotically stable. Statement True A normalization of the form $z_i = z_{i,0} \cdot x_i$ changes the stability characteristics of the system. (Here, z_i are the level variables, z_i their normalized conterparts, and z_i denotes the normalization of the form $z_i = z_{i,0} \cdot x_i$ changes the stability characteristics of the system. (Here, z_i are the level variables, z_i is the initial system of the system. (Here, z_i are the level variables, z_i is the system.)	Introduction candidate of an solution to starshy the conditions of the pyophilor uncertain, then no conclusion can be drawn. In this case, the system can still be stable or asymptotically stable. Description: Consider a generic nonlinear system of the form $\dot{x} = f(x, t)$. Q27 (1 point) Given $x \in \mathbb{R}^3$, the system can have chaotic solutions. \Box True. \Box False. Explanation: A time-varying system can be represented in a time-invariant form by adding the state $\dot{t} = 1$ with $t(0) = 0$. Therefore, a 2-dimensional time-varying system would result in a 3-dimensional time-invariant system which, according to Poincaré-Benisson theorem, can indeed have chaotic solutions.
$\begin{tabular}{ c c c c c } \hline \mathbb{R} False $$ Explanation: Although resulting in extremely cumbersome computations (coupling terms in the energies, time-dependent inertias, etc.) it is not forbidden to use points that are not part of body $$$ B$ as reference. $$ $$ It is not forbidden to use points that are not part of body $$$ B$ as reference. $$ $$ $$ $$ It is not forbidden to use points that are not part of body $$$ B$ as reference. $$ $$ $$ $$ $$ $$ $$ It is not forbidden to use points that are not part of body $$$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	16.1.3 Electromechanical Systems (1 points) The brushless DC electric motor has: Statement Permanent magnets on the rotor X	constants for $i = 1,, n$, with n the order of the system.) If we want to carry out a balanced order reduction, it is important to normalize the system first, in order to be able to compare the magnitudes of the state variables among each other. X A linear time-invariant system of the form $\frac{d}{dt}x(t) = A \cdot x(t)$ can be Lyapunov unstable even though $\operatorname{Re}(\lambda_i) \leq 0$ holds for all eigenvalues λ_i of the system matrix A. X	Q28 (1 point) Given $x \in \mathbb{R}^3$, the system has periodic solutions. \Box True. \boxtimes False. <i>Explanation:</i> Periodic solutions can occur in time-invariant systems with more than 2 dimensions. However, this condition is only necessary. Consider, e.g., $z = [1, 1, 1]^{\top}$ with $x \in \mathbb{R}^3$, resulting in the non-periodic solution $x(t) = x(0) + [1, 1, 1]^{\top} \cdot t$.
The minimum possible number of generalized coordinates equals the number of degrees of freedom. X A point mass features a moment of inertia equal to zero (with respect X to its center of gravity). X x_1 and x_2 , i.e. the x-coordinates of point masses m_1 and m_2 respectively, are a possible set of generalized coordinates for the excavator's arm (see Figure 2). X	Mechanical commutation of the current in the rotor coil X Permanent magnets on the stator X Electrical commutation of the stator current X	Explanation: For the first two statements, please refer to the respective chapters in the lecture script. For the third statement: If there are eigenvalues with zero real part ($\text{Re}(\lambda_i) = 0$) and the matrix A is a cyclic or mixed matrix, then the system may be unstable even though no eigenvalues have a positive real part (see the discussion based on Jordan forms in the script).	 Description: Consider a generic nonlinear time-invariant system of the form x̂ = f(x). Q29 (1 point) If an equilibrium of the system is locally attractive then it is also stable. □ True. □ True. □ False.
Pendel (1 point) The amplitude of the small-angle oscillations is dependent on (answer each of the following statements) Statement true false the initial angle θ_0 X the length of the bar l X the mass m of the pendulum X gravity X (1 point) The period for small-angle oscillations is dependent on (answer each of the following statements)			 Explanation: For nonlinear systems, local attractiveness does not imply stability. Q30 (1 point) We can assess whether an equilibrium of the system is unstable using Lyapunov theorem. □ True. ○ False. Explanation: Lyapunov theorem provides sufficient, but not necessary, conditions to assess the stability of equilibria. Therefore, it cannot be used to assess the instability of equilibria. As an example, if the chosen Lyapunov function V(x) does not fulfill V(x) ≤ 0. Lyapunov theorem does not provide any conclusion on the stability of the equilibrium x* = 0.
$\begin{array}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $			Description: Consider a nonlinear time-invariant system of the form $\dot{x} = f(x)$ with equilibrium x^* and linearization around it $\delta \dot{x} = A \delta x$. We exclusively refer to the equilibrium of the nonlinear system with x^* , while denoting the equilibrium of the linearized system with δx^* . Q31 (1 point) If x^* is stable, then δx^* is stable. \boxtimes True. \square False. Explanation: Any equilibrium is either stable or unstable. If x^* is stable, then it is not unstable. Since δx^* unstable implies x^* unstable. δx^* cannot be unstable and it is therefore stable. Q32 (1 point) If δx^* is unstable, then x^* is unstable. \boxtimes True. \square False. Explanation: δx^* unstable implies x^* unstable.

Description: All questions below address a time-invariant smooth (differentiable) nonlinear system of the form $\dot{x} = f(x)$ with $x \in \Re^n$ and $1 < n < \infty$.

- Q31 (1 point) Every periodic solution is a limit set.
 - ⊠ True.
 - □ False

Explanation: As explained in Section 5.3.2 of the lecture script (version HS19),

periodic trajectories form limit sets.

Q32 (1 point) Every chaotic attractor is a limit set.

- ⊠ True. False.

Explanation: As explained in Section 5.3.3 of the lecture script (version HS19), a chaotic attractor trajectory does not reach an equilibrium or a periodic solution, but does not diverge to infinity either, making it a limit set.

- Q33 (1 point) If the system has an asymptotically stable isolated equilibrium point x_e it cannot have other limit sets.
 - True.
 - ⊠ False
 - Explanation: An asymptotically stable isolated equilibrium point does not prevent the system to have other limit sets.

You are still analyzing the previous system. In addition you know that n = 2 and that the system dynamics have a limit cycle $\partial \Gamma$ and a region of attraction Γ .

Q34 (1 point) Choose the correct statement

- □ If the system starts at $x_0 \notin \Gamma$, x(t) will never reach the limit cycle $\partial \Gamma$.
- \Box There could be an equilibrium point x_e lying on the limit cycle $\partial \Gamma$. \square If the system starts at $x_0 \in Γ$, x(t) never leaves the region Γ.

Explanation: If the system starts at $x_0 \notin \Gamma$ but sufficiently close to the limit cycle $\partial \Gamma$, the system can reach it, therefore the first option is wrong. To confute the second option we can think of what equilibrium point means: a point x_e that, once reached, is never left anymore. This clearly goes against the concept of limit cycle, which represents a set of points periodically reached (n = 2). Finally, the third option represents the definition of region of attraction, i.e., a region that once reached is never left anymore.

17 Geostationary Satelli	te	17.3	System	ns	Ana	Ilysis
17.1 Problem Definition		State-S	pace			-
	• R: Radius Earth		$x = \begin{bmatrix} r & i \end{bmatrix}$	ŕς	ρι	;
$m F_r(t)$	• M: Mass Earth		2			2
R $r(t)$ $F_{\varphi}(t)$	• m: Mass Sat					
$\varphi(t)$	• <i>m</i> . Mass Sat.	$\frac{d}{d}$	x(t) = f((x(t)), u(t)	(t)) =
	• r : Center of Earth \rightarrow Sat.					
Assumptions	• φ : orbit \angle of Sat.					
1. only Earth-Sat. System cons	idered		1	y(t)	= h	(x(t))
2. $M \gg m \Rightarrow CG$ at center of	Earth					
3. Sat. always in Eq-Plane		Nomina	al Orbit			1
4. Attitude controlled by other	control system	x	$r = \lfloor r_0 \rfloor$	0	$\omega_0 t$	ω_0
17.2 Nonlinear Model		ACHTU	JNG Not	eq-p	oint	! Perio
Lagrange Functions		Lineariz	zation		incai	124110
$\frac{d}{dt} \left[\frac{\partial L}{\partial \dot{r}} \right] - \frac{\partial L}{\partial r} = F_r \qquad \frac{d}{dt} \left[\frac{\partial}{\partial t} \right]$	$\left[\frac{L}{\dot{\omega}}\right] - \frac{\partial L}{\partial \omega} = F_{\varphi}r$	[0 1		0	0
L = T - U	<i>·</i> · · · · · · · · · · · · · · · · · ·		$3\omega_0^2 = 0$		0	$2r_0\omega$
Kinetic Energy		A =	0 0		0	1
$T = \frac{1}{2}m\dot{r}^2 + \frac{1}{2}r$	$n(r\dot{arphi})$		$0 -\frac{2a}{a}$	ω_0	0	0
Potential Energy $U = \int_{0}^{r} C^{Mm} do = CMm \left(\int_{0}^{r} C^{Mm} do \right)$	(1 1) m > R		Γ ₁)	0	_]
$U = \int_R G \frac{1}{\rho^2} d\rho = GMM$ (Minimum Velocities min speed to	$(\overline{R} - \overline{r}), r > n$	C	$= \left \frac{1}{r_0} \right $	0	0	0
$v_0(r) = \sqrt{2GM\left(\frac{1}{2} - \frac{1}{2}\right)}$	$(E_{him} \circ = V(r))$	Note In	0	0 he M	1 Aatri	0] COS Wi
escape velocity $v_{\infty} = \lim_{r \to \infty} v_{\infty}$	$(2\kappa in, 0 - V(V))$	linearize	ed around	eq-o	orbit	$\Rightarrow S_{I}$
$v_{\infty} = \sqrt{\frac{2GM}{2}} \approx 1.12$	$\times 10^4 \text{m/s}$	Stabilit	y dot(c	π	4) -	_
Lagrange System Dynamics		Roots:	$\{0, 0, +j \mu\}$	νον –	$-i\omega_0$	$\rightarrow 0$
$m\ddot{r} = mr\dot{\varphi}^2 - GM$	$Im\frac{1}{r^2} + F_r$	double	root in ori	igin	\Rightarrow n	night
$mr^2\ddot{\varphi} = -2mr\dot{\varphi}\dot{r} + h$	$F_{\varphi}r$	\Rightarrow Line	ank(s1 –	A)∣. sten	₃=0 [։] 1 Un	= 3 = stable
$\Rightarrow \ddot{r} = r\dot{\varphi}^2 - GM$	$\frac{1}{r^2} + u_r$	Contro	llability			
$\ddot{\varphi} = -2\dot{\varphi}\dot{r}\frac{1}{r} + \frac{1}{r}$	u_{φ}					
Geostationary Orbit				0	0	1
	0		$\mathcal{R} =$	1	0	0
$u_r = 0$ $r = 0$ $r =$	$0 \qquad r = r_0$			0	0	0
$u_{\varphi} - 0 \varphi = 0 \varphi =$	$0 \varphi = \omega_0 t$		L	0	$\frac{1}{r_0}$	$\frac{-2\omega}{r_0}$
Sidereal Angular Velocity		Comple	tely Cont	rolla	able	
$\omega_0 = \frac{2\pi \mathrm{rad}}{86144\mathrm{s}} \approx 7.29\times$	10^{-5} rad/s	$\det(\mathcal{R})$	$= -\frac{1}{n^2} \neq$	u. ≟ 0		
Geostationary Radius	1/3	Radial	Thruster	Failu	ıre I	$B_2 = [$
$r_0 = \left(\frac{GM}{\omega_0^2}\right)$	-	\Rightarrow Still	Complete	ly C	ontr	ollable
		$\Rightarrow NO^{-1}$	tial Thrus F Complet	ster tely	Fail Cont	ure B

$$\begin{aligned} \mathbf{te}\text{-Space} \\ x &= \begin{bmatrix} r & \dot{r} & \varphi & \dot{\varphi} \end{bmatrix}^{\top}, \quad u = \begin{bmatrix} u_r & u_\varphi \end{bmatrix}^{\top} \\ \frac{d}{dt}x(t) &= f(x(t), u(t)) = \begin{bmatrix} x_2 \\ x_1x_4^2 - \frac{GM}{x_1^2} + u_1 \\ x_4 \\ -2x_2\frac{x_4}{x_1} + \frac{u_2}{x_1} \end{bmatrix} \\ y(t) &= h(x(t)) = \begin{bmatrix} \frac{x_1}{r_0} \\ x_3 \end{bmatrix} \end{aligned}$$

$$x = \begin{bmatrix} r_0 & 0 & \omega_0 t & \omega_0 \end{bmatrix}^\top, \quad u = \begin{bmatrix} 0 & 0 \end{bmatrix}^\top$$

G Not eq-point! Periodic solution but same meworks for linearization ion

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 3\omega_0^2 & 0 & 0 & 2r_0\omega_0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{-2\omega_0}{r_0} & 0 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & \frac{1}{r_0} \end{bmatrix}$$
$$C = \begin{bmatrix} \frac{1}{r_0} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad D = \begin{bmatrix} 0 \end{bmatrix}$$

eneral the Matrices will be time dependent when around eq-orbit \Rightarrow Special case here

$$\det(s\mathbb{I} - A) = \dots = s^2(s^2 + \omega_0^2)$$

 $\{0, -j\omega_0, -j\omega_0\} \Rightarrow \text{Oscillations with } f = \omega_0$ ot in origin \Rightarrow might be unstable $|\mathbf{k}(s\mathbb{I} - A)|_{s=0} = 3 \Rightarrow \rho = 1, r = 2 \Rightarrow A$ cyclic zed System Unstable!

	0	0	1	0]
$\mathcal{R} =$	1	0	0	$2\omega_0$	
	0	0	0	$\frac{1}{r_0}$	
	0	$\frac{1}{r_0}$	$\frac{-2\omega_0}{r_0}$	0]

ly Controllable

s lin. ind. $-\frac{1}{r_0^2} \neq 0$ ruster Failure $B_2 = [0, 0, 0, 1/r_0]^{\top}$ ompletely Controllable

al Thruster Failure $B_1 = [0, 1, 0, 0]^{\top}$ Completely Controllable

Observability

$$\mathcal{O} = \begin{bmatrix} \frac{1}{r_0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & \frac{1}{r_0} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Completely Observable

first 4 rows lin. ind.

Radial Sensor Failure $C_2 = [0, 0, 1, 0]^{\top}$ \Rightarrow Still Completely Observable

Tangential Sensor Failure $C_1 = [\frac{1}{r_0}, 0, 0, 0]^{\top}$

\Rightarrow **NOT** Completely Observable Transfer Function

$$P(s) = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix} = C(s\mathbb{I} - A)^{-1}B = \frac{C\operatorname{Adj}(s\mathbb{I} - A)B}{\det(s\mathbb{I} - A)}$$

$$P(s) = \begin{bmatrix} \frac{1}{r_0(s^2 + \omega_0^2)} & \frac{2\omega_0}{r_0s(s^2 + \omega_0^2)} \\ \frac{-2\omega_0}{r_0(s^2 + \omega_0^2)} & \frac{s^2 - 3\omega_0^2}{r_0s^2(s^2 + \omega_0^2)} \end{bmatrix}$$

- TF shows linearized system unstable
- Completely controllable & observable with tangential thruster & sensor working
- $\Rightarrow P_{22}$ is only one that has pole/zero cancellations
- even if system is stabilizable with only tangential thruster & sensor, it is difficult. Corresponding SISO TF P_{22} has NMP-zero (opposite direction at start) at $\sqrt{3}\omega_0$ (which limits attainable crossover freq.)