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1 Basic Modeling

1.1 System Models
White Box Model:
Everything is known in form of ODE/PDEs.
Grey Box Model:
Physics is knwon but some Parameters are unknown and
we need experiments.
Black Box Model:
Nothing is known and has to be derived from experiments.

1.2 Parametric and Nonparametric
Parametric Model:
System Description through the Parameters and Physics
(ODE, PDE, TF)
Nonparametric Model:
System Description through a known system response.

1.3 Forward and Backwards
Parametric Models can be:
Forward:
Regular Causality. (E.g. Given F (t) what is v(t).)
Backwards:
Inverted Causality. (E.g. Given v(t) what is the needed
F (t).)

1.4 System Dynamics

(a) Algebraic fast

(b) Dynamic relevant

(c) Static slow

State Variable is Static
d

dt
x(t) = 0

Solve algebraic equation

1.4.1 Causality Diagramms
Graphical representation of the systems equation. There
are multiple ways to draw a causality diagramm.

1.5 Reservoir Based Approach
Reservoir:
Accumulative Elements (e.g. mass, heat, energy). Only
systems with reservoirs have dynamic behaviour.
Every reservoir is associated with a level variable (state
variable).
Flows:
Flow of the quantity between the elements. (e.g. massflow,
heatflow). Are driven by differences in reservoir leves.

Precedure:

1. Define System Boundaries: what can be controled,
what can be measured

2. Identify the relevant reservoirs and corresponding
state variables

3. Formulate conservation laws for each reservoir

d

dt
(Reservoir) =

∑
Inflows−

∑
Outflows

4. Formulate the Algebraic Relations that describe the
Flows

5. Solve the Implicit Algebraic Loops

6. Identify Unknonw System Parameters with Experi-
ments

7. Validate Model with Experiments

2 Extras

2.1 Algebraic Stability
Polynomial p(s) = ansn + · · ·+ a1s+ a0
Hurwitz Matrix

Hn =



an − 1 an 0 . . . . . . 0

an − 3 an − 2 an − 1 an . . . 0

. . .
. . .

. . .
. . .

. . .
. . .

. . . a0 a1 a2 a3 a4

0 . . . 0 a0 a1 a2

0 . . . . . . . . . 0 a0


Hi : square i× i matrix aligned to top left

di = det(Hi)

d1 = an−1

d2 = an−1an−2 − anan−3

d3 = d2 · an−3 − an−1(an−1an−4 − anan−5)

Hurwitz Criterion

Roots pi all have Re < 0 iff all det strictly positive

2.2 Trigonometrie

2.3 Control Systems
Transfer Function

P (s) = C(sI−A)−1B =
CAdj(sI−A)B

det(sI−A)

2.3.1 MIMO
Poles

The poles of P (s) are the roots of the least common
denominator of all minors of P (s)

Zeros

The zeros of P (s) are the roots of the greatest com-
mon divisor of the numerator of the maximum minors
of P (s) after normalization to have the pole polynomial
of P (s) as denominators

2.4 Matrix Math
2X2 Inversea b

c d

−1

=
1

det(M)

 d −b

−c a


Positive Definite Symmetric and all Eigenvalues positive
or if x⊤Ax > 0 ∀x ̸= 0
Minors determinants of all square submatrices
Scalar-by-vector derivative:

∂f

∂x⃗
=

[
∂f

∂x⃗1

∂f

∂x⃗2
. . .

∂f

∂x⃗n

]
Hessematrix:

∂2f

∂x⃗2
=


∂2f

∂x1∂x1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂xn∂xn


positiv semi-definite

(
∂2f
∂x⃗2 ≥ 0

)
if all eigenvalues λi ≥ 0.

2.5 Analysis
Chainrule:

f(x(t)) →
df(x(t))

dt
=

∂f

∂x
·
dx

dt

DGL first order solution:

dy

dt
= A+By(t), y(0) = y0

y(t) = −
A

B
+

(
A

B
+ y0

)
eB·t

2.5.1 1 Ordnung
ẏ + a(t) · y = b(t)

Lösung:

y(t) =

(∫
b(t) · eA(t)dt+K

)
· e−A(t)
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3 Hydraulic Systems

3.1 Bernoulli
Incompressible Flow:

p1 +
1

2
ρv21 + ρgz1 = p2 +

1

2
ρv22 + ρgz2

3.2 Hydraulic Ducts

Velocity: (incompressible with Newtons Third Law)

m
d

dt
v(t) = ρlA

d

dt
v(t) = A(p1(t)− p2(t) + ρgh)−Ff (t)

Friction Force: (λ form the Moody Diagramm)

Ff (t) = Aλ(v(t))
l

d

ρ

2
sign(v(t))v2(t)

3.3 Compressibility
All Compressibilty put into one Lumped Parameter.

Volume leaving not the same as entering so the Spring
(Compressibility) moves up and down.
Volume:

d

dt
V (t) = V̇in − V̇out

Compressibility:

p(t) =
∆V

σ0V0
+ pstat, ∆V = V (t)− V (0)

σ0 = compressibility constant
V0 = nominal volume (determined experimentally).

4 Electromagnetic Systems

4.1 RLC Networks
Resistance: R Static Block

UR(t) = R · I(t), WR = UI = RI2

Inductance: L Dynamic Block → Level Variable I(t)

L
d

dt
I(t) = UL(t), WM =

1

2
LI2(t)

Capacitance: C Dynamic Block → Level Variable U(t)

C
d

dt
UC(t) = I(t), WE =

1

2
CU2

C(t)

Element Capacitance Inductance

Energy WE = 1
2
CU2(t) WM = 1

2
LI2(t)

Level Variable U(t) I(t)

Conservation C d
dt
U(t) = I(t) L d

dt
I(t) = U(t)

Energy Conservation:

d

dt
E(t) = P (t), P (t) = U(t)I(t)

Kirchhoff’s Laws:∑
Ik = 0, in each node∑
Uk = 0, in a closed loop

Subtract Energies

If Umin = 1
2
Umax:

Euseful =
1

2
C · U2

max −
1

2
C · U2

min =
3

8
C · U2

max

Electric Losses
Electric losses are due to resistance, so if there is a resi-
stance term, the losses are accounted for.

4.2 Motortypes
Brushless motor:

• Permanent magnets on the rotor

• Electrical commutation of the stator.

5 Electromechanic Systems
Biot-Savart:

F =

∫
L
IdL⃗× B⃗ = I · (⃗l × B⃗) = q · (v⃗ × B⃗)

Faradays Induction Law:

U = −v · (⃗l × B⃗)

Usually we take the orthogonal case.
Motor Law:

F (t) = κmot · I(t)
Pm = ωc · Tm = ωc · κ · I

Generator Law:

Uind(t) = κel · ω(t)

5.1 DC Motor
Assumption: Lossless

Pel = Pmech ⇔ UindI = Tω

κelIω = κmotIω ⇒ κel = κmot

5.2 Motor Equations
Two Reservoirs (Electircal and Kinetic Energy)
Mechanical:

Θ d
dt
ω(t) =

motor︷ ︸︸ ︷
Tm(t)

load︷ ︸︸ ︷
−Tl(t)

friction︷ ︸︸ ︷
−dω(t) = κI(t)−Tl(t)−dω(t)

Electrical Motor:
Draw Circuit Diagramm & Use Kirchhoff

− u(t) + UR(t) + UL(t) + Uind(t) = 0

⇒ L d
dt
I(t) = −RI(t)− κω(t) + u(t)

Causality Diagram

Electrical

Mechanical

I(t)

ω(t)

ω(t)
u(t)

Tl(t)

Circuit:

u(t)

I(t)
R

UR

L

UL
Uind

Steady State:

L
dI(t)
dt

= 0 ⇔ I(t) =
u(t)−κω(t)

R

Nice to know
For Rnew < Rold the current increases, the speed at
zero torque production Tm = 0 stays constant, the motor
torque Tm at ω = 0 increases and the slope of Tm = f(ω)
changes.
electric losses are modeled with the resistance

Different Inductance: Voltage and Load Torque Jump

• High L means more extreme speed reaction but
slower Motor Torque reaction

• Lower L means better speed reaction and faster Mo-
tor Torque reaction
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6 Mechanical Systems

6.1 Mechanical Energy

6.1.1 Kintetic Energy
Translational:

Tt(t) =
1

2
mv2(t)

Rotational:

Tr(t) =
1

2
Θω2(t)

Complete Kinetic Energy:

T =
1

2
mv⃗TP v⃗P +mv⃗TP (ω⃗ × r⃗PS) +

1

2
ω⃗TΘω⃗

• v⃗P velocity of the point P

• r⃗PS is the position vector from P to the center of
gravity S

• ω⃗ rotational speed of the body (same for each point)

• m mass of the body

• ΘP Moment of Inertia of the body in point P.

If P is chosen to be equal to 0 or S the equation simplifies.

6.1.2 Potential Energy
Function of the Position: (Not velocity)

U(t) = U(r⃗(t))

Gravity Linear Spring Torsional Spring

U = mgh U = 1
2
klinx

2 U = 1
2
krotφ2

Conservative Force
A force is conservative if it can be written as the gradient
of a potential.

F = −
∂U

∂q⃗

T

6.1.3 Moment of Inertia
Definition:

Θ =

∫∫∫∫
B
r(r⃗)dm

Steiners Theorem:

Θ = ΘCM +m · d2

Rod: ΘCM = ML2

12

Cylinder: ΘCM = MR2

2

Hoop: ΘCM = MR2

Solid Ball: ΘCM = 2MR2

5

m-t Ball: ΘCM = 2MR2

3

Pointmass has zero moment of intertia with respect to its
center of gravity.

6.2 Euler Method
Power:

PF = F⃗ · v⃗ PT = T⃗ · ω⃗

Total Energy:

E(t) = T (t) + U(t)

Energy Conservation:

d

dt
E(t) =

k∑
i=i

Pi(t)

6.3 Newton
Translational:

d

dt
m · v⃗(t) =

∑
Fi(t)

Rotational:
d

dt
Θ · w⃗(t) =

∑
Ti(t)

6.4 Drag Forces
Aerodynamic Force:

Fa =
1

2
ρcwAv2rel

Rolling Friction:
Fr = crFN

Pendulum
Equation of motion of a pendulum:

d2θ

dt2
+

g

l
sin(θ) = 0

θ≈0−−−→
d2θ

dt2
+

g

l
θ = 0

Solution:

θ(t) = θ0 · cos
(√

g

l
t

)
, T0 = 2π

√
g

l

6.5 Lagrange Formalism
Degrees of Freedom:

2D DOF = 3n− k

3D DOF = 6n− k

k = holonomic constraints, n = number if bodies

6.5.1 Generalized Coordinates
Set of independent coordinates that describes the beha-
viour of the constrained system.

q⃗(t) = [q1(t), . . . , qDOF (t)]T

Generalzied Coordinates are not unique!!!
Minimum possible amount of generalized coordinates
equalts the number of degrees of freedom (DOF).

6.5.2 Constraints
Holonomic Constraint:
Restriction of the reachable configuration. Reduce the
number of variables used to describe the system. Inde-

pendent of ˙⃗q(t).
f(q⃗, t) = 0

Decrease the number of DOFs.
Non-Holonomic Constraint: (no change in DOFs)
Restriction of the trajectory. Dependent on ˙⃗q(t).

f(q⃗(t), ˙⃗q(t), t) = 0

Do not decrease the number of DOFs.
Caution
If a Non-Holonomic constraint can be integrated over time
it is Holonomic.

Non-Holonomic: ẋ = 2xy

Holonomic: ẋ = φ̇R

∫
dt

−−−→ x = φR− x0

6.5.3 Generalized Forces
Non-Conservativ Forces Acting in the System
Force Acting in A:

Q⃗A = JT
A F⃗

v⃗A = JA · ˙⃗q + ξA

v⃗A velocity in A, ξA is the offset term.
Torque Acting in B:

Q⃗B = JT
BM⃗

ω⃗B = JB · ˙⃗q + ξB

ω⃗B angular velocity in B, ξB is the offset term.

6.5.4 Procedure

1. Identify a set of generalized coordinates q⃗(t)

2. Is the System Holonomic or Non-Holonomic

3. Define the Lagrange Function

L(q⃗, ˙⃗q) = T (q⃗, ˙⃗q)− U(q⃗, ˙⃗q)

4. Compute the generalized Forces Q⃗i

5. Comput the Equation

• Holonomic System:

d

dt

{
∂L

∂q̇k

}
−

∂L

∂qk
= Qnc

k

• Non-Holonomic System: n+ ν equations

d

dt

{
∂L

∂q̇k

}
−

∂L

∂qk
−

ν∑
j=1

µjαj,k = Qnc
k

αT
j
˙⃗q(t) = 0, j = 1, . . . , ν

αT
j = [αj,1, . . . , αj,n] , αj,k ∈ R

Resulting Equation
M(q(t)) · q̈(t) = f(q(t), q̇(t), u(t))

M is allways a symmetric matrix.
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7 Thermodynamic Systems

7.1 First Law
Open System:

dU

dt
= Q̇− Ẇ +

∑
Ḣin −

∑
Ḣout

Internal Energy: U(t) = cv ·m · ϑ
Enthalpy: H(t) = cp ·m · ϑ
Enthalpy Flow: Ḣ(t) = cp · ṁ · ϑ
Q̇(t) Heat Flow, Ẇ (t) Mechanical Power.
For incompressible Solids and Fluids we have cv = cp.

7.1.1 Heat Transfer

Conduction Q̇ = κA
l
(T1 − T2) Fourier

Convection Q̇ = kA(T1 − T2) Newton

Radiation Q̇ = ϵσA(T 4
1 − T 4

2 ) Ste & Boltz.

• κ: thermal conductivity [W/Km]

• k: heat transfer coeff [W/Km2]

• ϵ: emissivity < 1

• σ: Stefan-Boltzmann const. 4.670 · 10−8W/K4m2

7.2 Ideal Gases
Ideal Gas Law:

pV = nR̄ϑ = nMRϑ = mRϑ

• Pressure: p, Volume: V , Temperature: ϑ

• # of Molecules: n [mol], Mass: m [kg]

• Molar Mass: M = m
n

[kgmol−1]

Gas Constant

• Universal: R̄ = 8.314Jmol−1 K−1

• Specific: R = R̄
M

= cp − cv

• κ =
cp
cv

7.2.1 Energy
Internal Energy:

U = mcv(ϑ− ϑ0) = mcvϑ

Enthalpy:

H = U + pV = mcvϑ+mRϑ = mcpϑ

7.3 Lumped Parameters
For the lumped parameter assumption, the thermodyna-
mic states are assumed to be constant inside the receiver.
Therefor the outflow temeprature must be the same as
the temperature in the receiver.

7.4 Pipe Temperatur
The pipe temperature of a insulated pipe, can only be
described by a PDE.

7.5 Gas Receiver

Reservoirs:

Energy U(t) : ϑ(t), Mass m(t) : p(t)

Assumptions: V,R, cp, cv are Constant
Starting Equations:

dm

dt
= ṁin − ṁout

dU

dt
= Q̇− Ẇ +

∑
Ḣin −

∑
Ḣout

Don’t forget the energy of fluid flowing in or flowing out.

7.5.1 Adiabatic Gas Receiver Q̇ = 0
Temperature (Energy):

dϑ

dt
=

Rϑ

cV V p
[ṁincpϑin − ṁoutcpϑ− (ṁin − ṁout)cV ϑ]

Pressure (Mass):

dp(t)

dt
=

κ ·R
V

(ṁin · ϑin − ṁout · ϑ) , κ =
cp

cv

7.5.2 Isothermal Gas Receiver ϑ = const.
Temperature (Energy):

dϑ

dt
= 0 ⇒ pV = mRϑ

Pressure (Mass): (ϑ = ϑin = ϑout)

dp(t)

dt
=

Rϑ

V
[ṁin(t)− ṁout(t)]

7.6 Eiswürfel in Wasser
Ein Eiswürfel in Wasser gibt einen Wärmestrom an das
Wasser ab:

∗
Q = Lf

∗
ms

Wobei: Lf die spezifische Schmelenthalpie und
∗
ms der

Schmelzwasserstrom ist.
Der Eiswürfel gibt über den Schmelzwasserstrom auch
noch einen Enthalpiestrom an das Wasser ab:

∗
H =

∗
msTecw

Wobei: Te die Eistemperatur (constant) ist und

7.7 Isentropic Relations
Temperature and Pressure:

T2

T1
=

(
p2

p1

) γ−1
γ

Temperature and Volume:

T2

T1
=

(
v1

v2

)γ−1

Pressure and Volume:

p2

p1
=

(
v1

v2

)γ

Pressure:

ρ2

ρ1
=

(
p2

p1

) 1
γ

Energy of a Fluid:

cp · T1 +
v21
2

= cp · T2 +
v22
2

7.8 Increasing Engine Power
If ṁcyl (into the cylinder) is model with a isenthalpic
throttel and EGR throttel is closed at max engine power.

• Higher turbine efficiency = higher power

• Increasing heat removal by intercooler (Before the
intake) = higher power

• Insulating exhaust manifold = higher power

• Reducing the intake volume = no effect

• Reducing the moment of inertai of the turbocharger
= no effect

7.9 Turbocharger
Usually all massflows are algebraic equations and are the-
refore no state variables. Pressures and temperatures on
the other hand can be state variables (different for every
situation).
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8 Fluiddynamic Systems

8.1 Valves
Incompressible: Bernoulli

∗
m(t) = cdA(t)

√
2ρ

√
pin − pout +

1

2
ρv2in

We can often neglect vin → vin ≈ 0:

∗
m(t) = cdA(t)

√
2ρ

√
pin − pout

Compressible: Isenthalpic Throttle
∗
m(t) = cdA(t)

pin(t)√
Rϑin(t)

Ψ(pin(t), pout(t))

Caution for the correct sign!!!

Ψ(pin, pout) =



√
κ
(

2
κ+1

) κ+1
κ−1 , 1○

pout
pin

1
κ ·

√√√√ 2κ
κ−1

[
1 −

(
pout
pin

)κ−1
κ

]
, 2○

pcr =

(
2

κ+ 1

) κ
κ−1

pin,

{
1○ : pout < pcr
2○ : pout ≥ pcr

Choked Flow
For pout < pcr we reached the sonic speed at the outlet
and the flow is choked (can’t go faster).
For air γ = 1.4 sonic if

pout <
1

2
· pin

When pout reaches pcr, the flow in the narrowest part
reaches sonic conditions.
The flow is chocked at this velocity and no further speed
increase can take place.

Approximation
We can also use an approximation for Ψ:

Ψ =


1√
2
, for pout < 0.5pin√
2pout
pin

·
[
1− pout

pin

]
, for pout ≥ 0.5pin

Both of the formulations have singularity at pout = pin
Opening Area

Av = πR2
v −

(
(1− x)R2

v

)
π = Av0

(
1− (1− x)2

)

8.2 Turbine
Caution: Algebraic Block not Dynamic.

Turbine (Fluid & Thermo)

unoz ϑ3 p3 p4 ωt

ϑ4 ṁt Tt

Open System:

dE

dt
= Ḣin − Ḣout − Ẇt + Q̇

Adiabatic and Static: Q̇ = 0, dE
dt

= 0.

Pt = Ẇt = Ḣin − Ḣout = ṁt · cp · (ϑ3 − ϑ4)

Isentropic Relations:

ϑ3

ϑ4,is
=

(
p3

p4

)κ−1
κ

= Π
κ−1
κ

t , ηt =
ϑ3 − ϑ4

ϑ3 − ϑ4,is

Isentropic Velocity:

cus =

√
2 · cp · ϑ3

[
1−Π

1−κ
κ

t

]
, c̃us =

rt · ωt

cus

Temperature: ηt from Maps or Charts

ϑ4 = ϑ3

[
1−ηt

(
1−Π

1−κ
κ

t

)]
, Πt =

p3

p4

Mass Flow: µ̇t form Maps or Charts

ṁt =
p3

pref,0

√
ϑref,0

ϑ3
· µ̇t

Torque:

Tt =
Pt

ωt
=

ηt · ṁt · cp · ϑ3

ωt

[
1−Π

1−κ
κ

t

]
Power:

Pt = ṁt · cp · ϑ3 · ηt ·
[
1−Π

1−κ
κ

t

]
Efficiency Map Turbine

Massflow Map Turbine

8.3 Compressor
Caution: Algebraic Block not Dynamic.

Compressor (Fl. & Th.)

p2 ϑ1 p1 ωc

ϑ2 ṁc Tc

Open System:

dE

dt
= Ḣin − Ḣout − Ẇc + Q̇

Adiabatic and Static: Q̇ = 0, dE
dt

= 0.

Pc = Ẇc = Ḣin − Ḣout = ṁc · cp · (ϑ2 − ϑ2)

Isentropic Relations:

ϑ2,is

ϑ1
=

(
p2

p1

)κ−1
κ

= Π
κ−1
κ

c , ηc =
ϑ2,is − ϑ1

ϑ2 − ϑ1

Temperature: ηc from Maps or Charts

ϑ2 = ϑ1

[
1+

1

ηc

(
Π

κ−1
κ

c −1

)]
, Πc =

p2

p1

Mass Flow: µ̇c form Maps or Charts

ṁt =
p1

pref,0

√
ϑref,0

ϑ1
· µ̇c

Torque:

Tt =
Pc

ωc
=

ṁc · cp · ϑ1

ηc · ωt

[
Π

κ−1
κ

c − 1

]
Power:

Pc =
ṁc · cp · ϑ1

ηc

[
Π

κ−1
κ

c − 1

]
Compressor Efficiency & Massflow Map

Compressor Operational Limits
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9 Chemical Systems

9.1 Mol Basics
One mol of A is 6.022 ∗ 1023 molecules.
The Concentration is defined as the number of molecules
per volume:

[A] =
nA

V
= [molm−3]

The molar mass of species A: MA[kg/mol] is defined the
mass of 1 mol of A.

9.2 Stoichiometry
αA+ βB ⇌ γC + δD

Forward Reaction:
d−

dt
[A] = −α · r−[A]α[B]β

Backwards Reaction:
d+

dt
[A] = α · r+[C]γ [D]δ

Whole Equation:
d

dt
[A] = α · (r−[C]γ [D]δ︸ ︷︷ ︸

forward reaction

− r+[A]α[B]β︸ ︷︷ ︸
inverse reaction

)

Arrhenius Model:

r+/−︸ ︷︷ ︸
rate coeff.

= k+/−(ϑ, p, . . . )︸ ︷︷ ︸
pre exp. factor

e(−E+/−)/Rϑ︸ ︷︷ ︸
Boltzmann term

• With R = 8.314
[

J
molK

]
being the universal gas con-

stant

• E are the activation energies

• Boltzmann term: fraction of all collisions that have suf-
ficient energy to start a reaction

• In most cases (k+, k−, E+, E−) must be determined
experimentally

Adding Massflow:
d

dt
[A]flow =

d

dt
[A] +

ṁA,in−ṁA,out

V MA︸ ︷︷ ︸
ṅA/V (i.e flow)

9.3 Continuously Stirred Tank Reactor
Modeling

Reaction:
A+B → C

Assumptions

• Molecule A is limiting species → [B] = const.

• C is continuously removed → A+B ↚ C

• m, c and ρ are constant

• CSTR is adiabatic

• Lumped parameters → [Co(t)] = [C(t)]

Mass Balance:

d

dt
m = 0 → ∗

mi =
∗
mo =

∗
m (1)

∗
V i =

∗
V o =

∗
V =

∗
m

ρ
(2)

Three Reservoirs:

• nA: level variable [A]

• nC : level variable [C]

• U : level variable ϑ

Conservation of A:

d

dt
nA =

∗
V · [Ai(t)]︸ ︷︷ ︸

inflow

−
∗
V · [A(t)]︸ ︷︷ ︸

outflow

−V r−[A(t)][B]︸ ︷︷ ︸
reaction

Conservation of C:

d

dt
nC = −

∗
V · [A(t)]︸ ︷︷ ︸

outflow

+V r−[A(t)][B]︸ ︷︷ ︸
reaction

Conservation of Energy:

d

dt
U(ϑ, nA, nC) =

∗
Hi(ϑi(t))−

∗
Ho(ϑ(t)) +

∗
Q(t)

∗
Hi(ϑi(t)) =

∗
m · c · ϑi(t)

∗
Ho(ϑ(t)) =

∗
m · c · ϑ(t)

Chemical Reaction Energy:

dU =
∂U

∂ϑ
· dϑ+

∂U

∂nA
· dnA +

∂U

∂nB
· dnB +

∂U

∂nC
· dnC

= ρ · V · c · dϑ+HA · dnA +HB · dnB +HC · dnC

With HA, HB , HC being the enthalpies of formation. Sto-
chiometry gives us: −dnA = −dnB = dnC

Result

τ
d

dt
[A(t)] = [Ai(t)]− (1 + τ · k · e−

E
Rϑ(t) ) · [A(t)]

τ
d

dt
[C(t)] = −[C(t)] + τ · k · e−

E
Rϑ(t) · [A(t)]

τ
d

dt
ϑ(t) = ϑi(t)− ϑ(t) +

∗
Q(t)

ρ · c ·
∗
V︸ ︷︷ ︸

Controll

+
τ

ρ · c
·H0 · k · e−

E
Rϑ(t) [A(t)]︸ ︷︷ ︸

Enthalpy

τ :=
V

V̇
, k := k− · [B], H0 = HA +HB −HC

Chemical Equilibrium in a CSTR

Heat Removed by massflow:
∗
Q = 0, ϑin = c1, [Ai] = c2

∗
Qchem(ϑ) = H0 ·

V · k · e−
E
Rϑ

1 + τ · k · e−
E
Rϑ

· [Ai]

• P1: Stable but to slow

• P2: Unstable but usefull → Controlling

• P3: Stable but to hot
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10 Optimization

10.1 Matrix Identities
Lemma 1:

d

dx
cT · x = c, c, x ∈ Rn

Lemma 2:
d

dx
xT ·M · x = 2M · x, M = MT ∈ Rn×n, x ∈ Rn

Lemma 3:
d2

dx2
xT ·M · x = 2M, M = MT ∈ Rn×n, x ∈ Rn

10.2 Parameter Optimization
Definitions:

π = [π1, . . . , πm]T ∈ Rm, L : Rm → R+

Sufficient Condition for π0 to be a local minimum:
∂L(π)

∂π

∣∣∣∣
π=π0

= 0,
∂2L(π)

∂π2

∣∣∣∣
π=π0

> 0

Necessary Condition for π0 to be a local minimum:

∂L(π)

∂π

∣∣∣∣
π=π0

= 0,
∂2L(π)

∂π2

∣∣∣∣
π=π0

≥ 0

10.3 Optimization: Equality Constraint
Definitions:

π = [π1, . . . , πm]T ∈ Rm, Control Variable

x = [x1, . . . , xn]
T ∈ Rn, State Variables

z = [π, x]T , for convencience

f : Rm+n → Rn, L : Rm+n → R+

Find π0, x0 which minimize L and satisfy f(π0, x0) = 0.
Solution: n = 1

∂L(z)

∂z

∣∣∣∣
z=z0

+ λ ·
∂f(z)

∂z

∣∣∣∣
z=z0

= 0

10.4 Numerical Algorithms

• Semi-Analytical: preformance index L(π) and its
gradient known (faster and less numerical error)

• Fully Numerical: only index is known and gradient is
computed with a finite difference

10.4.1 First Order Methodes

• Guess an initial value π(1)

• Evaluate the Gradient ∂L(π)
∂π

∣∣∣∣
π=π(1)

• Determine the new iteration point:

π(i+ 1) = π(i)− h(i) ·
∂L(π)

∂π

∣∣∣∣
π=π(1)

• Check wether the difference |L(π(i+ 1))− L(π(i))|
is smaller than a predetermined threshold ϵ.

Problems with small “ravines” and a good h(i) is critical.
Nesterov’s Algorithm: Solution for small ravines

π(i+ 1) = ρ(i)− h(i) ·
∂L(π)

∂π

∣∣∣∣
π=ρ(1)

ρ(i+ 1) = π(i+ 1) +
i

i+ 3
· (π(i+ 1)− π(i))

Not every step satisfies L(π(i + 1)) < L(π(i)) but will
converge faster to the local minimum.

11 Model Parametrization

11.1 Planning Experiments
Determine the Parameters of a gray box Model or Validate
the Systems. Very Important to not use the same data for
these two tasks!!!

11.2 Linear Least Squares
Conditions:

• Coefficients have to enter linearly

• No singularities in the date.

Model: Algebraic

y(k) = hT (u(k)) · π + e(k)

• k ∈ [1, r] = number of measurements

• u(k) ∈ Rm = k-th input vector

• y(k) ∈ R = k-th output

• e(k) ∈ R = k-th error

• h() ∈ Rq = Regressor (Non-Linear in u(k) but alge-
braic and known exactly)

• π ∈ Rq = Vector with all Parameters

System of Equations:
y(1)

...

y(r)


︸ ︷︷ ︸
ỹ∈Rr

=


hT (1)

...

hT (r)


︸ ︷︷ ︸
H∈Rr×q

·


π0

π1

...

+


e(1)

...

e(r)


︸ ︷︷ ︸
ẽ∈Rr

Error:
ẽ = ỹ −H · π, ẽ ∈ Rr

Goal: minimize e2

πLS = argmin ẽT ẽ = argmin(ỹ −Hπ)T (ỹ −Hπ)

Solution:
πLS = (HTH)−1HT ỹ

Use the Variable with the error as y!!!

11.2.1 Weighted Least Squares
If not all measurements are equally good we can use a
symmetric and positive definite weight matrix.

ε = ẽT ·W · ẽ, W ∈ Rr×r

Solution:

πLS =
[
HT ·W ·H

]−1
HT ·W · ỹ

11.2.2 Comments: Linear Least Squares
If rankM ̸= q we can use the Moore-Penrose Pseudo In-
verse. If Model is precise and e is zero mean the parame-
ters are excact. The full rank means that the parameters
should be non-redundant.
Geometric Interpretation

11.3 Iterative Least Squares
Main Idea:
Inversion is very time-consuming thus we use an iterative
approach if a new measurement is avaliable.

πLS(r + 1) = f(πLS(r), y(r + 1)), πLS(0) = E{π}

Needed Lemma:
M ∈ Rn×n, det(M) ̸= 0, v ∈ Rn 1 + vT ·M−1 · v ̸= 0

[M + vv⊤]−1 = M−1 −
M−1vv⊤M−1

1 + v⊤M−1v

If M−1 is known, inversion of M +K is easy.
Starting Point:

πLS(r) =

[
r∑

k=1

h(k)h⊤(k)

]−1

︸ ︷︷ ︸
=:Ω(r)

r∑
k=1

h(k)y(k)

Definitions:

Ω(r + 1) = Ω(r)− Ω(r)h(r+1)h⊤(r+1)Ω(r)
1+c(r+1)

, Ω ∈ Rq×q

c(r + 1) = h⊤(r + 1)Ω(r)h(r + 1), c ∈ R

Solution:

πLS(r + 1)︸ ︷︷ ︸
new

= πLS(r)︸ ︷︷ ︸
old

+
Ω(r)h(r + 1)

1 + c(r + 1)︸ ︷︷ ︸
direction

[y(r + 1) − h
⊤

(r + 1)πLS(r)]︸ ︷︷ ︸
prediction error

11.3.1 Exponential Fogetting
If we now want to weight newer errors more we can use
exponential forgetting.

ϵ(r) =
∑r

k=1 λ
r−k · [y(k)− h⊤(k)πLS(r)]

2, λ < 1

Solution:

πLS(r+1) = πLS(r)+
Ω(r)h(r+1)
λ+c(r+1)

[y(r+1)−h⊤(r+1)πLS(r)]
1

Update Equation:

Ω(r+1) = 1
λ
Ω(r)

[
I− 1

λ+c(r+1)
h(r + 1)h⊤(r + 1)Ω(r)

]

11.4 Non-Linear Least Squares
Model: Dynamic

d

dt
x̂(t) = f(x̂(t), u(t), π̂), x̂ ∈ Rn, u ∈ Rm

ŷ(t) = g(x̂(t), u(t), π̂), ŷ ∈ Rp, π̂ ∈ Rq

Error Preformance:

ε =

r∑
i=1

ρi(yi(π)− ŷi(π̂))
2, ρi ∈ R+

Finding the optimal π that minimizes ε we use non-linear
programming.

num. minimization

(grad. free)

criterion

(Non-Lin)

π̂(0)

π̂LS

π̂(k)

ϵ(k)

11.5 Matlab
To calculate the least squares solution one can use the
following commands:

• H\y
• mldivide(H,y)
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12 Linear Systems
Obtained Model:

d

dt
z(t) = f(z(t), v(t), t), w(t) = g(z(t), v(t), t)

Problems:

• Non-normalized:

– Numerical Problems (Different Magnitude)

– Not the same units

• Non-Linear: There is no theory

12.1 Normalization
System Operates around a set point.

xi(t) =
zi(t)
zi0

ui(t) =
vi(t)
vi0

yi(t) =
wi(t)
wi0

Those normalized variables will have no units! (Derivati-

ves will have unit 1
s
)

Such a transform does not change the systems characte-
ristics. Vector Notation:

z = T · x T = diag(z1,0 . . . zn,0)

Normalized System:
d

dt
x(t) = f0(x(t), u(t), t), y(t) = g0(x(t), u(t), t)

12.2 Linearization
Linearization around a small neighborhood of a chosen
equilibrium point {xe, ue}

Br := {x ∈ Rn | ∥x− xx∥ 2 + ∥u− ue∥ 2 ≤ r}
Equilibrium Point: f0(xe, ue, t) = 0

δx = x− xe δu = u− ue δy = y − ye

Taylor Expansion: O(δx2, δu2) → 0

d

dt
δx(t) =

∂f0

∂x

∣∣
xe,ue

δx(t) +
∂f0

∂u

∣∣
xe,ue

δu(t)

δy(t) =
∂g0

∂x

∣∣
xe,ue

δx(t) +
∂g0

∂u

∣∣
xe,ue

δu(t)

Matrices

A =


∂f0,1
∂x1

∣∣
e

. . .
∂f0,1
∂xn

∣∣
e

...
. . .

...

∂f0,n
∂x1

∣∣
e

. . .
∂f0,n
∂xn

∣∣
e


n×n

B =


∂f0,1
∂u1

∣∣
e

. . .
∂f0,1
∂um

∣∣
e

...
. . .

...

∂f0,n
∂u1

∣∣
e

. . .
∂f0,n
∂um

∣∣
e


n×m

C =


∂g0,1
∂x1

∣∣
e

. . .
∂g0,1
∂xn

∣∣
e

...
. . .

...

∂g0,p
∂x1

∣∣
e

. . .
∂g0,p
∂xn

∣∣
e


p×n

D =


∂g0,1
∂u1

∣∣
e

. . .
∂g0,1
∂um

∣∣
e

...
. . .

...

∂g0,p
∂u1

∣∣
e

. . .
∂g0,p
∂um

∣∣
e


p×m

In General {A,B,C,D} depend on time, but if the system
is time invariant i.e. f = f(x(t), u(t)) they are constant.

Coordinate Transformation
A linearized system may be described in other coordina-
tes. The change of coordinates is given by the similarity
transform:

x = T x̃, T ∈ Rn×n, det(T ) ̸= 0

In the new coordinates, the system is then described by:

d

dt
x̃(t) = T−1ATx̃(t) + T−1Bu(t)

y(t) = CTx̃(t) +Du(t)

The fundamental system properties (IO-behavior, stability,
controllability) are independent of the coordinates chosen.

12.3 Solution of Linear ODE
Linear ODE:

ẋ = Ax+Bu, x(0) = x0

y = Cx+Du

Solution:

y(t) = CeAtx0 +

∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t)

Concolution:

σ(t)∗u(t) =
∫ t
0 σ(t−ρ)u(ρ)dρ

Impulse Response:

σ(t) = CeAtB

Matrix Exponential

eAt = I +
1

1!
At+

1

2!
(At)2 +

1

3!
(At)3 + ...

d

dt
eAt = AeAt = eAtA

In general:
eA · eB ̸= eA+B

But if: AB = BA then:

eA · eB = eA+B

And because At and Aτ commute for arbitrary t, τ ∈ R:
(eAt)−1 = e−At

12.3.1 Jordan Forms

12.4 Jordan Form
We are looking at a matrix A ∈ Rn×n.

Eigenvectors: vi ∈ Rn

Avi = λvi, A ∈ Rn×n, λ ∈ C
det(λI −A) = 0

Even for real matrices A ∈ Rn×n the eigenvalues λi and
the eigenvectors vi are in general complex entities. Howe-
ver they always arise in complex conjugate pairs.

If n linearly independent eigenvectors exist,
then T = [v1, . . . , vn] will diagonalize A:

AT = TΛ ⇒ T−1AT = Λ

where

Λ =


λ1 0 . . . 0

. . .
. . .

. . . . . .

0 . . . 0 λn


If all λi are distinct then all vi will always be linearly in-
dependent → A is diagonalizable.
This is equal to: ri = ρi = 1 for all i.

Not all λi are distinct

• ri: multiplicity of λi (Algebraic Multiplicity)

• ρi: rank loss of λiI − A (Geometric Multiplicity)
ρi = n− rank(λi −A), n = systemrank.

Three Cases can occur:

• Cyclic: ρi = 1 ⇒ Jordan Form
1 indep. evec exists for ri identical eval λi

• Mixed: ρi < ri ⇒ Jordan Form
amount of indep. evec < ri

• Diagonalizable: ρi = ri ⇒ Diagonalize
sufficient indep evecs exist to diagonalize the part of
A that belongs to λi

Jordan Form: Cyclic Case

Ji=



λi 1 0 . . . . . .

0 λi 1 0 . . .

. . .
. . .

0 . . . . . . 0 λi


For the mixed case the ri − ρi upper diagonal elements
will be 1.

Systems with mixed or cyclic Jorad blocks associated to
multiple eigenvalues on the imaginary axis will always have
some states growing out of bound → unstable.
Generalized Eigenvectors
In the cyclic and mixed case A is not diagonalizable. The-
refor we need generalized eigenvectors wi

To get T̃ wich transforms A into the Jordan Form
(T̃−1AT̃ = J) we need generalzed eigenvectors.

(λiI −A) · wi = vi
Transformation Matrix:

T̃ = [v1, w1, v2, w2, . . .]

12.5 Stability of Linear Systems
We are looking at the following system:

d

dt
x(t) = A · x(t), x(0) = x0, 0 < ∥x0∥ < ∞

Notice: for stability we set the input u(t) to zero!

Definition of Stability:
asympt. stable︷ ︸︸ ︷
lim
t→∞

||x(t)|| = 0,

stable︷ ︸︸ ︷
||x(t)|| < ∞ ∀ t,

unstable︷ ︸︸ ︷
lim
t→∞

||x(t)|| = ∞

For Diagonalizable Matrices we have: σi = Re(λi)

Asympt. Stable all σi < 0

Stable all σi ≤ 0

Unstable any σi > 0

For Cyclic or Mixed Matrices we have: σi = Re(λi)

Asympt. Stable all σi < 0

Unstable any σi > 0

If there are multiple σi = 0 then the system is only stable
if the corresponding Jordan Blocks Ji are diagonal.
ρσi=0 = rσi=0 ∀ i

Systems with mixed or cyclic Jorad blocks associated to
multiple eigenvalues on the imaginary axis will always
have some states growing out of bound → unstable.

Here stability is a global concept: if the eq. point x = 0 is
stable, then this is true for all finite initial conditions x(0).
Check Stability of Linear System

1. Calculate all Eigenvalues λi = σi + ωij of A with:

det(λI −A) = 0

2. If all σi are:

(a) σi > 0 ⇒ System is unstable

(b) σi < 0 ⇒ System is asymptotically stable

3. If one or more σi are zero, we need to further inves-
tigate the situation:

4. Calculate all ri (algebraic multiplicity)

5. Calculate all ρi (geometric multiplicity):

ρi = n− rank(λiI −A), A ∈ Rn×n

6. For all ri and ρi if one is cyclic or mixed, the system
is unstable!
(This also counts for the non linear system)
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12.6 Reachability and Observability
Reachability: reach a state
Reachability Matrix:

Rn =
[
B AB . . . An−1B

]
The system is fully reachable if rank(Rn) = n.
For SISO Systems this means full rank.
Controllability: bring a state to the origin
The set of all states x(0) ̸= 0, that can be forced to the
origin in finite time, by a suitable controll signal u(t).
For linear continuous-time systems the set of controllable
and reachable states is identical.
If the system is completely reachable, it is also completely
controllable.
A completely controllable systems can force any x(0) ̸= 0
to the origin.

Observability: doesen’t depend on x0

Observability Matrix:

On =



C

CA

...

CAn−1


The system is fully observable if rank(On) = n
For SISO Systems this means full rank.

12.7 Balanced Realization
R,O deliver only yes/no answer
⇒ we want quantitative information
System must be normalized!!!

12.7.1 Gramian Matrices
Controllability Gramian: symmetric & pos. definite

WR =

∫ ∞

0
eAσBB⊤eA

⊤σdσ

The closer WR is to a singular matrix, the less controllable
the corresponding system will be.
Observability Gramian: symmetric & pos. definite

WO =

∫ ∞

0
eA

⊤σC⊤CeAσdσ

The closer WO is to a singular matrix, the less observable
the corresponding system will be.
Computation of the Gramian
If System is Hurwitz (A asymptotically stable) we use two
Lyapunov Equations.

AWR+WRA⊤=−BB⊤

A⊤WO+WOA=−C⊤C

Facts about Grammians

• Gramians only exist iff system: {A,B,C,D} is asym-
ptot. stable.

• Gramians are by construction symmetric and positive
definite ⇒ σi are all positive.

12.8 Order Reduction
We will Transform the System T · xb = x, such that

WR,b = WO,b = diag(σi), i = 1, ..., n

Transformation:

T = TRTO, WR = VRΛ2
RV ⊤

R → TR = VRΛR

W̃O = T⊤
R WOTR = VOΛ2

OV ⊤
O → TO = VOΛ

−1/2
O

After the Transformation the Gramians of the transfor-
med system: T−1AT, T−1B,CT,D will have the followi-
ng form:

WR,b = WO,b =


σ1 . . . 0

. . . . . . . . .

0 . . . σn

 , σ1 ≥ ... ≥ σn ≥ 0

The states that are nearest to 0 can be omitted as they
are not good observable and not good controllable.
System Order Reduction Algorithm
After trasnforming the system in the order reduction form,
one can partition the system: System:

d

dt

x1(t)

x2(t)

 =

A1,1 A1,2

A2,1 A2,2

x1(t)

x2(t)

+

B1

B2

u(t)

y(t) =
[
C1 C2

]x1(t)

x2(t)

+Du(t)

x1 ∈ Rn−ν are the important states.
x2 ∈ Rν are the not important states.

We can now just omit x2 and end up with the system:

d

dt
x1(t) = A1,1x1(t) +B1u(t)

y(t) = C1x1(t) +Du(t)

Just omitting x2 will change the DC-Gain.

If this is to be avoided, a singular pertubation approach is
better, where the dynamics of states x2 is neglected but
not their DC contributions.

d

dt
x2(t) ≈ 0 ⇒ x2(t) ≈ −A−1

2,2 [A2,1x1(t) +B2u(t)]

Resulting System:
d

dt
x1(t) =

[
A1,1 −A1,2A

−1
2,2A2,1

]
x1(t)

+
[
B1 −A1,2A

−1
2,2B2

]
u(t)

y(t) =
[
C1 − C2A

−1
2,2A2,1

]
x1(t)

+
[
D − C2A

−1
2,2B2

]
u(t)

DC-Gain:
ẋ = Ax+ b = 0, u(t) = 1

12.9 Zero Dynamics
System: SISO

P (s) = C [sI−A]−1 B

Transferfunction:

P (s) = k
sm + bm−1sm−1 + · · ·+ b1s+ b0

sn + an−1sm−1 + · · ·+ a1s+ a0

• n: highest power denominator, # of integrators

• m: highest power numerator

• r = n−m: relative degree

• k: input gain

Canonial Coordinates with Gain k:

d

dt
x(t) =



0 1 . . . 0

0 0 . . . 0

...
... . . .

...

0 0 . . . 1

−a0 −a1 . . . −an−1


x(t) +



0

0

...

0

k


u(t)

y(t) =
[
b0 . . . bm−1 1 0 . . .

]
x(t)

This form has the minimum amount of parameters!
They have no physical meaning.

Alternative Definition of r:
Number of derivatives necessary before u appears in y

y(t) = Cx(t)

ẏ(t) = Cẋ(t) = CAx(t) + CBu(t) = CAx(t)

. . .

y(r)(t) = CArx(t) + CAr−1Bu(t) = CArx(t) + ku(t)

Zerodynamics from State Space
Solve y(t) = 0 to get the zerodynamics.
System:

ẋ =

−2 a

−1 0

 · x+

 1

−1

 · u

y = [1 0] · x

We get:
y(t) = x1(t) = 0

That x1 stayes zero we also have ẋ1 = 0.
As a result we get the zero dynamics.

ẋ1 = ax2 + u = 0 → ẋ2 = −u = ax2

Zero Dynamics:
Special inputs u∗(t) and IC x∗ for which y(t) = 0
For y(t) = 0 ∀ t all derivatives of y must = 0

Coordinate Transform: z = Φ−1x

z1 = y = Cx = [b0x1 + · · ·+ bm−1xm + xm+1]

z2 = ẏ = CAx = [b0x2 + · · ·+ bm−1xm+1 + xm+2]

. . .

zr = yr−1 = CAr−1x = [b0xr + · · ·+ bm−1xn−1 + xn]

zr+1 = x1

. . .

zn = xn−r

z =

ξ
η

 , ξ =


z1

...

zr

 , η =


zr+1

...

zn


New Coordinates: y = ξ1

r⊤, s⊤ not important here (m = n− r)

q⊤ = [b0,−b1, . . . ,−bn−r−1] p⊤ = [1, 0, . . . , 0]

To have y(t) = 0 ∀ t we have to initialise the system with:

ξ∗(0) = 0, u∗(t) = −
1

k
s⊤η∗(t), η∗(0) ̸= 0

Zero Dynamic States:

d

dt
η(t) =


0 1 0 . . . 0

0 0 1 . . . 0

0 . . . . . . 0 1

− − q⊤ − −

 η∗(t) = Qη∗(t)

⇒ Q asympt. stable ⇒ System is Minimum Phase
(all zeros have negative Real parts)

Unstable Zero Dynamics zero with pos. real part if:

• system is non-min phase

• system’s zero dynamics unstable

• internal states η can diverge without y affected

Consequences

• u may not be chosen such that y is (almost) 0 before
states η associated with zero dynamics are (almost)
zero

• Feedback control more difficult

• imposes constraint of bandwidth on CL-System
⇒ slower (smaller) than slowest nmp zero
System has to first get the nmp zeros fixed, before
it can start to controll the output.
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13 Nonlinear Systems

13.1 Equilibrium Sets
Linear Systems:

• 1 isolated equilibrium point

• entire equilibrium subspaces

• periodic orbits with the same frequency but arbitrary
amplitude

• if linear system is asymp stable it is always exponen-
tially asymp stable

Non-Linear Systems: Limit Sets

• can have infinitely many isolated equilibrium points

• equilibrium point can have finite region of attraction

• equilibrium point can be non-exponetially asympto-
tically stable.

• if an equilibrium point is unstable the state of the
system can “escape to infinity” in finite time

• can have isolated periodic orbits; all trajectories that
start close enough converge to this orbit.

• “Strange attractors” - bounded sets to which non-
periodic trajectories converge if sufficiently close

13.2 Lyapunov Stability
Lyapunov stability is always connected to a constant
equilibrium point xe of a system.
System: Assume xe = 0 w/o loss of generality

d

dt
x(t) = f(x(t), t), x(t0) = x0 ̸= 0, f(xe, t) = 0

If xe ̸= 0 then use the transform:

x̃ = x− xe

Lyapunov Stable at t = t0:
If you can find some r(R, t0) for any R > 0 such that:

if: ∥x0∥ < r ≤ R then ∥x(t)∥ < R ∀ t > t0

Uniformly Lyapunov Stable: if r(R) ̸= f(t0)

Asymptotically Stable:
Uniformly Lyapunov Stable and Attractive

lim
t→∞

x(t) = xe = 0

Exponentially Asymptotically Stable:
if constant a > 0, b > 0 exist such that:

∥x(t)∥ ≤ ae−bt||x(0)||

Facts
Usually only exponetially asymptotically stable systems
are accepteable for technical applications.

Linear Systems:
If an equilibrium point of a linear system is asymptotically
stable, then it is always expontially asymptotically stable.

Non-Linear Systems:
If an equilibrium point of a non-linear system is asympto-
tically stable, then it is not always expontially asymptoti-
cally stable.

Local attractiveness does not imply global stability.

13.2.1 From Linear to Non-Linear
If the linear system is

• unstable (Any Re(λi) > 0) the non-linear system is
also unstable.

• asymptotically stable (All Re(λi) < 0) the non-
linear system is also stable.

• stable (One or more Re(λi) = 0) we need further
knowledge of the system to decide.
If however through further analysis the system is un-
stable we can conclude that the non-linear system
will be unstable.

13.3 2nd-Order Systems
System:

d

dt
x1(t) = f1(x1, x2), x1(0) = x1,0 (3)

d

dt
x2(t) = f2(x1, x2), x2(0) = x2,0 (4)

Poincaré-Bendixson Theorem
CT diff’bar systems cannot exhibit deterministic chaos

Linearized system

A =

a11 a12

a21 a22

 ai,j = ∂fi
∂xj

d
dt
δx(t) = Aδx(t)

Lyapunov Principle:
The local behavior of the original nonlinear system and of
the linearized system have the same characteristics.

If some Eigenvalues have Re(λ) = 0, the principle doesn’t
hold and we need further analysis of the system.

Also applies to systems of higher order!

Eigenvalues Linearized Sys. Nonlin. Sys.

λ1,2 ∈ C− Stable Focus Stable Focus

λ1,2 ∈ R− Stable Node Stable Node

λ1 ∈ R+, λ2 ∈ R− Saddle Saddle

λ1,2 ∈ R+ Unstable Node Unstable Node

λ1,2 ∈ C+ Unstable Focus Unstable Focus

Re(λ1,2) = 0 Center ???

ACHTUNG
strictly local concept! regions of stability can be small
Lyapunov principle also holds for non-linear systems of hig-
her order
⇒ the local stability properties of the isolated equilibrium
point xe = 0 of a time-invariant nonlinear system:

d

dt
x⃗(t) = f(x(t)), x⃗(0) ̸= 0

are fully described by the first-order approximation A of
f(), provided A has no eigenvalues with zero real part.

Graphic Interpretation

Bottom right only valid for linear system.

13.4 Lyapunov Theory
If one is not interested in only local behaviour or Re{λi} =
0 for some i than one can use the lyapunov theory for sta-
bility analytics.
Definitions
Nondecreasing function:

α : R+ → R+, α(0) = 0, α(q) ≥ α(p) ∀ p > q

Strictly Positive Functon:

V (x, t) > 0 ∀x ̸= 0,∀ t, V (⃗0, 0) = 0

Lyapunov Candidate Function: V : Rn+1 → R+

• V (x, t) is strictly positive

• two functions β(x), α(x) exist that satisfy:

β(∥x∥ ) ≤ V (x, t) ≤ α(∥x∥ )

13.4.1 Global Stability
Uniformly Globally/Locally Lyapunov Stable:

d

dt
V =

∂V

∂t
+

∂V

∂x
f(x, t) ≤ 0 ∀x(t) ̸= 0, ∀ t

Uniformly Globally/Locally Asymptotically Stable:

− d
dt
V (x, t) has to be positive definite.

−
d

dt
V (x, t) > 0, ∀x ̸= 0, ∀ t −

d

dt
V (⃗0, 0) = 0

Finding a Function is very difficult!!!
Lyapunov Theorem provides sufficient but not necessary
conditions

Function for Linear Systems: Q = QT > 0 arbitrary

PA+A⊤P = −Q ⇒ V (x) = x⊤Px

d

dt
V (x) = −xTQx

P is symmetric and positive definite (PT = P ).
Solution only exists if A is is Hurwitz.

This is no new information but it can help find a function
for the non-linear case.

Achtung:
If d

dt
V does not fulfill criteria, Lyapunov theorem does

not provide any conclusion on stability of the equilibrium.

13.5 Circle Criterion

L(s)

ϕ(t, y)

y

v

−
r

• L(s): LTI, SISO dynamic part

• ϕ(t, y): memoryless, time-varying nonlinearity

Nonlinearity assumed to be “sector bounded”:

αy < ϕ(t, y)y < βy α, β ∈ R 0 < α < β

Circle Criterion
Assume L(s) is strictly proper transferfunction with n+

unstable poles & n0 purely Im. poles.
Assume ϕ(t, y) is sector bounded. CL system is asympto-
tically stable if:

1. Nyquist curve L(jω) does not enter disk D(α, β)

2. L(jω) encircles D(α, β) n+ + n0/2 times

This result is sufficient and necessary!

13.6 Popov Criterion
Powerful Result for fewer Systems.
Additional Constraints (compared to circle criterion)

• L(s) may not have unstable poles

• ϕ(.) must be time invariant

Popov Criterion Assume L(s), ϕ(.) fulfill above conditi-
ons. CL system asymptotically stable if:

Re [(1 + rjω)L(jω)] + 1
β−α

+ α
β+α

|L(jω)|2 > 0 ∀ω

Yields global results if the constraints are met.
Special Case: α = 0
Popov Plot:

PL = Re[L] + jωIm[L]

Criterion:

Re[L]− rωIm[L] + 1
β

> 0, ⇒ Im[PL]< 1
r
Re[PL+ 1

β
]
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13.7 Describing Functions

L(s)ϕ(e)
g y

−
0

e

Describing Function Special class of NL, SISO systems

• L(s): dynamic linear system, low-pass

• L(s) has to be asymptotically stable

• ϕ(e): static nonlinear system, odd ϕ(−e) = −ϕ(e)

• ϕ(e) must be time invariant

Objecitve:
Predict the presence of limit cycles. Only Approximations.
Limit Cycle:
Sustained periodic oscillations of CL-system
Linear Systems
Linear case ϕ(e) = e ⇒ CL stability boundary:

e = a sin(ωt) y = a sin(ωt− π)

Conditions

• amp. of e = amp. of y

• phase of y lags e by −π

|L(jω)| = 1 ∠(L(jω)) = −π or

L(jω) = ejπ = −1 ⇒ 1 + L(jω) = 0

Non Linear Case
Main Idea: if e(t) periodic, g periodic as well

g(t) = ϕ(a sin(ωt)) =
∑∞

i=1 ki(a) sin(iωt+ φi(a))

L is Low-Pass ⇒ only first harmonic of g important

g(t) ≈ k1(a) sin(ωt+ φ1(a))

Describing Function:

DF(a) =
k1(a)e

jφ1(a)

a

Changes induced by ϕ(.) on amp & phase of e(t).
Only dependent on the amplitude a and not ω.
Nyquist Diagram plot both DF(a) and L(jω)
⇒ marginally stable when:

k1(a) · |L(jω)| = a|DF(a)| · |L(jω)| = a

φ1(a) + ∠(L(jω)) = ∠(DF(a)) + ∠(L(jω)) = −π

⇒ 1 + DF(a) · L(jω) = 0

3 Cases can occur:

• L(jω) neither intersects nor encircles −DF−1(a)
⇒ CL-system probably asymptotically stable w/o
limit cycles

• L(jω) does not intersect −DF−1(a), but encircles
it
⇒ CL-system probably unstable

• L(jω) intersects −DF−1(a)
⇒ CL-system can produce limit cycle

Stability of Limit Cycle
Stable Unstable

Gedankenexperiment for stable

• system is on limit-cycle ω = ω∗, a = a∗

• at t0 disturbance ⇒ a → a+ > a∗

• L(jω) does not encircleDF−1(a+)⇒ stable a → a∗

The curve −DF (a) is a generalization of the point −1
which, according to Nyquist, may not be part of L(jω) to
avoid sustained harmonic oscillations.
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14 Chaos Theory
Key Ideas:

• Period doubling

• self similarity

• sensitivity to ICs

• strange attractors

Limit Set x∞ ∈ Rn is limit point if there is a solution to

d

dt
x(t) = f(x(t)), x(0) ̸= 0

that passes infintely many times arbitrarily close to x∞.

The limit set of the point x0 is the set of all limit points
of the solutiion that start at x(0) = 0.

Closed, Bounded Region:
subset Ω of Rn, Ω finite, ∂Ω ∈ Ω

14.1 Poincaré-Bendixson Theorem
System: time-invariant, 2nd order, CT, smooth, nonlinear

d

dt
x1(t) = f1(x1, x2)

d

dt
x2(t) = f2(x1, x2)

Theorem:
If L a limit set of system completely contained in Ω, L is
either eq-point or periodic solution of system
⇒ Chaos is not possible.
Higher Order Systems:
Chaos is possible but not guaranteed.
(only necessary not sufficient)
Linear Systems
Linear Systems of any order can’t have chaotic behaviour.

14.1.1 Rössler System
Simpelest Chaotic System.

d

dt
x(t) = −y − z (5)

d

dt
y(t) = x+ ay (6)

d

dt
z(t) = b+ xz − cz (7)

14.2 Time Variant Systems
A time-variant system with n states, can be extended by
the state ṫ = 1, t(0) = 0 and will then become a time-
invariant system of order n+ 1.
A second order time-variant system in particular can thus
have chaotic solutions.

14.3 Limit Sets Extended
Chaotic Attractor (Strange Attractor):
The limit set is neither a equilibrium point nor a periodic
solution. But they do not diverge to infinity. So the set is
still a limit set.

Region of Attraction:
Onces this region is reached, it is never left.

Limit Cycle:
If a non linear system starts sufficiently close to the limit
cycle, will orbit around that limit cycle.

14.4 Discrete Systems
Discrete Systems can have chaos at any order.
Logistics Equation:

xk+1 = f(xk) = µ · xk(1− xk), µ ∈ [1, 4]

Equilibria:

x0 = µ · x0(1− x0) ⇒ x0 =
{
0, 1− 1

µ

}
Equilibrium Point is Asymptotically Stable if | ∂f

∂x
(x0)| <

1. Derivatives at Equilibria:

d

dx
f(x)|x0 =

{
µ x0 = 0

2− µ x0 = 1− 1/µ

• x0 = 0 unstable for µ ∈ (1, r]

• x0 = 1− 1/µ astable for µ ∈ (1, 3)

Stability

Periodic Orbit
Jumps between 2 points

x0,3 =

(
1 + 1/µ+

√
1− 2/µ− 3/µ2

)
/2

x0,4 =

(
1 + 1/µ−

√
1− 2/µ− 3/µ2

)
/2

so long as

µ < µ2 ≈ 3.4494897 . . .

4 Point Orbit
µ2 < µ < µ∞ ≈ 3.5699456 . . .

This can go on and on until we get a periodicity of ∞.

Infinite Period
µ∞ < µ

Extremely complex behavior
There are values µ∞ < µ < 4 with periodic orbits
Bifurcation Diagram

14.5 Phase Diagramm
The Phase diagramm of the follwing points are:

• Equilibrium: A single point

• Periodic Solution: Closed trajectory

• Quasi-Periodic Solution: Not a closed trajectory

• Chaotic Attractor: Fractall ftructure
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15 Examples

15.1 Hydraulic Systems

15.1.1 Pelton Trubine
Conversion of Potential Energy (Pressure) to Kinetic Ener-
gy to Electric Energy via Momentum Exchange.

Change of Linear Momentum and Mass Element:

dB = 2(w −Rω)dm, dm = V̇ ρdt

Force Balance:

FT = Ḃ = 2(w − ωR)ρV̇

Torque:
TT = 2ρRV̇ (w − ωR)

Power:
PT = 2ρRV̇ (w − ωR)ω

Quadratic: Max: ω = w/2R, Min: ω = {0, w/R}

Pelton Turbine

Inertia

w V̇

TT

ω

Tl

15.1.2 Example: HEPP with Surge Tank

Tunnel

Surge Tank

Pressure 1

Downpipe

Compressibility

Pressure 2

Valve Pos.

hR

vT

hW

vF

pF

p0

u

x

Av

Av

uv

uv

Tunnel
d
dt
vT =

g(hR−hW )
lT

− λT
2dT

sign(vT )v2T

Surge Tank
d
dt
h̄W = vTAT−vFAF

AW

hW =h̄W + λW sign( dh̄W
dt

)( dh̄W
dt

)2

Pressure 1

pW = ρg(hW − hW0)

Downpipe

d
dt
vF =

(
pW−pF

ρlF
+ ghW 0

lF

)
− λF

2dF
sign(vF )v2F

Compressibility
dV
dt

= vFAF − uvAv

pF = V −V0
σ0V0

+ ρghR

Valve
dx(t)
dt

= u(t) Av = Av,0

(
1− (1− x)2

)
uv(t) =

{
cd

√
2(pF−p0)

ρ
x > 0

0 x = 0

15.2 Electromechanic Systems

15.2.1 Example: Trubine Generator

Turbine

Generator

Torque

TT

ω(t)

I(t)

TG

Turbine (friction small)
d
dt
ω(t) = 1

Θ
(TT (t)− TG(t))

Grid Network

Lgen Rgen LN RN

I(t)

UN (t)Uind

Generator & Grid

TG(t) = κI(t) d
dt
I(t) =

κω(t)−RtotI(t)
Ltot

⇒ UN (t) = LN
d
dt
I(t) +RN I(t)

15.2.2 Example: EMGU

Induction

CoilResistor

CapacitorMotor Law

ωtc

Uind

UR

II

UC

TEMGU

C

UC

I(t)

RUR

LmotUL

Uind

d
dt
I(t) = 1

Lmot
(UC − Uind − UR)

d
dt
UC(t) = d

dt
Q
C

=
−I(t)

C TEMGU = κM I(t)

15.3 Rotational Gears:

Gears are connected: (same force and rotation)

Rem · ωem = −Rvl · ωvl ⇒ ωem = −
Rvl

Rem
· ωvl

Equation left gear: (connection force Fcon)

Θem
dωem

dt
= Tem −Rem · Fcon

Equation right gear:

Θvl
dωvl

dt
= −k(ϕ0 − ϕvl)−Rvl · Fcon

Together we get:

dωvl

dt
=

− Rvl
Rem

· Tem − k(ϕvl − ϕ0)

Θvl +
(

Rvl
Rcm

)2
Θem
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15.4 Chemical Systems

15.4.1 Example: SCR NOX System

Assumptions

• NOx : only NO

• [O2] ≫ [Ai] ⇒ rates independant of O2

• Heat generated negligible

Chemical Reactions
Adsorption

NH3 ↔ NH∗
3

Secondary Oxidization

NH∗
3 + 3

4
O2 → 1

2
N2 + 3

2
H2O

Main SCR Reaction

NH∗
3 +NO + 1

4
O2 → N2 + 3

2
H2O

Resevoir Level Var. Resevoir Level Var.

Thermal ϑ NH3 [NH3]

NO [NO] NH∗
3 [NH∗

3 ]

Conservation Law
d
dt
[NH∗

3 ] =rads[NH3]− rdes[NH∗
3 ]

−rSCR[NO][NH∗
3 ]− rox[NH∗

3 ]

d
dt
nNO = V̇ [NOin]− V̇ [NO]− V rSCR[NO][NH∗

3 ]

d
dt
[NO] =

V̇

V
[NOin]−

V̇

V
[NO]− rSCR[NO][NH∗

3 ]

Reaction Rates

ri = kie
−Ei/Rϑ

Causality Diagram:

Thermal

NO

NH∗
3

NH3

ϑin Q̇ V̇

V̇

ϑ

[NOin]

[NH∗
3 ]

[NO]

[NH∗
3 ]

V̇ [NH3,in]

[NH3]

15.5 Mechanical Systems

15.5.1 Example: Inverted Pendulum
Assumptions

• no friction in pivot

• massless bar

• 2 rigid bodies
⇒ 2 DOF

Lagrange Steps

1. Input: force on cart u(t)
Output: angle of pendulum φ(t)

2. Coordinates:

q1 = y q2 = φ

3. Langrange Function (normalized):

T1(t) =
ẏ2

2
, U1(t) = 0

T2(t) =
ẏ2

2
+ cos(φ)φ̇ẏ + φ̇2

2
, U2(t) = cos(φ)g

4. Dynamic Equations:
2ÿ + φ̈ cos(φ)− φ̇2 sin(φ) = 0
φ̈+ cos(φ)ÿ − g sin(φ) = 0

ÿ =
φ̇2 sin(φ)−g cos(φ) sin(φ)+u

2−cos2(φ)

φ̈ =
2g sin(φ)−φ̇2 cos(φ) sin(φ)−cos(φ)u

2−cos2(φ)

15.5.2 Example: Vehicle

• ωe: Engine turn rate

• ωw: Wheel turn rate

• rw: Wheel radius

• γ: Gear-box ratio

• α: throttle position

Assumptions

• γ piecewise constant

• no wheel slip: vv = rwωw

no d-train slip: ωw = γωe

• must overcome Froll &
Faero

• other forces lumped: Fd

• no potential energy

Inverse Map

Torque

Total Inertia

Vehicle

Te,des

α

Te

ωe

γ

Fdrag

v(t) y(t)

Fr + Fa

Fd Fdrag

Step 1 Input: Engine torque Te, Output: Signal y ∝ vv(t)
Step 2 Only Reservoir is kinetic energy
⇒ Level Variable: v(t)

Etot =
1
2
mv2 + 4 1

2
Θwω2

w + 1
2
Θeω2

e

= 1
2

[
m+ 4Θw

r2w
+ Θe

γ2r2w

]
v(t)2

Step 3 d
dt
Etot = P+ − P−

P+ = Te(t)ωe(t) P− = (Fr + Fa(t) + Fd(t))v(t)

Step 4 Rearrange step 3 to

M(γ,m) d
dt
v(t) =

Te(t)
rwγ

−
(
crmg + 1

2
ρcwAv2 + Fd(t)

)
Gear-Ratio-Dependent Total Inertia:

M(γ,m) =
[
m+ 4Θw

r2w
+ Θe

γ2r2w

]
Note Te not technically input, rather Te,des mapped to
throttle pos. α, (Nonlinear!). Dynamic effects small

15.6 Fluiddynmaic System

15.7 Example: Nozzle Valve

Input signal:
with stroke time τ = 1

d
dt
x = u

Flow Velocity Incomp!

uv(t) =

{
cd

√
2(pF−p0)

ρ
x > 0

0 x = 0

15.7.1 Example: TC-Engine

Engine
Modelled as 3 Gas Receivers

Resevoir Level Var.

Volume IC to Throttle p1

Volume Throttle to Engine p2

Volume Engine to Turbine p3

dp1
dt

= Rϑ1
V1

(ṁc − ṁthr),
dp2
dt

= Rϑ2
V2

(ṁthr − ṁcyl)

dp3
dt

= Rϑ3
V3

(ṁcyl + ṁfuel − ṁt)

Turbocharger
Only One Dynamic Element

Resevoir Level Var.

Kinetic Energy ωtc

TC-Shaft

Turb.Comp.

p2, ϑ1, p1 u, ϑ3, p3, p4

Tc Tt

ωtc

ωtc ωtc

ṁc ṁt

Kinetic Energy
d
dt
ωtc = Ttot

Θtc
=

(Tt−Tc)
Θtc
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16 Multiple Choice Questions

16.1 Modeling

16.1.1 Mechanical Systems
Allgemein

Lagrange

Pendel

16.1.2 Thermodynamical Systems

16.1.3 Electromechanical Systems

16.1.4 Linear Systems 16.1.5 Non Linear Systems
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17 Geostationary Satellite

17.1 Problem Definition
• R: Radius Earth

• M : Mass Earth

• m: Mass Sat.

• r: Center of
Earth → Sat.

• φ: orbit ∠ of Sat.
Assumptions

1. only Earth-Sat. System considered

2. M ≫ m ⇒ CG at center of Earth

3. Sat. always in Eq-Plane

4. Attitude controlled by other control system

17.2 Nonlinear Model
Lagrange Functions

d
dt

[
∂L
∂ṙ

]
− ∂L

∂r
= Fr

d
dt

[
∂L
∂φ̇

]
− ∂L

∂φ
= Fφr

L = T − U

Kinetic Energy

T = 1
2
mṙ2 + 1

2
m(rφ̇)

Potential Energy

U =
∫ r
R GMm

ρ2
dρ = GMm

(
1
R

− 1
r

)
, r > R

Minimum Velocities min speed to reach altitude r

v0(r) =
√

2GM
(

1
R

− 1
r

)
(Ekin,0 = V (r))

escape velocity v∞ = limr→∞

v∞ =
√

2GM
R

≈ 1.12× 104m/s

Lagrange System Dynamics

mr̈ = mrφ̇2 −GMm 1
r2

+ Fr

mr2φ̈ = −2mrφ̇ṙ + Fφr

⇒ r̈ = rφ̇2 −GM 1
r2

+ ur

φ̈ = −2φ̇ṙ 1
r
+ 1

r
uφ

Geostationary Orbit

ur = 0 r̈ = 0 ṙ = 0 r = r0

uφ − 0 φ̈ = 0 φ̇ = 0 φ = ω0t

Sidereal Angular Velocity

ω0 = 2πrad
86 144 s

≈ 7.29× 10−5rad/s

Geostationary Radius

r0 =

(
GM
ω2
0

)1/3

17.3 Systems Analysis
State-Space

x =
[
r ṙ φ φ̇

]⊤
, u =

[
ur uφ

]⊤

d

dt
x(t) = f(x(t), u(t)) =



x2

x1x2
4 − GM

x2
1

+ u1

x4

−2x2
x4
x1

+ u2
x1


y(t) = h(x(t)) =

x1
r0

x3


Nominal Orbit

x =
[
r0 0 ω0t ω0

]⊤
, u =

[
0 0

]⊤
ACHTUNG Not eq-point! Periodic solution but same me-
thodology works for linearization
Linearization

A =


0 1 0 0

3ω2
0 0 0 2r0ω0

0 0 0 1

0 −2ω0
r0

0 0

 B =


0 0

1 0

0 0

0 1
r0


C =

 1
r0

0 0 0

0 0 1 0

 D =
[
0
]

Note In general the Matrices will be time dependent when
linearized around eq-orbit ⇒ Special case here
Stability

det(sI−A) = · · · = s2(s2 + ω2
0)

Roots: {0, 0,+jω0,−jω0} ⇒ Oscillations with f = ω0

double root in origin ⇒ might be unstable
Rank: rank(sI− A)|s=0 = 3 ⇒ ρ = 1, r = 2 ⇒ A cyclic
⇒ Linearized System Unstable!

Controllability

R =


0 0 1 0 . . .

1 0 0 2ω0 . . .

0 0 0 1
r0

. . .

0 1
r0

−2ω0
r0

0 . . .


Completely Controllable
first 4 cols lin. ind.
det(R) = − 1

r20
̸= 0

Radial Thruster Failure B2 = [0, 0, 0, 1/r0]⊤

⇒ Still Completely Controllable

Tangential Thruster Failure B1 = [0, 1, 0, 0]⊤

⇒ NOT Completely Controllable

Observability

O =



1
r0

0 0 0

0 0 1 0

0 1
r0

0 0

0 0 0 1

...
...

...
...


Completely Observable
first 4 rows lin. ind.

Radial Sensor Failure C2 = [0, 0, 1, 0]⊤

⇒ Still Completely Observable
Tangential Sensor Failure C1 = [ 1

r0
, 0, 0, 0]⊤

⇒ NOT Completely Observable
Transfer Function

P (s) =

P11 P12

P21 P22

 = C(sI−A)−1B =
CAdj(sI−A)B

det(sI−A)

P (s) =

 1
r0(s2+ω2

0)

2ω0

r0s(s2+ω2
0)

−2ω0

r0(s2+ω2
0)

s2−3ω2
0

r0s2(s2+ω2
0)


• TF shows linearized system unstable

• Completely controllable & observable with tangenti-
al thruster & sensor working
⇒ P22 is only one that has pole/zero cancellations

• even if system is stabilizable with only tangential
thruster & sensor, it is difficult. Corresponding SISO
TF P22 has NMP-zero (opposite direction at start)

at
√
3ω0 (which limits attainable crossover freq.)
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