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1 Basic Modeling

White Box Model:

Everything is known in form of ODE/PDEs.

Grey Box Model:

Physics is knwon but some Parameters are unknown and
we need experiments.

Black Box Model:

Nothing is known and has to be derived from experiments.

Parametric Model:

System Description through the Parameters and Physics
(ODE, PDE, TF)

Nonparametric Model:

System Description through a known system response.

Parametric Models can be:

Forward:

Regular Causality. (E.g. Given F'(t) what is v(t).)
Backwards:
Inverted Causality. (E.g. Given v(t) what is the needed

F(t).)

v(t) ———>

ko + k1v(t)

variables

4 exitation time
(a) Algebraic fast
(b) Dynamic  relevant
(c) Static slow
State Variable is Static
d
—xz(t) =0
prd Q)

Solve algebraic equation

1.4.1 Causality Diagramms

Graphical representation of the systems equation. There
are multiple ways to draw a causality diagramm.

Dyanamic Block Algebraic Block

Reservoir:

Accumulative Elements (e.g. mass, heat, energy). Only
systems with reservoirs have dynamic behaviour.

Every reservoir is associated with a level variable (state
variable).

Flows:

Flow of the quantity between the elements. (e.g. massflow,
heatflow). Are driven by differences in reservoir leves.

Precedure:

1. Define System Boundaries: what can be controled,

what can be measured

. ldentify the relevant reservoirs and corresponding
state variables

. Formulate conservation laws for each reservoir

d
—(R ir) = Infl — Outfl
dt( eservoir) g nflows E utflows

. Formulate the Algebraic Relations that describe the
Flows

5. Solve the Implicit Algebraic Loops

6. Identify Unknonw System Parameters with Experi-
ments

7.

Polynomial p(s) = ans™ + -+ ai1s+ao
Hurwitz Matrix

Validate Model with Experiments

an —1 an 0 0
ap —3 an—2 an—1 an 0
H, =
ag al az as a4
0 0 apg a1 a2
L O 0 ao]
H; : square ¢ X ¢ matrix aligned to top left
d; = det(H;)
di= an_1
do =  apn_1Gp—92 — AnGn—3
dz3 = do2-an-3—an—1(aGn—1an—4 — AnGn_>5)

Hurwitz Criterion
| Roots p; all have Re < 0 iff all det strictly positive |

Shift by one half period!'!

Shift by full periods!'!]
sin(f + k - 2m) = +sin @
cos(f + k- 2m) = + cos §

Shift by one quarter period Period

sin(f + ) = +cos

sin(f + ) = —sinf 2
cos(+ ) = Fsinf

tan(f = 1)

cos(f + ) = —cos 6 o

tan 61

a6 tan(f+ §) = —cot 6

tan(f +k-7) = +tanf 7w

Transfer Function

P(s) = C(sl — A)~1B = CAdGCI-A)B

det(sI—A)
23.1 MIMO

Poles

The poles of P(s) are the roots of the least common
denominator of all minors of P(s)

Zeros

The zeros of P(s) are the roots of the greatest com-
mon divisor of the numerator of the maximum minors
of P(s) after normalization to have the pole polynomial
of P(s) as denominators

2X2 Inverse

—1

b
d

a 1 d —b

c det(M) [_.
Positive Definite Symmetric and all Eigenvalues positive
orifzT Az >0 Vo #0

Minors determinants of all square submatrices

Scalar-by-vector derivative:

of _[of of of
OF = |ofy 0F2 ' O,
Hessematrix:
9%f 8%f 9% f
Ox10x1 Oxq10xo Ox1 0Ty,
92 f _
872 : : :
9% f 32 f 92 f
Oxn Oz Oxp Oz OxpnO0xy,

2
positiv semi-definite (% > 0) if all eigenvalues \; > 0.

oF
Chainrule:
df (z(t)) Of d=x
t P .
A o di
DGL first order solution:
d
dj =A+By(t), y(0)=yo
t
A A Bt
H=—=+(=
y(t) 5T ( 5T yo) e

2.5.1 1 Ordnung
y+a(t) y=>b()

L6sung;:

y(t) = (/ b(t) - et + K) e AW®)
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Incompressible Flow:

1 1
p1+ Epvf + pgz1 = p2 + §pv§ + pgz2

Velocity: (incompressible with Newtons Third Law)

d d
m—v(t) = plA—o(t) = A(pr(t) = p2(t) + pgh) — F (t)
Friction Force: (A form the Moody Diagramm)

Fy(#) = AN(w(t)) - Zsign(u(0)0? (1)

All Compressibilty put into one Lumped Parameter.

k=1/(c0Vo)

AV =0

Vin(t) Vout(t)

Volume leaving not the same as entering so the Spring
(Compressibility) moves up and down.
Volume:

d . .
aV(t) = Vin - ‘/out
Compressibility:
p(t)

oo = compressibility constant
Vb = nominal volume (determined experimentally).

|4
+ Potat, AV =V (t) — V(0)

ooVo

Resistance: R Static Block
Ur(t) = R-I(t), Wg=UI= RI?
Inductance: L Dynamic Block — Level Variable I(t)
d 1
L—I(t)=Ug(t), Wy = =LI*t
SI0) = UL(t), Wi = SLI()

Capacitance: C Dynamic Block — Level Variable U(t)

08 Ue(t) = 1), We = JCUZ()
Element Capacitance Inductance
Energy Wg = 1CU%(t) Wa = $LI(t)
Level Variable U(t) 1(t)

CLU(t)=1(t)
Energy Conservation:

Conservation L%I(t) =U(t)

d
ZE@=P@1), PO=U®I®

Kirchhoff’s Laws:

kazo,

Z Ui =0, in a closed loop

in each node

Subtract Energies
If Upin = %Uma:c:

1 1 3
Euseful = 50 . U72naz - EC . Ufnzn gc . U’?naz

Electric Losses
Electric losses are due to resistance, so if there is a resi-
stance term, the losses are accounted for.

Brushless motor:
o Permanent magnets on the rotor
e Electrical commutation of the stator.

5 Electromechanic Systems

Biot-Savart:

F:/Idixé:[-(fxé):q.(ﬁxé)
L
Faradays Induction Law:

U=—v-(I'x B)

Usually we take the orthogonal case.
Motor Law:

F(t) = kmot - I(t)
P =we T =we-k-1

Generator Law:
Uind(t) = Kel * w(t)

Pel = Pmech
Kellw = KmotIw

& Uppgl =Tw

= Kel = Kmot

Two Reservoirs (Electircal and Kinetic Energy)
Mechanical:

motor load friction

d NN
O Giw(t) = Tn(t) =Ti(t) —dw(t) = I(t) = T1(t) — dw(?)

Electrical Motor:
Draw Circuit Diagramm & Use Kirchhoff

—u(t) + Ur(t) + UL (t) + Uina(t) = 0
= LLI(t)=—RI(t) — rw(t) + u(t)

Causality Diagram

w(t)

u(t)

Electrical

1(t)

Mechanical

Ti(t)

Circuit:

1(t)

Ur

u(t) Ur

l Uinda

Steady State:

,41()

M) — 0 & (1) = wt=re®

Nice to know .
For Rpew < Roiq the current increases, the speed at

zero torque production T}, = 0 stays constant, the motor
torque Ty, at w = 0 increases and the slope of T}, = f(w)
changes.

electric losses are modeled with the resistance

Different Inductance: Voltage and Load Torque Jump

e High L means more extreme speed reaction but
slower Motor Torque reaction

e Lower L means better speed reaction and faster Mo-
tor Torque reaction




6_Mechanical Systems 6.2 EulerMethod |65 Lagrange Formalism | 6.54 Procedure

6.1 Mechanical Energy T

6.1.1

Translational:

Kintetic Energy

Ti(t) = %va(t)
Rotational: 1
T (t) = 5eoﬂ(t)

Complete Kinetic Energy:

1 1
T= Emﬁgﬁ'p + mi5(& x Ppg) + §wT@w

e Up velocity of the point P

Tpg is the position vector from P to the center of
gravity S

e J rotational speed of the body (same for each point)
e m mass of the body
e Op Moment of Inertia of the body in point P.

If P is chosen to be equal to 0 or S the equation simplifies.

6.1.2 Potential Energy

Function of the Position: (Not velocity)

U(t) = U(F(t))
Gravity Linear Spring  Torsional Spring
U=mgh U=1ikpna? U= Lkoto?

Conservative Force
A force is conservative if it can be written as the gradient
of a potential.
ouT
F=—-——
oq

6.1.3 Moment of Inertia

Definition:
o= [ o

Steiners Theorem:

@=90M+m'd2

Rod: Ocn = ML
Cylinder: Ocn = MQRQ
Hoop: Ocn = MR?
Solid Ball: ~ ©¢py = 2ME2
m-t Ball: @y = 2ME2

Pointmass has zero moment of intertia with respect to its
center of gravity.

PF:F~v Pr=T r.o

Total Energy:
E(t) =

Energy Conservation:
d k
ZE0 = > Pt
i=i

Translational:
d
Zm - (t) = F(t
Sm - T(0) = 3 Fi(t)

()= _T:()

Aerodynamic Force:

T(t) + U(t)

Rotational: d
— 0O -0
dt

1
F, = EPCwA'Uzel
Rolling Friction:
Fr = C»,«FN

Pendulum
Equation of motion of a pendulum:

d29 o~0 d20 g

dt2 sm(9) =0— ) + 79 =0
Solution:

6(t) = 6o - cos (\/%) - 27(\/?

Degrees of Freedom:
2D DOF =3n—k

3D DOF =6n—k
k = holonomic constraints, n = number if bodies
6.5.1 Generalized Coordinates

Set of independent coordinates that describes the beha-
viour of the constrained system.

() = [a1(t), .- apor ()"
Generalzied Coordinates are not unique!!!
Minimum possible amount of generalized coordinates
equalts the number of degrees of freedom (DOF).
6.5.2 Constraints

Holonomic Constraint:
Restriction of the reachable configuration. Reduce the
number of variables used to describe the system. Inde-
pendent of G(t).
f(@t)=0

Decrease the number of DOFs.

on-Holonomic Constraint: fno change in DOFs)
Restriction of the trajectory. Dependent on ().

F(@(t),qt),t) =0

Do not decrease the number of DOFs.

Caution

If a Non-Holonomic constraint can be integrated over time
it is Holonomic.

Non-Holonomic: & = 2zy

dt
Holonomic: T =¢R f—> x=pR—xo

6.5.3 Generalized Forces

Non-Conservativ Forces Acting in the System
Force Acting in A: ~ ~
Qa = JZF

Fa=Ja-G+€a

U4 velocity in A, €4 is the offset term.
Torque Acting in B

Qp=JtM
Gp=Jp-(+¢&p

&p angular velocity in B, £ is the offset term.

1. Identify a set of generalized coordinates g(t)
2. Is the System Holonomic or Non-Holonomic

3. Define the Lagrange Function
L@q =T@] - U(@.d

4. Compute the generalized Forces Cj.b
5. Comput the Equation

e Holonomic System:
oL

afon)
dt | Oqp 8qk

e Non-Holonomic System: n 4+ v equations

=Qr°

d ( OL
- — oy
dt{aqk} i ]Zl“] "
afqty=0, j=1,...,v
af =laji,. 5], ajr€R

Resulting Equation
M(q(t)) - G(t) = f(q(t),4(t), u(t))

M is allways a symmetric matrix.

C



7_ Thermodynamic Systems 75 GasReceiver |77 lsentropic Relations

V, R, cp, ¢, constant L
Open System: T (m ) ==
au m(t), p(t) Ty P1

W WS —S A — —
dt Q Z B Z out Min(8), Hin (), Oin(t) U(t),9(t) T our(t), Hou(8), 9() Temperature and Volume:

Internal Energy: U(t) = cy -m - ¢ T o\ 71
Enthalpy: H(t) =cp -m -9 -2 (i)
Enthalpy Flow: H(t) = ¢p -1 - ¢ Ty v2

Q(t) Heat Flow, W (t) Mechanical Power. Reservoirs: Pressure and Volume:
For incompressible Solids and Fluids we have ¢, = ¢p. P2 v1\”
7.1.1 Heat Transfer Energy U(t) : 9(t),  Mass m(t) : p(?) o (E)

Assumptions: V, R, ¢;, ¢, are Constant

Starting Equations: Pressure:

Conduction Q = % (T — T») Fourier

1
P2 P2\~
dm . i — = (*)
Convection Q = kA(Th — T») Newton g = Mn T Mout PL P1
Energy of a Fluid:

Radiation ~ Q = cc A(T} —T3) Ste & Boltz. au . . :
7:Q—W+ Hin_ Hout 2 2
. o dt Z Z cp~T1+v—1:cp~T2+U—2
e r: thermal conductivity [W/Km] Don't forget the energy of fluid flowing in or flowing out. 2 2

e k: heat transfer coeff [W/Km?]

* ¢ emissivity <1 Temperature (Energy):
e 0: Stefan-Boltzmann const. 4.670 - 108 W /K*m? a9 R

T ooVa [MincpBin — Moutcp® — (Thin — Mout)cy Y]

7.5.1 Adiabatic Gas Receiver Q) =0
If 7y (into the cylinder) is model with a isenthalpic
throttel and EGR throttel is closed at max engine power.

Ideal Gas Law: Pressure (Mass): e Increasing heat removal by intercooler (Before the
pV = nRY = nMRYO = mRY dp(t) kR . . o intake) = higher power
= (min'ﬁin_mout'ﬁ)7 K= — . . o

o Pressure: p, Volume: V, Temperature: ¥ dt v o e Insulating exhaust manifold = higher power

o # of Molecules: n [mol], Mass: m [kg] 7.5.2 Isothermal Gas Receiver ¥ = const. * Reducing the intake volume = no effect

o Molar Mass: M — ™ [kg mol~'] Temperature (Energy): e Reducing the moment of inertai of the turbocharger

n = no effect

Gas Constant dd

d pr=m
Pressure (Mass): (9 = 9in = Yout)

; - —1ypc—1
® Universal: & = 8.314Jmol™" K Usually all massflows are algebraic equations and are the-

e Specific: R = % =cp—Cov refore no state variables. Pressures and temperatures on
p dp(t) RY .. . the other hand can be state variables (different for every
*ETL g =y un(t) = o (t)] situation).
7.2.1 Energy
Internal Energy: Ein Eiswiirfel in Wasser gibt einen Warmestrom an das
U = meo (9 — 9) = meyd Wasser ab: . X
=Lm
Enthalpy: Q fis
H=U +pV = mc,® + mRY = mcpd Wobei: Ly die spezifische Schmelenthalpie und 7;’Ls der

Schmelzwasserstrom ist.
Der Eiswiirfel gibt tiber den Schmelzwasserstrom auch

p noch einen Enthalpiestrom an das Wasser ab:
For the lumped parameter assumption, the thermodyna- : P!

mic states are assumed to be constant inside the receiver.
Therefor the outflow temeprature must be the same as
the temperature in the receiver. Wobei: T, die Eistemperatur (constant) ist und

* *
H=mgsTecy

The pipe temperature of a insulated pipe, can only be
described by a PDE.




8 Fluiddynamic Systems

Incompressible: Bernoulli

1
= caA(?) \/ Pin — Pout + 5PU.L-2n

We can often neglect v;,, — vip = 0:
';;L(t) = CdA(t) V 2PV Pin — Pout
Compressible: Isenthalpic Throttle

m(t) = CdA(t)\/%\p(pin(t)vpout(t))

Caution for the correct sign!!!
r+1

2 —1

f(5) ", ®
1 k=1

Pout . . 2K _ Pout K

Pin rot |1 (pin ) » @

2 "—T : <
Per = ( ) DPin, {® Pout Per

U (Pin, Pout) =

k+1 ®5pout2pcr
Din(t)
~ Pout (t)
—

M (£), Din(2), Pin (£) Mot (£), Vour(t), Pour (1)

I T e )

Choked Flow

For pout < per we reached the sonic speed at the outlet
and the flow is choked (can't go faster).

For air v = 1.4 sonic if

1
Pout < 5 * Pin
When poyt reaches per, the flow in the narrowest part
reaches sonic conditions.
The flow is chocked at this velocity and no further speed
increase can take place.

Approximation
We can also use an approximation for W:
v %: for pout < 0.5p;n,
ERRVE - [1 - LW], for pout > 0.5pin
Pin Pin

Both of the formulations have singularity at pout = Pin
Opening Area

Ay =7R2 — (1- x)R%) m=Aw (1-(1— 1)2)

Caution: Algebraic Block not Dynamic.

Unoz U3 P3 P4 wt
Y ¥V ¥ ¥ ¥
‘Turbine (Fluid & Thermo)

Yy v oy

o my T

Open System:

[ . . . .
E:Hin_Hout_Wt‘i‘Q

Adiabatic and Static: Q = 0, ‘fi]f =0.
Wt Hip — Hout Ty - Cp - (193 - '194)
Isentropic Relations:
r—1
9 R r—1 9z — 9
78:(&3) _, g Pem s
Vq,is P4

Isentropic Velocity:

11—k
— ~ Tt - Wt
cus=\/2~cp~193 |:1—1'[t" ], cuSZT
us

Temperature: 1; from Maps or Charts

1—k
vq4 = U3 |:1—77t (].—Ht”i ):|7 Ht:p—3
2

Mass Flow: ji; form Maps or Charts

p3 ﬁref,O . [l,t

e =
Dref,0 I3
Torque:
P, C g - -9 1=k
Tt:;:w[l_ntn }
Wt wt
Power:

1-r
Ptzmt-cp-ﬁ;g'?]t- [1*Ht“ :|
Efficiency Map Turbine

e

®

O

/ simplified
/ turbine \

o £ -
0 ®© 10 12

Massflow Map Turbine

wt = constant
i (kg/s) B

throttle approximation
(Aune =1)

™
P T throttle approximation
a (Aumt < 1)

1.0 0] 1.

V3 — V4 is

Caution: Algebraic Block not Dynamic.

p2 Y1 P1 owe
LA A A
‘ Compressor (FI. & Th.) ‘
YoV ¥

Vo Me Te

Open System:

dE . . . .
7:Hin_Hout_Wc+Q
dt

Adiabatic and Static: Q = 0, ‘ff =0.

Pc:Wc:Hin_Hout :mc‘cp‘('l92_792)
Isentropic Relations:

k—1

V2,45 p2\ " pL V255 — V1
— =\ — =Il." , Ne=-—"F—7—
91 p1 P2 — U1

Temperature: 7. from Maps or Charts

1 r=1
Vo = 91 [1+f(ncm —1)}, m. =22
Te pP1

Mass Flow: [i. form Maps or Charts

. p1 197"ef,0 .
me = ————\| ———— ¢
Pref,0 91
Torque:
7, = Fe _me ot {szl _1]
We TMe = Wt
Power:

N .9 k=1
Po= e UL [ng —1}
Te

Compressor Efficiency & Massflow Map

Hc
7. = constant
surge
@e = constant
@
@,
1 *
@ He (kg/s)

Compressor Operational Limits

m, T
mechanical limit
Fluid-dynamic
instabiliies destroy the £ Maximum speed
regular flow pattern o
> possible back-flow ' allowed o avo

mechanical damages
> centrifugal forces

(=
Behaviour at zero y choke limit
I
(or very low) speed £

> blocking orifice

Flow reaches
sonic conditions
= -> choked orifice

fic (kgls)

blocking limit




One mol of A is 6.022 % 1023 molecules.
The Concentration is defined as the number of molecules
per volume:

(4] = ”7“‘ = [molm~3]

The molar mass of species A: M 4[kg/mol] is defined the
mass of 1 mol of A.

aA+ BB =~C+ 6D
Forward Reaction:
d-
A = —ae 4] (B)°
Backwards Reaction:
T4 = a- O D
~ [Al=a-r
dt
Whole Equation:
%[A] =a-(r~[C]"[D]° —r*[A]*[B])

forward reaction

inverse reaction
Arrhenius Model:
e =k W,p,. ) T R
——

rate coeff. Boltzmann term

pre exp. factor

r/k 10

RI/E

e With R = 8.314 [ J

molK] being the universal gas con-
stant
e F are the activation energies

e Boltzmann term: fraction of all collisions that have suf-
ficient energy to start a reaction

e In most cases (kT,k~, Et, E~) must be determined
experimentally

Adding Massflow:
d d
—I[Al flow = —[A
“ [Alptow = 1A]+

A in—MA out
VMa

na/V (ie flow)

[A:())]; 94 (t)

Reaction:

A+B—C

Assumptions
e Molecule A is limiting species — [B] = const.
e (' is continuously removed - A+ B «+ C
e m, c and p are constant
e CSTR is adiabatic
e Lumped parameters — [C(t)] = [C(t)]
Mass Balance:

d * * *
—m=0—=m; =mo=m
dt

*
Vi, =p =
p
Three Reservoirs:

e n4: level variable [A]

e nc: level variable [C]

e U: level variable ¥

Conservation of A:

Lna=V (4] - V- [A@®)] - Vr_[A@)[B]
N— —m— —m———

inflow outflow reaction

Conservation of C:

no ==V [AW]+Vr AWIB
—————

outflow reaction
Conservation of Energy:

®

%U(ﬂ, nasne) = Hi(i(t)) — Ho(8(1)) + Q(t)

Hi(95(t)) = - 95(t)  Ho(0(t)) = 1 -c-9(t)
Chemical Reaction Energy:
dU = g—g -dﬁ+%-dnA+%~dnB+%~dnc
=p-V.c-dd+Hp -dnp+ Hp-dnp + He -dnc
With H 4, Hp, Hc being the enthalpies of formation. Sto-
chiometry gives us: —dna = —dnp = dnc

9_Chemical Systems 9.3 Continuously Stirred Tank Reactor | Resit

r S AW) = [Ai() = (L7 e ) - [A()

P {EW] = ~0@) + 7 k- ¢ T - [4)

d At
T—9(t) = () — I(t) + 762( )*
dt
p-c-V
—_———
Controll
T __E _
+ T Hy k- OO [A®D)]
p-c
Enthalpy
\%4 _
TI:V’ k:=k~-[B], Ho=Ha+ Hp— Hco

Chemical Equilibrium in a CSTR
Heat Removed by massflow: Q = 0,9;,, = c1, [A;] = c2

)5}
V.k-e R9

échem(ﬁ) = Ho - . [AZ]

__EBE
1+7-k-e R9
—Hiow

Ps

Qenem

Py

P
RI/E

Y

e P;: Stable but to slow
e P: Unstable but usefull — Controlling
e Ps: Stable but to hot




Lemma 1: J
— T x=¢, czeR”
dx
Lemma 2
d
d—:cT~M z=2M-z, M=MT e R"™" ¢ cR"
X
Lemma 3
d2
——2T - M-z=2M, M=MT R zcR"
dx?
efinitions:
7r:[7r1,...,7rm]T eER™, L:R™ >Ry
Sufficient Condition for 7y to be a local minimum:
oL 0%L
|, FUm|
on T=70 on T=T0
Necessary Condition for 7y to be a local minimum:
L 2L
OL(m) —o, e} (271') >0
o T=T(Q on T=T(
Definitions:
T =[r1,... ,wm}T € R™, Control Variable
z=[z1,...,za)T €R", State Variables

for convencience
fiR™T SR L:R™T SRy
Find 7o, zo which minimize L and satisfy f(mo,z0) = 0.
Solution: n =1
OL(z) af(z)

—_— A
0z z:m+ 0z 2=z0

e Semi-Analytical: preformance index L(w) and its
gradient known (faster and less numerical error)

z=[m T,

=0

o Fully Numerical: only index is known and gradient is
computed with a finite difference

10.4.1 First Order Methodes
e Guess an initial value 7 (1)

e Evaluate the Gradient 3?,757”)

w=m(1)
e Determine the new iteration point:
(i +1) = n(i) — h(i) - 22
om w=m(1)
e Check wether the difference |L(w(z + 1)) — L(w(2))|
is smaller than a predetermined threshold e.

Problems with small “ravines” and a good h(i) is critical.
Nesterov’s Algorithm: Solution for small ravines

7(i 1) = p(5) — (i) - 220

. m=p(1)
pli+1) =m(i+1) + ? (w(i + 1) — w(0))

Not every step satisfies L(w(i + 1)) < L(w(¢)) but will
converge faster to the local minimum.

Determine the Parameters of a gray box Model or Validate
the Systems. Very Important to not use the same data for

onditions:

e Coefficients have to enter linearly

e No singularities in the date.
Model: Algebraic

y(k) = AT (u(k)) - 7 + e(k)

k € [1,7] = number of measurements
u(k) € R™ = k-th input vector
y(k) € R = k-th output
e(k) € R = k-th error

h() € R? = Regressor (Non-Linear in u(k) but alge-
braic and known exactly)

e 1 € R? = Vector with all Parameters

System of Equations:

y(1) hT(1) | |mo e(1)

= T +
y(r) T (r) e(r)
N —

JERT HEeRT™>4 €er”

Error:
e=y—H-m, ecR"

»

Goal: minimize e
75 = argminél é = argmin(j — Hn)T (§ — Hr)
Solution:
mps = (HTH)"'HTg

Use the Variable with the error as y!!!
11.2.1 Weighted Least Squares
If not all measurements are equally good we can use a
symmetric and positive definite weight matrix.

e=él W-.&, W eR™"
Solution:

P [HT~W-H]_1HT~W~y

10 Optimization 11 Model Parametrization 11.2.2 Comments: Linear Least Squares

If rank M # g we can use the Moore-Penrose Pseudo In-
verse. If Model is precise and e is zero mean the parame-
ters are excact. The full rank means that the parameters

should be non-redundant.
Geometric Interpretation

Main Idea:
Inversion is very time-consuming thus we use an iterative
approach if a new measurement is avaliable.

mrs(r+1) = flros(r),y(r+1)), wrs(0) = E{r}
Needed Lemma:
M € R™™ det(M) #0,v €R 14+vT - M~1.v#0
M=l T M1
1+vTM-1y
If M~ is known, inversion of M + K is easy.
Starting Point:

M +ooT] "t =M1 -

r

>

k=1

T

> h(k)y(k)

k=1

-1
mLs(r) = { h(k)hT(k)}

=:Q(r)
Definitions:

Q(r)h(r+1)h T (r+1)Q(r)
1+c(r+1)

Qr+1)=Q(r) — , QeRIxa

c(r+1)=hT (r+1)Q(r)h(r + 1),
Solution:

ceR

Q(r)h(r + 1)
14c(r+1)

direction

[y(r+1) — ! (r+ Drpg(r)]

prediction error

g (r+1) = mrpg(r) +
—_———

new old

11.3.1 Exponential Fogetting

If we now want to weight newer errors more we can use
exponential forgetting.

e(r) =1 A8 [y(k) — hT (k)mLs(n)]?, A <1

Solution:

— T s T s
s (r+1) = 7rLs(7’)+Q)\(:-)c}z£:L1§) -t :f Hms)]
Update Equation:

190 [1 = sy + DRT (0 4+ DRE)]

Q(r+1)

Model: Dynamic
9500 = 16O, u(0),7), 2R ueE"

9(t) = g(&(t), u(t), #),

Error Preformance:

§ERP, 7 € RY

€= Zpi(yi(ﬂ) —9:(A)?%, pi €Ry
=1

Finding the optimal 7 that minimizes € we use non-linear
programming.

7?(0)¢
# (k)
num. minimization criterion
grad. free Non-Lin
( ) <® ( )

ﬁ'LS¢

To calculate the least squares solution one can use the
following commands:

e H\y
e mldivide(H,y)




12 Linear Systems

Obtained Model:

d
a(t) = (1), 0(0),0),

Problems:

w(t) = g(=(t),v(t), 1)

e Non-normalized:

— Numerical Problems (Different Magnitude)
— Not the same units

e Non-Linear: There is no theory

System Operates around a set point.
i) = 22 wit) = 58 i) =

Those normalized variables will have no units! (Derivati-
ves will have unit 1)

Such a transform does not change the systems characte-
ristics. Vector Notation:

wi (t)

Wi

z=T- x T = diag(z1,0 - - - 2n,0)
Normalized System:
d
220 = fo@(®),u®), 1), y(t) = go(a(t), u(t), )

!inearization aroun! a sma neig!!or!oo! o! a c!osen

equilibrium point {ze, ue}
By i={x € R" | lz —zu® + [lu —uel| > <r}
Equilibrium Point: fo(ze,ue,t) =0

0 =0T—Te OU=U—Ue OY=Y—Ye
Taylor Expansion: O(6z2, 6u2) — 0
d dfo 9fo
—oz(t) = — ox(t) + — Su(t
Sony= S0 sewy+ 2L su)
9g0 990
dy(t) = gbe,ue‘s x(t) + 37|ze,u56u(t)
Matrices
[9fo,1 | 9fo,1 } nxn
Oz Oxyp le
A = . .
a.fO,'n 8f0,n
L 9z1 le Oz, le
[9fo,1 9fo,1| ] nxm
duq le Oum, le
B = : :
aJ“O,n 8fO,n
L Oui le Oupm, led
[990,1 990,1 pxm
Oz le Oz, le
C=
990.p 990, p|
L 0z le Oxp _
[9g0,1 990,1 | pxm
Ouy le Oum le
D =
990,p | 990,p |
L Ouy Oum

In General {A, B,C, D} depend on time, but if the system
is time invariant i.e. f = f(x(t),u(t)) they are constant.

Coordinate Transformation

A linearized system may be described in other coordina-
tes. The change of coordinates is given by the similarity
transform:

x=T%, TeR"™", det(T)+#0
In the new coordinates, the system is then described by:
d
ax(t) =T AT%(t) + T~ Bu(t)

y(t) = CTZ(t) + Du(t)
The fundamental system properties (I0-behavior, stability,
controllability) are independent of the coordinates chosen.

123 Solution of Linear ODE
Linear ODE:

& = Az + Bu, z(0) =uzo

y=Cz+ Du
Solution:

t
y(t) = Cetag +/ Ce*t=7) Bu(r)dr + Du(t)
0

Concolution:

fo t—p)u(p)dp
Impulse Response.
o(t) = CetB
Matrix Exponential
=1 +1 At + = (At)2 —'(At)3
d ar _ g At _ Aty
at©
In general:
eA . eB £ ATB
But if: AB = BA then:
oA oB — JA+B

And because At and AT commute for arbitrary ¢t,7 € R:
(eAt)—l _ e—At

12.3.1 Jordan Forms

A

Examples:
[2000]
V-tay_ [0400 pr=ri=1
=looso
0007 A diagonal
no
31007 onty one BV exists
VAV = |15 4 o | full i-th Jordan block pi>1
0007 Aiscyclic /"\O
Y g'| fewer than r; BV exist
v-tay = [230 i-th Jordan block mixed
0030 Gt dordan Dlock ! ;
9007 neither diagonal nor cyclic
i BV exist

i-th Jordan block empty
07 A is diagonal

0

O:|

7

cow
cwo

UU

We are looking at a matrix A € R™"*™.

Eigenvectors: v; € R™
A’Ui =)\’Ui, AGR"X",
det(\I — A) =0
Even for real matrices A € R™*" the eigenvalues \; and

the eigenvectors v; are in general complex entities. Howe-
ver they always arise in complex conjugate pairs.

xecC

If n linearly independent eigenvectors exist,

then T' = [v1, ..., vy] will diagonalize A:
AT =TA = T AT =A
where
A 0 0
A=
0 0 An

If all A\; are distinct then all v; will always be linearly in-
dependent — A is diagonalizable.
This is equal to: r; = p; = 1 for all 4.
Not all )\; are distinct
e r;: multiplicity of \; (Algebraic Multiplicity)
e p;: rank loss of X\;I — A (Geometric Multiplicity)
pi =n —rank(\; — A), n = systemrank.
Three Cases can occur:

e Cyclic: p; = 1 = Jordan Form
1 indep. evec exists for r; identical eval \;

e Mixed: p; < r; = Jordan Form
amount of indep. evec < r;

e Diagonalizable: p; = r; = Diagonalize
sufficient indep evecs exist to diagonalize the part of
A that belongs to \;

Jordan Form: Cyclic Case

A1 0
0 X 1 0
Ji=
0 0 A
For the mixed case the r; — p; upper diagonal elements

will be 1.

Systems with mixed or cyclic Jorad blocks associated to
multiple eigenvalues on the imaginary axis will always have
some states growing out of bound — unstable.
Generalized Eigenvectors
In the cyclic and mixed case A is not diagonalizable. The-
refor we need generalized eigenvectors w;
To get T wich transforms A into the Jordan Form
(T~YAT = J) we need generalzed eigenvectors.
()\il — A) s W; = V;

Transformation Matrix:

T = [v1,w1,v2,wa,...]

We are looking at the following system:

ax(t) =A-z(t),

Notice: for stability we set the input u(t) to zero!

z(0) = z0, 0< |lzo] < o0

Definition of Stability:

asympt. stable stable unstable

T (20| =0, fle@]] <o vi, Tim [la(t)]| = o0

For Diagonalizable Matrices we have: o; = Re()\;)
Asympt. Stable all o; <0
Stable all 0; <0
Unstable any o0; >0

For Cyclic or Mixed Matrices we have: o; = Re()\;)
Asympt. Stable all 0, <0
Unstable any o; >0

If there are multiple o; = 0 then the system is only stable
if the corresponding Jordan Blocks J; are diagonal.
Po;=0 = TU,;:OV'L'

Systems with mixed or cyclic Jorad blocks associated to
multiple eigenvalues on the imaginary axis will always
have some states growing out of bound — unstable.

Here stability is a global concept: if the eq. point z =0 is
stable, then this is true for all finite initial conditions z(0).
Check Stability of Linear System

1. Calculate all Eigenvalues A\; = o; + w;j of A with:
det(A\I — A) =0
. Ifall o; are:

(a) o; > 0 = System is unstable
(b) 0; < 0 = System is asymptotically stable

. If one or more o; are zero, we need to further inves-
tigate the situation:

4. Calculate all r; (algebraic multiplicity)
5. Calculate all p; (geometric multiplicity):
pi =n —rank(\I — A), AeR™"

. For all r; and p; if one is cyclic or mixed, the system
is unstable!
(This also counts for the non linear system)



Reachability: reach a state
Reachability Matrix:

Ro=[B 4B An-1p)

The system is fully reachable if rank(R,) = n.

For SISO Systems this means full rank.

Controllability: bring a state to the origin

The set of all states z(0) # 0, that can be forced to the
origin in finite time, by a suitable controll signal u(t).
For linear continuous-time systems the set of controllable
and reachable states is identical.

If the system is completely reachable, it is also completely
controllable.

A completely controllable systems can force any z(0) # 0
to the origin.

Observability: doesen’t depend on zg
Observability Matrix:

C
CA

cAn-1

The system is fully observable if rank(Oy,) =n
For SISO Systems this means full rank.

R, O deliver only yes/no answer
= we want quantitative information
System must be normalized!!!

12.7.1 Gramian Matrices

Controllability Gramian: symmetric & pos. definite
i T
Wgr :/ eABBTe? “do
0

The closer W is to a singular matrix, the less controllable
the corresponding system will be.
Observability Gramian: symmetric & pos. definite

©° T
Wo = / et T Cedo
0

The closer W is to a singular matrix, the less observable

the corresponding system will be.

Computation of the Gramian

If System is Hurwitz (A asymptotically stable) we use two

Lyapunov Equations.
AWgr+WgrAT =—BBT
ATWo+WoA=-CTC

Facts about Grammians

e Gramians only exist iff system: {A, B, C, D} is asym-
ptot. stable.

e Gramians are by construction symmetric and positive
definite = o; are all positive.

We will Transform the System T - x;, = z, such that

Wrp = Wo,p = diag(o;),

Transformation:
T =TgrTo,

i=1,...,n
WR = VRA%{VII —Tr = VRAR

Wo = ThWoTr = VoABV] — To = VoAy'?

After the Transformation the Gramians of the transfor-
med system: T-1 AT, T—1B, CT, D will have the followi-
ng form:

o1 ... 0

Wrp=Wop = ,01 2> . 200 20

0 ... On

The states that are nearest to 0 can be omitted as they
are not good observable and not good controllable.
System Order Reduction Algorithm

After trasnforming the system in the order reduction form,
one can partition the system: System:

d |z1(¢) A1 A |zi(8) B
- = u(t)
dt |4, (#) Az Ao |z2(t) Ba
y(t) = |:Cl CQ:| xl(t) + Du(t)
zg(t)

x1 € R™™" are the important states.
zo € RY are the not important states.

We can now just omit x2 and end up with the system:
d
—x (t) = A171£E1(t) + Blu(t)

dt
y(t) = Crz1(t) + Du(t)
Just omitting z2 will change the DC-Gain.

If this is to be avoided, a singular pertubation approach is
better, where the dynamics of states zg is neglected but
not their DC contributions.

d _

Lm0 = za(t) ~ — A3} [Ag 121 (t) + Bau(t)]
Resulting System:

d
_ t) =
dtfvl()

[Al,l - Al,zAigAg,l] 1 (1)
+[B1 = Av2 43| u(t)
y(t) = [C1 = C2A7 3 Asa ] wa(t)

+ [D - CQA,;;Bz] u(t)

DC-Gain:

t=Az+b=0, wu(t)=1

System: SISO
P(s)=C[sl— A]"'B
Transferfunction:
m b m—1 . b b,
P(s):ks + bm—1s + + b1s+ bo
s"+ap—15m"1+---+ais+ao

e n: highest power denominator, # of integrators

e m: highest power numerator
e r =n — m: relative degree
e k: input gain

Canonial Coordinates with Gain k:

[ o 1 ... 0 | 0]
o 0 .. 0 0
o) O+ | 1] u®
Za) = z u
di
o 0 .. 1 0
|—ao —a1 —Qn—1| i
y(t) = [bo bt 10 ] 2(t)

This form has the minimum amount of parameters!
They have no physical meaning.

Alternative Definition of 7:
Number of derivatives necessary before u appears in y

y(t) = Cax(?)
§(t) = Ci(t) = CAx(t) + CBu(t) = CAx(t)

Yy (t) = CA™2(t) + CA" "' Bu(t) = CA"z(t) + ku(t)
Zerodynamics from State Space
Solve y(t) = 0 to get the zerodynamics.

System:
-2 a 1
T = sz 4+ Su
-1 0 —1
y=[10-=z
We get:
y(t) ==z1(t) =0
That x1 stayes zero we also have 1 = 0.
As a result we get the zero dynamics.
1 =ax2 +u=0— Ty = —u=azxre

Zero Dynamics:
Special inputs u*(¢) and IC z* for which y(¢t) =0
For y(t) = 0 Vt all derivatives of y must =0

Coordinate Transform: z = &1z
21 =y =Cz = [box1 4+ + bm—1Tm + Tm+1]
zg =9y =CAzx =[boza + - + bm—1Tm+1 + Tm2]

Zr = yT71 =CA" lz = [bO-Tr 4+t bm—12Tn-1 +xn}

z1 Zr41
Zr+1 =1 ¢ r+
z= ) = 777:
Zn = Tn—r n
Zr Zn
New Coordinates: y = {1
0. enen. 0 07
0.0en.. 0
0.0 0 0
. — =]
dt B 01 0...0 0
" 00 1..0[ L7
0...... 01
-—q" - - 0|

rT,s" not important here (m =n —r)
q" =1[bo,~b1,...,~bn—r1] p' =[1,0,...,0]

To have y(t) = 0V ¢ we have to initialise the system with:

* * 1 * *
{ (0) = 07 u (t) = _ESTT] (t)7 n (O) 7é 0
Zero Dynamic States:
0 1 0 0
d 0 1 * *
210 = n*(t) = Qn*(¢)
t 0
R

= Q asympt. stable = System is Minimum Phase
(all zeros have negative Real parts)
Unstable Zero Dynamics zero with pos. real part if:
e system is non-min phase
e system’s zero dynamics unstable
e internal states 7 can diverge without y affected
Consequences

e u may not be chosen such that y is (almost) 0 before
states 7 associated with zero dynamics are (almost)
zero

e Feedback control more difficult

e imposes constraint of bandwidth on CL-System
= slower (smaller) than slowest nmp zero
System has to first get the nmp zeros fixed, before
it can start to controll the output.



13 Nonlinear Systems

Linear Systems:
e 1 isolated equilibrium point
e entire equilibrium subspaces

e periodic orbits with the same frequency but arbitrary
amplitude
e if linear system is asymp stable it is always exponen-
tially asymp stable
Non-Linear Systems: Limit Sets
e can have infinitely many isolated equilibrium points
e equilibrium point can have finite region of attraction
e equilibrium point can be non-exponetially asympto-
tically stable.
if an equilibrium point is unstable the state of the
system can ‘“escape to infinity” in finite time
can have isolated periodic orbits; all trajectories that
start close enough converge to this orbit.

“Strange attractors” - bounded sets to which non-
periodic trajectories converge if sufficiently close

Lyapunov stability is always connected to a constant
equilibrium point z. of a system.
System: Assume z. = 0 w/o loss of generality

aw(t) = f(z(t),t), =x(to) =z0 #0, [f(ze,t)=0

If xe # 0 then use the transform:

T = — Te

Lyapunov Stable at t = to:
If you can find some 7(R,tg) for any R > 0 such that:

if: |zoll <r <R then lz(®)|| < RVt > to
Uniformly Lyapunov Stable: if »(R) # f(to)
Asymptotically Stable:

Uniformly Lyapunov Stable and Attractive
lim z(t) =z =0
t— o0

Exponentially Asymptotically Stable:
if constant @ > 0,b > 0 exist such that:

lz(®)]] < ae™"[|2(0)]]

Facts
Usually only exponetially asymptotically stable systems
are accepteable for technical applications.

Linear Systems:
If an equilibrium point of a linear system is asymptotically
stable, then it is always expontially asymptotically stable.

Non-Linear Systems:

If an equilibrium point of a non-linear system is asympto-
tically stable, then it is not always expontially asymptoti-
cally stable.

Local attractiveness does not imply global stability.

13.2.1 From Linear to Non-Linear
If the linear system is
e unstable (Any Re()\;) > 0) the non-linear system is
also unstable.

asymptotically stable (All Re(\;) < 0) the non-
linear system is also stable.

stable (One or more Re(\;) = 0) we need further
knowledge of the system to decide.

If however through further analysis the system is un-
stable we can conclude that the non-linear system
will be unstable.

System:

d

ﬁm(t) = fi(z1,z2), x1(0)==z1p0
(4)

%zz(t) = fa(x1,22), x2(0) =20

Poincaré-Bendixson Theorem
CT diff'bar systems cannot exhibit deterministic chaos

Linearized system

_ 9f;
ij = Bsc;

4 52(t) = Adx(t)

Lyapunov Principle:
The local behavior of the original nonlinear system and of
the linearized system have the same characteristics.

If some Eigenvalues have Re(\) = 0, the principle doesn’t
hold and we need further analysis of the system.

Also applies to systems of higher order!
Eigenvalues Linearized Sys. Nonlin. Sys.
A2 € C Stable Focus Stable Focus
A2 € RO Stable Node Stable Node
A1 ERG, A2 ERC Saddle Saddle

A2 € Ry Unstable Node Unstable Node

A2 € Cp Unstable Focus Unstable Focus

Re(A1,2) =0 Center m”?
ACHTUNG

strictly local concept! regions of stability can be small
Lyapunov principle also holds for non-linear systems of hig-
her order

= the local stability properties of the isolated equilibrium
point . = 0 of a time-invariant nonlinear system:

d .

S3(t) = (1)), 7(0) £ 0

are fully described by the first-order approximation A of
(), provided A has no eigenvalues with zero real part.

Graphic Interpretation

Stable Focus Stable Node Saddle
1 1 1 7
0.5| 0 0.5
& o g o S § o
0 X 0.5 0. S
1 -1 1
1 0 1T 0 1 1 0 1
z z P
Unstable Node Unstable Focus Center
1 1 > 1 —
0.5| 0 0.5 ﬁ\\
2 s o [ W)
§ 0 & o g oo || 19
&
0.5 0. / 0.5 \j
/
/
0

a1 0 1 0 1
P

Bottom right only valid for linear system.

If one is not interested in only local behaviour or Re{\;} =
0 for some i than one can use the lyapunov theory for sta-
bility analytics.

Definitions

Nondecreasing function:

a:Ry =Ry, a(0)=0,a(q) 2 a(p)Vp >q
Strictly Positive Functon:
V(z,t) >0 Vz#0,Vt, V(0,0) =0
Lyapunov Candidate Function: V : R*+1 — R,

z

e V(z,t) is strictly positive
e two functions 8(z), o(z) exist that satisfy:
Bllzll) < V(a,t) < a(llzl)

13.4.1 Global Stability
Uniformly Globally/Locally Lyapunov Stable:
d_ oV

ov
- t) < t t
SV =S+ i@ 0 val) £0, v

Uniformly Globally/Locally Asymptotically Stable:
—%V(:c,t) has to be positive definite.

d d_ =
——V(z,t) >0, 0,vt ——V(0,00=0
5V @1 >0,vz #0,v 2700

Finding a Function is very difficult!!!
Lyapunov Theorem provides sufficient but not necessary
conditions

Function for Linear Systems: Q = Q7 > 0 arbitrary
PA+ATP=-Q = V(z)=z' Px

%V(x) =—2T7Qx

P is symmetric and positive definite (P = P).
Solution only exists if A is is Hurwitz.

This is no new information but it can help find a function
for the non-linear case.

Achtung;:
If %V does not fulfill criteria, Lyapunov theorem does
not provide any conclusion on stability of the equilibrium.

e L(s): LTI, SISO dynamic part

e ¢(t,y): memoryless, time-varying nonlinearity

Nonlinearity assumed to be “sector bounded”:

ay < ¢(t,y)y <Py o,fER 0<a<p
Circle Criterion
Assume L(s) is strictly proper transferfunction with ny
unstable poles & ng purely Im. poles.
Assume ¢(t,y) is sector bounded. CL system is asympto-
tically stable if:

1. Nyquist curve L(jw) does not enter disk D(c, 3)
2. L(jw) encircles D(a, B) n4 + no/2 times

Blt2,9) -y
S/ (ty) -y
S

—7

/

This result is sufficient and necessary!

Powerful Result for fewer Systems.
Additional Constraints (compared to circle criterion)

~1/a

-1/8

e L(s) may not have unstable poles
e ¢(.) must be time invariant

Popov Criterion Assume L(s), ¢(.) fulfill above conditi-
ons. CL system asymptotically stable if:
Re[(1+rjw)L(jw)] + 525 + o5 LGP >0 vw

Yields global results if the constraints are met.
Special Case: a =0

Popov Plot:

PL = Re[L] 4 jwIm[L]
Criterion:
Re[L] — rwIm[L] + § >0, = Im[PL]< +Re[PL+ 4]

Im A
Im =1/r-Re
1/B
/N
| \
Re

PL(jw) \PL(jw) +1/8




0 >0~ ole) || L(s) [

Describing Function Special class of NL, SISO systems
e L(s): dynamic linear system, low-pass
e L(s) has to be asymptotically stable

e ¢(e): static nonlinear system, odd ¢(—e) = —¢p(e)
e ¢(e) must be time invariant
Objecitve:
Predict the presence of limit cycles. Only Approximations.
Limit Cycle:

Sustained periodic oscillations of CL-system
Linear Systems
Linear case ¢(e) = e = CL stability boundary:

e =asin(wt) y = asin(wt — )
Conditions
e amp. of e = amp. of y
e phase of y lags e by —7
IL(Gw)| =1 Z(L(jw)) = — or
LGw)=e" = -1 = 1+ L(jw) =0
Non Linear Case
Main ldea: if e(t) periodic, g periodic as well
g(t) = d(asin(wt)) = Y22, ki(a) sin(iwt + ¢i(a))
L is Low-Pass = only first harmonic of g important
9(t) ~ k1(a) sin(wt + ¢1(a))
Describing Function:
DF(a) = ki(a)ed®1(a)
a
Changes induced by ¢(.) on amp & phase of e(t).
Only dependent on the amplitude a and not w.
Nyquist Diagram plot both DF(a) and L(jw)
= marginally stable when:
ki(a) - |L(jw)| = a|DF(a)| - |L(jw)| = a
¢1(a) + £(L(jw)) = £(DF(a)) + £(L(jw)) = -7
= 1+ DF(a)- L(jw) =0
3 Cases can occur:

e L(jw) neither intersects nor encircles —DF~!(a)
= CL-system probably asymptotically stable w/o
limit cycles

e L(jw) does not intersect —DF~1(a), but encircles
it
= CL-system probably unstable

e L(jw) intersects —DF~1(a)
= CL-system can produce limit cycle

Im
—DF~'(a)

R
) F/ Re Re

Lo (jw) ‘

Stability of Limit Cycle
Stable
—DF~'(a)

Unstable
—DF~(a) A Im

wt at >a*

Gedankenexperiment for stable

e system is on limit-cycle w = w*,a = a*

e at tg disturbance = a — a1t > a*

o L(jw) does not encircle DF~!(at) = stable a — a*
The curve —DF(a) is a generalization of the point —1

which, according to Nyquist, may not be part of L(jw) to
avoid sustained harmonic oscillations.




4 Point Orbit

14 Chaos Theory 142 Time Variant Systems | 144 Discrete Systems

. . ; . <p< ~ 3.5699456 . . .
Key Ideas: A time-variant system with n states, can be extended by | Discrete Systems can have chaos at any order. K2 = IS Hoo
e Period doubling t'he sFate t = 1,t(0) = 0 and will then become a time- | Logistics Equation: . Periodic 4-orbit for p = 3.54
o invariant system.of orde.r n+ 1. ) ) Tht1 = f($k) =u- $k(1 — CBk)7 w e [1,4] i " i " ) " "
o self similarity A second order time-variant system in particular can thus Equilibria: 0.9/
. . : . a—
e sensitivity to ICs have chaotic solutions. . osl
zozp-zo(l—xo):moz{o,l—f} :
e strange attractors “Bf o7t
. o . . Chaotic Attractor (Strange Attractor): Equilibrium Point is Asymptotically Stable if |5 (zo)| <
n S . . i . . 3]
Limit Set 200 € R™ is limit point if there is a solution to The limit set is neither a equilibrium point nor a periodic | 1. Derivatives at Equilibria: * 0.61
ix(t) = f(z()), x(0)#0 sollutior.l. !3ut they do not diverge to infinity. So the set is d " 2o =0 05
dt still a limit set. — f(@) | =
that passes infintely many times arbitrarily close to zoo. dz 2—p xzo=1-1/p 047
Region of Attraction: e o = 0 unstable for 4 € (1,7] 0.3}
The limit set of the point g is the set of all limit points | Onces this region is reached, it is never left. 0= H ) 0al
of the solutiion that start at z(0) = 0. e z9 =1—1/p astable for u € (1,3) ’
/
Limit Cycle: Stability 0.1 /
Closed, Bounded Region: If a non linear system starts sufficiently close to the limit 0 R
subset Q2 of R™, 2 finite, 92 € Q cycle, will orbit around that limit cycle. ) First 20 Tterations for i = 2.5 0 01 02 03 04 05 06 0.7 08 0.9 1
System: time-invariant, 2nd order, CT, smooth, nonlinear 0-9¢ Infinite Period
d 0.8+ Moo < 1
%xl(t) = fi(z1,22) ok Extremely complex behavior
’ B There are values oo < p < 4 with periodic orbits
Do) = fo(wr, w2) 0.6/ - Bifurcation Diagram
dt 7 0.5
Theorem: 1
If L a limit set of system completely contained in 2, L is 0.4 0.9
either eq-point or periodic solution of system 0.3+ () ’
= Chaos is not possible. o2l 0.8
Higher Order Systems: ’ 0.7
Chaos is possible but not guaranteed. 0.1p —\
(only necessary not sufficient) 0 s 0.6
Linear Systems 0 01 02 03 04 05 06 07 0.8 09 1 05
Linear Systems of any order can’t have chaotic behaviour.
- Periodic Orbit 0.4
14.1.1 Rossler System Jumps between 2 points 0.3
Simpelest Chaotic System.
J w0 = (14 1/t /1= 2/ =3/ ) /2 02
%x(t) ="Yy—-z (5) 0.1
d w04 = (1+1/M—\/1—2/M—3/M2) /2 0
ay(t) =Ttay Q) | 2.6 2.8 3 3.2 3.4 36 38 4
so long as
d g
%Z(t) =b+axz—cz (7) p< po & 3.4494897 . ..
N ) ‘ First 20 Iterations for u = 3.05 The Phase diagramm of the follwing points are:
0o e Equilibrium: A single point
20 . [ 1
e Periodic Solution: Closed trajectory
0.8} 1
! e Quasi-Periodic Solution: Not a closed trajectory
N 0.7 1
10 e Chaotic Attractor: Fractall ftructure
5 0.6 1
0.5 1
0
10 04} |
0.3 | ]
02f [ i
0.1t i
%0 01 02 03 04 05 06 07 08 09 1




15 Examples

15.1.1 Pelton Trubine

Conversion of Potential Energy (Pressure) to Kinetic Ener-
gy to Electric Energy via Momentum Exchange.

—~ Ruw

w
—

€

w—Rw

Change of Linear Momentum and Mass Element:
dB = 2(w — Rw)dm, dm = Vpdt

Force Balance:

Fr =B =2(w—wR)pV
Torque: .

Tr = 2pRV(w — wR)

Power: )

Pr =2pRV(w — wR)w

Quadratic: Max: w = w/2R, Min: w = {0, w/R}

Pelton Turbine

T -
Inertia

15.1.2 Example: HEPP with Surge Tank

Reservoir

Downpipe

P
Compressibility I
Y

€X
s v |

Uy A,
Tunnel
d hr—h A7 s
Log = ShEZPW) AT sign(ur)od,
Surge Tank
— Ap— A
Lhy = T
- . dh dh
hw =hw + Aw sign( 22w ) (2o )2
Pressure 1
pw = pg(hw — hwo)
Downpipe
Ly o= (PWw=PE | 9hwO) AR g0 02
at'F =\ plp lr 2dp PIMOE )R
Compressibility
% =vpApr —uvAy
V-V,
Pr = o'oVoO +rghr
Valve
d
=0 _ () Ay = Ay (1—(1—2)?)

o (t)

cd /2(pr—po) z>0
0

z=0

15.2.1 Example: Trubine Generator
Te Tr
‘ Torque ‘ Turbine
A
w(t)\f
Generator

Turbine (friction small)

dw(t) = & (Tr(t) — Ta(t)
Grid Network
Rgen LN

Lgen RN

Generator & Grid

TG(t) — I{I(t) kw(t)=Riot I(t)

d
El(t) = Liot
= Un(t) = Ly £1(t) + Ry I(t)

15.2.2 Example: EMGU

U,
<&
.
Wee c Y@
Ur
‘ Resistor H Coil Ur R
I I
Uc
‘ Motor Law‘ ‘ Capacitor Ur, Lmot
Temcu
<—
Uind
%I(t) = Lnlmt (UC — Uina — UR)
I
%Uc(t) = %% = 70“) Temau = knI(t)

@em
U £ Electric
o Motor

ME/K

Gears are connected: (same force and rotation)
R'ul
Rem
Equation left gear: (connection force Feon)
dwem
@em

dt
Equation right gear:

dw,,
evl dtl - _k(¢0 - d’vl) - va . Fcon

Together we get:

Rem - wem = —Ryp - Wyl = Wem = — * Wyl

=Tem — Rem - Feon

R
dwvl -~ R:il “Tem — k(¢’ul - ¢0)
- 2
dt evl + (é%cvriz) Oem




15.4.1 Example: SCR NOX System

Engine

AdBlue

SR H,O+N,
e
|

NOx + NH;
Assumptions

e NO; :only NO
o [O2] > [A;] = rates independant of Oz
e Heat generated negligible

Chemical Reactions
Adsorption
NHs <+ NH3
Main SCR Reaction
NHj; + NO + 02 — Na + 3 H20

Secondary Oxidization
NHj + 302 — £ Na + 3 H0

Resevoir  Level Var. Resevoir  Level Var.
Thermal 9 NHs [N H3)]
NO [NO] NH3 [NH3]

Conservation Law
% [NH:;] =Tads [NHB] — Tdes [NH:;}
—rscr[NO|INH3] — rox[NHj]
Lnno = VI[NOin] — VINO] — Vrscr[NO][NHj]

4INO] = [ [NOi] ~ TINO] - rscr[NOJINHS]

Reaction Rates

T, = kieiEi/Rﬂ
Causality Diagram:
Thermal v [NOin]
NO [NH;]
[NOJ
Y
—4 NH;
’[N H3] [N H3]
9 NH3
VvV  [NH3 ]

15.5.1 Example: Inverted Pendulum

Assumptions
m = lkg

mg e no friction in pivot

e massless bar

e 2 rigid bodies

- = 2 DOF
Lagrange Steps

1. Input: force on cart u(t)
Output: angle of pendulum ¢(t)
2. Coordinates:
Q=Y qG2=¢
3. Langrange Function (normalized):

2
Ti(t) =%, Ui(t)=0
2 L @2
Ta(t) = % +cos(p)py + 5, Uz(t) = cos(p)g
4. Dynamic Equations:
2§ + @ cos(ip) — @ sin(p) = 0
@+ cos(p)y — gsin(p) =0

@2 sin(p)—g cos() sin(p)+u
2—cos2 ()

§=

29 sin(p) —$* cos() sin(w) —cos(@)u
2—cos?(p)

=

=)

We Te,des

e we: Engine turn rate Inverse Map

® wy: Wheel turn rate o

—4 Torque
e ~: Gear-box ratio

T, r Fdrag
e «: throttle position Y

{ Total Inertia Y

o 74 : Wheel radius

Assumptions

® -y piecewise constant

v(t) V—) y(t)

e no wheel slip: v, = rywy Vehicle
no d-train slip: wy, = Ywe

e must overcome Fi,; & Fr 4 Fa
Faero Fg —>()— Fdrag

e other forces lumped: Fy

e no potential energy
Step 1 Input: Engine torque T¢, Output: Signal y o< vy (t)
Step 2 Only Reservoir is kinetic energy
= Level Variable: v(t)

1 1 1
Eiot = §mU2 + 45@10‘0120 + 5@60.)3

= % [m+ 4%“’ + ’Y(;):?u] v(t)?
Step 3 L Eior = Py — P_
Py = Tu@®uwelt)  Po = (Fr + Falt) + Fa(®)o(t)
Step 4 Rearrange step 3 to

M(’y,m)%v(t) = 1;‘;(,? - (crmg + %pchvu2 + Fd(t))

Gear-Ratio-Dependent Total Inertia:

M(y,m) = [m+ 2w +

ee]
y2rg,

Note T not technically input, rather T¢ g.s mapped to
throttle pos. a, (Nonlinear!). Dynamic effects small

(-z(®)Ry |

Input signal:
with stroke time 7 =1

Flow Velocity Incomp!

2(pr—po)
uv(t):{cd\/ o w20

0 =0

15.7.1 Example: TC-Engine

7t fuel
—

y(H=P(t)
Kty

EMGU — Switch

L

Capacitor

Electric Motor/Generator Unit

Engine
Modelled as 3 Gas Receivers
Resevoir Level Var.
Volume IC to Throttle P1
Volume Throttle to Engine P2
Volume Engine to Turbine P3
d ROy ¢ : d RY
G = v (e =), G = 7
d RY3 /. . .
% = ?ss(mcyl + Tyl — 17t)
Turbocharger
Only One Dynamic Element
Resevoir Level Var.
Kinetic Energy Wte
p2,Y1,p1 u, 93, P3,Pa

Kinetic Energy

Tot — (Tt=Tc)

d —
qEWte = Ote

Otc

(mthr - mcyl)



16 Multiple Choice Questions

16.1.1 Mechanical Systems

Allgemein

(1 point) A system can exhibit dynamic behaviour without having any reservoir.

O True.
X False.
Ezplanation: If a system does not have any reservoirs, no quantities (which we call

“level variables”) can be stored. Thus, all relationships are algebraic and no dynamics
can occur.

Lagrange

(1 point) The choice of a minimal set of generalized coordinates (meaning that
the number of generalized coordinates matches the number of degrees of freedom) is
unique.

O  True.

X  False.

Ezplanation: A set of generalized coordinates is not unique. Its components only
need to be independent, i.e., no component can be described by the others. The fact
that the set is minimal still does not imply that the choice is unique.

(1 point) A constraint in the form of f(q,q) = 0 is always non-holonomic.
O  True.
X False.

Ezplanation: If the constraint in the form of f(q,q) = 0 can be integrated such that
f(q) =0, then the constraint is holonomic.

(1 point) In order to compute the kinetic energy of a body, the point chosen as
reference must lie on that body.

O True

X  False

Ezplanation: Although resulting in extremely cumbersome computations (coupling

terms in the energies, time-dependent inertias, etc.) it is not forbidden to use points
that are not part of body B as reference.

16.1.2 Thermodynamical Systems

(1 point) You want to perfectly describe an insulated pipe through which water
flows. What will be the nature of the resulting mathematical model for the in-
put/output temperature behavior?

O It is a system of ordinary differential equations.

X It is a partial differential equation.

O It is a system of algebraic equations.

Ezplanation: The pure delay behavior resulting in this scenario can only be captured
by a partial differential equation.

(1 point) Which of the following statements is not implied by the lumped parameter
assumption?
O The thermodynamic states are assumed to be the same all over the receiver.

X «
K Mg =My
O Yout = ¥(t), where ¥(¢) is the temperature in the receiver.
Ezplanation: In the lumped parameter assumption, the thermodynamic states (i.e.,
pressures, temperatures, composition, etc.) are assumed to be the same all over the
receiver volume. It also requires that the outflowing gas has the same temperature as

the gas inside the receiver. However, the assumption does not require that inflowing
and outflowing mass flows are equal.

(1 point) Now assume that there is no outflow, i.e., Moy (t) = 0Vt and that the
incoming mass flow Min and temperature ¥, are constant. The receiver could be
modeled using either an adiabatic or an isothermal assumption. Mark the correct
ending for the following sentence:

The rate at which pressure increases

O is identical for the isothermal and adiabatic assumptions.
O is faster for the isothermal assumption.
X  is faster for the adiabatic assumption.

FEzplanation: One needs to compare the differential equations for the pressure p(t).
For the adiabatic assumption, the equation reads (remember, Mot = 0):

16.1.3 Electromechanical Systems

(1 points) The brushless DC electric motor has:

to its center of gravity).
1 and zo, i.e. the x-coordinates of point masses m; and my respec- X
tively, are a possible set of generalized coordinates for the excava-
tor’s arm (see Figure 2).

Pendel

(1 point) The amplitude of the small-angle oscillations is dependent on (answer
cach of the following statements)

Statement true | false
the initial angle 6 X

the length of the bar [ X
the mass m of the pendulum X
gravity X

(1 point) The period for small-angle oscillations is dependent on (answer each of
the following statements)

Statement true | false
the initial angle 6 X
the length of the bar [ X

the mass m of the pendulum X
gravity X

Explanations: The nonlinear system dynamics are: f(t) = —9sind(t), with 6(t =
0) = 6p. For small angles, the system can be linearized around 6 = 0, and the
Laplace transform used to derive a dynamic equation in the Laplace domain in the

form: s20(s) + $6(s) = U(s). The corresponding transfer function is 6(s) = 5%3)?,

where the natural pulsation is wy = \/? = % Thus the small-angle oscillations

period is Tp = ZW\/Z . Therefore the period is dependent on [, g, but not on initial
conditions or mass.

Statement true | false Statement true [ false
The Lagrange formalism can be used only for holonomic systems. X Permanent magnets on the rotor X

The minimum possible number of generalized coordinates equals the | X Mechanical commutation of the current in the rotor coil X
number of degrees of freedom. Permanent magnets on the stator X

A point mass features a moment of inertia equal to zero (with respect | X Electrical commutation of the stator current X

16.1.4 Linear Systems

(1 point) Consider a linear, time-invariant, continuous-time and non-minimum
phase system. Answer each of the following statements:

Statement true | false
It has non-minimum phase zeros. X
The bandwidth of the closed-loop system with a stabilizing con- X

troller should be higher than the “fastest” non-minimum phase zero.
The bandwidth of the closed-loop system with a stabilizing con- | X
troller should be smaller than the “slowest” non-minimum phase
Zero.

The system’s zero dynamics are unstable. X

(1 point) Consider a linear time-invariant continuous-time system. Answer each of
the following statements:

Statement true | false

The set of reachable and controllable states is identical. X
If it is completely reachable, it is also completely controllable. X
‘Whether a state is reachable or not depends on the initial conditions. X
A completely controllable system can be brought to the origin only X
for some well chosen initial conditions.

(1 point) Answer each of the following statements:

Statement true | false

If the equilibrium point of a linear time-invariant system is asymp- | X
totically stable, then it is always exponentially asymptotically sta-
ble.

If the equilibrium point of a nonlinear system is asymptotically sta- X
ble, then it is always exponentially asymptotically stable.

Statement ‘ True ‘ False

A normalization of the form z; = z;¢ - z; changes the stability X
characteristics of the system. (Here, z; are the level variables, z;
their normalized counterparts, and z; o denotes the normalization
constants for i =1,...,n, with n the order of the system.)

If we want to carry out a balanced order reduction, it is important X
to normalize the system first, in order to be able to compare the
magnitudes of the state variables among each other.

A linear time-invariant system of the form (%z(t) =A-z(t)can | X
be Lyapunov unstable even though Re();) < 0 holds for all eigen-
values A; of the system matrix A.

Ezplanation: For the first two statements, please refer to the respective chapters in
the lecture script. For the third statement: If there are eigenvalues with zero real
part (Re(A;) = 0) and the matrix A is a cyclic or mixed matrix, then the system may
be unstable even though no eigenvalues have a positive real part (see the discussion
based on Jordan forms in the script).

16.1.5 Non Linear Systems

(1 point) Answer each of the following statements:

false
The specific type of stability of a certain equilibrium point z. of a X
nonlinear system can always be deduced from the type of stability
of the linearized system evaluated at z..

The stability of a nonlinear system around an equilibrium point X
can be studied using Lyapunov functions. If no Lyapunov function
is found, you can conclude that the nonlinear system is unstable
around z

Statement true

Solution

1. See script page 142. If the linear system possesses eigenvalue(s) on the imaginary
axis at a certain equilibrium point, then it is not possible to conclude about the type
of stability of the corresponding nonlinear system at this equilibrium point.

2. See script page 146: “If no Lyapunov function is found, i.e., if a chosen Lyapunov
function candidate turns out not to satisfy the conditions of the Lyapunov theorems,
then no conclusion can be drawn. In this case, the system can still be stable or
asymptotically stable.

Description: Consider a generic nonlinear system of the form & = f(a, t).

Q27 (1 point) Given z € R?, the system can have chaotic solutions.

®  True.

0O False.

Eaplanation: A time-varying system can be represented in a time-invariant form
by adding the state { = 1 with ¢(0) = 0. Therefore, a 2-dimensional time-varying
system would result in a 3-dimensional time-invariant system which, according to
Poincaré-Benixson theorem, can indeed have chaotic solutions.

Q28 (1 point) Given z € R?, the system has periodic solutions.
O True.
X  False.
Ezplanation: Periodic solutions can occur in time-invariant systems with more than
2di i However, this condition is only necessary. Consider, e.g., & = [1, 1, 1]T
with & € R, resulting in the non-periodic solution z(t) = z(0) + [1, 1, 1]T - ¢.

Description: Consider a generic nonlinear time-invariant system of the form & = f(z).

Q29 (1 point) If an equilibrium of the system is locally attractive then it is also stable.
O True.
X  False.

Eaplanation: For nonlinear systems, local attractiveness does not imply stability.

Q30 (1 point) We can assess whether an equilibrium of the system is unstable using

Lyapunov theorem.

O True
X False.

Eaplanation: Lyapunov theorem provides sufficient, but not ', conditi
to assess the stability of equilibria. Therefore, it cannot be used to assess the insta-
bility of equilibria. As an example, if the chosen Lyapunov function V (z) does not
fulfill V(z) < 0, Lyapunov theorem does not provide any conclusion on the stability
of the equilibrium &* = 0.

Description: Consider a nonlinear time-invariant system of the form & = f(z) with equilibrium
z* and linearization around it i = Adz. We exclusively refer to the equilibrium of the nonli
system with z*, while denoting the equilibrium of the linearized system with dz*.

Q31 (1 point) If 2* is stable, then dz* is stable.
X True.
O  False.
Ezplanation: Any equilibrium is either stable or unstable. If z* is stable, then it is
not unstable. Since dz* unstable implies z* unstable, dz* cannot be unstable and it
is therefore stable.
Q32 (1 point) If §z* is unstable, then z* is unstable.
True.
O  False.

Ezplanation: §z* unstable implies z* unstable.



Description: All questions below address a time-invariant smooth (differentiable) nonlinear
system of the form & = f(z) with ¢ € " and 1 < n < oo.

Q31 (1 point) Every periodic solution is a limit set.
X True.
O  False.
Ezplanation: As cxplained in Section 5.3.2 of the lecture script (version HS19),
periodic trajectories form limit sets.

Q32 (1 point) Every chaotic attractor is a limit set.
X True.
O  False.
Explanation: As explained in Section 5.3.3 of the lecture script (version HS19), a
chaotic attractor trajectory does not reach an equilibrium or a periodic solution, but
does not diverge to infinity either, making it a limit set.

Q33 (1 point) If the system has an asymptotically stable isolated equilibrium point z
it cannot have other limit sets.
O  True.
X False.

Eaplanation: An asymptotically stable isolated equilibrium point does not prevent
the system to have other limit sets.

You are still analyzing the previous system. In addition you know that n = 2 and that the
system dynamics have a limit cycle AT and a region of attraction T'.

Q34 (1 point) Choose the correct statement.

O If the system starts at zo ¢ T, 2(#) will never reach the limit cycle oT.
O There could be an equilibrium point =, lying on the limit cycle oT.
X If the system starts at @y € T, (t) never leaves the region I'.

Explanation: Tf the system starts at zo ¢ T but sufficiently close to the limit cycle
8T, the system can reach it, therefore the first option is wrong. To confute the second
option we can think of what equilibrium point means: a point . that, once reached,
is never left anymore. This clearly goes against the concept of limit cycle, which
represents a set of points periodically reached (n = 2). Finally, the third option
represents the definition of region of attraction, i.c., a region that once reached is
never left anymore.

Iy Ezsimitarey Saellic 17.3 Systems Analysis | Obsenvabilly

e R: Radius Earth

m_~ Fr(t) e M: Mass Earth
R r(t) (t) Fo(t) o m: Mass Sat.
e r: Center of
M Earth — Sat.
e : orbit £ of Sat.
Assumptions

1. only Earth-Sat. System considered
M > m = CG at center of Earth
. Sat. always in Eg-Plane

A~ W

. Attitude controlled by other control system

Lagrange Functions

d | dL d | dL
a [W] -5=F & [67-;] G = For
L=T-U

Kinetic Energy
T= %mﬁ + %m(rgo)
Potential Energy
M 1 1
U:f]gG pgmdp:GMm(E—;), r>R
Minimum Velocities min speed to reach altitude r
vo(r) = \/2GM (5 — %) (Bkin,o =V (r))
escape velocity Voo = limy_y 00

2GM ~
268 ~1.12 x 10*m/s

Voo =
Lagrange System Dynamlcs

mi = mrg? GMm + Fy
mr2¢ = —2mreor + Fer

=fF=r —GMTLZ—I—ur

P =
Geostationary Orbit

—2¢rL 4+ L,

ur=0 =0

Up—0 =0

Sidereal Angular Velocity
wo = 826”17% ~ 7.29 x 10~ 5rad/s
Geostationary Radius

1/3
ro = [ GM
wg

State-Space

T T
xr = [r TP gp] , U= [ur uw]
z2
w1 — G+
*tm(t) = f(z(t),u(?) = 1
T4
et 2
T3
y(t) = h(z(t)) = | ™
x3
Nominal Orbit
T T
T = [To 0 wot wo] y = [0 0]

ACHTUNG Not eq-point! Periodic solution but same me-
thodology works for linearization

Linearization
0 1 0 0 0 0
A 3w 0 0 2rowo (v
0 0 0 1 0 0
0 =220 0 0 0o =+
0 T0
1
L 0 0 0
=1} o=[]
0 0 1 0

Note In general the Matrices will be time dependent when
linearized around eg-orbit = Special case here
Stability

det(sl — A) = - = s%(s% + wd)
Roots: {0, 0, +jwo, —jwo } = Oscillations with f = wg
double root in origin = might be unstable
Rank: rank(sl — A)|s=0 =3 = p= 1,7 =2 = A cyclic
= Linearized System Unstable!

Controllability
0 0 1 0
1 0 0 2w
R =
0 0 0 L
0
1 =2
0 &% v 0

Completely Controllable
first 4 cols lin. ind.
det(R) = —-5 #0
0
Radial Thruster Failure By = [0,0,0,1/ro] "
= Still Completely Controllable

Tangential Thruster Failure B; = [0, 1, 0,0}T
= NOT Completely Controllable

- 0 0 0
ro
0 0 1 0
1
0O=10 o 0 0
0 0 0 1

Completely Observable
first 4 rows lin. ind.

Radial Sensor Failure C2 = [0,0,1,0] "
= Still Completely Observable
Tangential Sensor Failure C; = [%,
= NOT Completely Observable
Transfer Function

P11 P2

0,0,0"

— CAdj(sI—A)B
P(s) = =C(sl— A)"'B= 7deg(<jﬂ_A;
P P2
1 2wq
_ | ro(s?+w3 ros(s2+wd)
P(S) B —2wg 5273wg
r0(52+w8 ros2(32+w(2))

o TF shows linearized system unstable

e Completely controllable & observable with tangenti-
al thruster & sensor working
= P»2 is only one that has pole/zero cancellations

e even if system is stabilizable with only tangential
thruster & sensor, it is difficult. Corresponding SISO
TF P23 has NMP-zero (opposite direction at start)

at v/3wo (which limits attainable crossover freq.)



