
SFM-OPT: CODE-LEVEL OPTIMIZATION ON SOCIAL FORCE MODEL
IMPLEMENTATION

Jiajun Jiang*, Kehong Liu*, Jiaqing Xie*, Peiyuan Xie*

Department of Computer Science
ETH Zurich, Switzerland

ABSTRACT

Social force model simulates pedestrians’ behaviours based
on environmental forces. Difficulties lie in the implemen-
tation of the origin paper describing social force model dy-
namics, and the optimization on the implementation. In this
paper, we propose SFM-OPT, a bottom-level optimization
on social force model, aiming to accelerate the algorithm
from the perspective of data structure and functional parts.
Trials such as inlining, pre-computation, strength reduction,
changing to structure of arrays, blocking of matrices, un-
rolling and using single instruction multiple data, AVX in-
trinsics in particular. Finally we show that our optimization
has reached approximately 72 % of the maximum theoret-
ical performance and is 4 times faster than baseline imple-
mentation.

1. INTRODUCTION

Motivation. The Social Force Model (SFM) was motivated
by the requirement for a dynamic particle model that can
represent the pedestrian flows and individual movement un-
der a variety of different situations accurately [1]. SFM
takes into account both social and psychological factors in
addition to dynamic physics components. Group movements,
individual desired movement directions, and interactions among
pedestrians (repulsive and attractive) are considered as part
of a joint model. The idea is followed by the gaskinetic
pedestrian model [2] and force field analysis by Lewin [3].
The significance of the SFM stems from its broad practical
applications. For example, it plays a pivotal role in shap-
ing the infrastructure of public pedestrian spaces like pave-
ments, and subway stations. It is also crucial for manag-
ing crowd evacuation from various directions under emer-
gencies. Therefore it is essential to realize a faster real-
time SFM implementation in order to prevent congestion
and maintain smooth flow in time. Besides, expediting the
implementation of SFM can ensure that the algorithm does
not become a bottleneck of the system performance even
when dealing with large numbers of pedestrians.

*Equal Contribution to this project

Implementing SFM poses significant challenges, primar-
ily due to the absence of an open-source implementation of
the original paper. Consequently, it becomes necessary for
us to develop the source code from scratch. Additionally,
the baseline implementation’s time complexity is known to
be O(n2), which corresponds to the approximate number of
calculations required for evaluating social forces between
each pair of pedestrians. As the input size increases, the
execution time grows polynomially, potentially leading to a
bottleneck caused by memory limitations. Another obsta-
cle lies in the data structure utilized by the baseline imple-
mentation, which is difficult to be vectorized. It involves
intricate mathematical expressions, such as calculating ex-
ponential functions and inverse square roots. These difficul-
ties have motivated us to explore further optimizations for
the baseline implementation.

Contribution. Initially, we implemented the baseline
model, incorporating acceleration terms (desired movement
directions), repulsive forces from pedestrians and walls. Sim-
ilar to the simulation settings in the original paper, we omit-
ted the attractive terms between pedestrians. To identify
potential bottlenecks within the function, we examined the
time elapsed for each term by utilizing profiling tools like
VTune (or Intel Advisor) while providing the complete cache.
Subsequently, we conducted preliminary optimizations on
these terms by carefully selecting appropriate flags with-
out employing vectorization. Considering the challenges
posed by the un-vectorized data structure, even with vector-
ization flags, we attempted to transform the array of struc-
tures (AoS) into a structure of arrays (SoA). This adjust-
ment aimed to enhance the spatial locality. Following this,
we employed AVX intrinsics (SIMD) to enable vectoriza-
tion and further optimize the implementation by outloop un-
rolling.

Related work. The former version of SFM is the sole
reliance on gas-kinetic and fluid-dynamic traffic models [4],
which are physically inspired. There are also several ex-
tended versions of the original SFM, which expand upon the
basic SFM by incorporating the walking behavior of pedes-
trian social groups and simulating crowd stampedes induced
by panic [5]. Nowadays, there are even deep learning mod-

els that incorporate social force modeling and simulate it
using computer graphics [6]. Some libraries implementing
these extensions are written in Go and Python. However,
our implementation does not depend on these existing ex-
tensions or improvements but rather focuses on the original
version of SFM implemented in C/C++. We have chosen to
use C/C++ since they allow us to have better performance
and have the possibility to use intrinsics instructions.

2. BACKGROUND ON THE
ALGORITHM/APPLICATION

Acceleration term. Suppose that one pedestrian wants to
reach the destination r⃗0α, where the shortest path is applied.
r⃗kα is the next edge of the path to reach. r⃗α(t) is the ac-
tual position of pedestrian α at time t, the desired direction
would be:

e⃗α(t) :=
r⃗kα − r⃗α(t)

∥r⃗kα − r⃗α(t)∥
(1)

If there exists no disturbance to this directional behaviour,
the desired velocity is given by v0αe⃗α(t), where v0α is the
desired speed. Therefore it leads to a difference between
desired velocity v0αe⃗α(t) and actual velocity v⃗α(t). Within
time τα, the acceleration term is given by (a = dv/dt):

F⃗ 0
α(v⃗α, v

0
αe⃗α) :=

1

τα
(v0αe⃗α − v⃗α) (2)

Repulsive Force From Pedestrians. A pedestrian feels un-
comfortable when he gets close to another pedestrian who is
not familiar with, which leads to a repulsive effect defined
by:

f⃗αβ(r⃗αβ) := −∇r⃗αβ
Vαβ [b(r⃗αβ)] (3)

where Vαβ is decreased monotonically when b is increased.
The equipotential lines are ellipses which is directed into
the movement. b is defined as the semi-minor axis of the
ellipse, which is given by:

2b :=
√

(∥r⃗αβ∥+ ∥r⃗αβ − vβ∆te⃗β∥)2 − (vβ∆t)2 (4)

where r⃗αβ = r⃗α − r⃗β , and vβ∆t is the step length of the
pedestrian β in time ∆t. Under the simulation scheme, we
assume Vαβ(b) = V 0

αβe
−b/σ , then:

f⃗αβ(r⃗αβ) = −∇r⃗αβ
Vαβ(b)

= −∇r⃗αβ
V 0
αβe

−b/σ

=
V 0
αβ

σ
e−b/σ∇r⃗αβ

b (5)

∇r⃗αβ
b requires partial differentiation analysis while other

terms in the equation are known. The induction is given

below:

∇r⃗αβ
b = ∇r⃗αβ

√
(∥r⃗αβ∥+ ∥r⃗αβ − vβ∆te⃗β∥)2 − (vβ∆t)2

2

=
(∥r⃗αβ∥+ ∥r⃗αβ − vβ∆te⃗β∥)(r⃗αβ

∥r⃗αβ∥ +
r⃗αβ−vβ∆te⃗β

∥r⃗αβ−vβ∆te⃗β∥)

2[(∥r⃗αβ∥+ ∥r⃗αβ − vβ∆te⃗β∥)2 − (vβ∆t)2]
1
2

(6)

, which could be further simplified as:

∇r⃗αβ
b =

(∥r⃗αβ∥+ ∥r⃗αβ − vβ∆te⃗β∥)(r⃗αβ

∥r⃗αβ∥ +
r⃗αβ−vβ∆te⃗β

∥r⃗αβ−vβ∆te⃗β∥)

4b
(7)

Repulsive Force From Borders. A pedestrian feels un-
comfortable when he gets close to buildings or walls that he
might get hurt with. It leads to an additional repulsive term
from border B which is given by:

F⃗αB(r⃗αB) := −∇r⃗αB
UαB(∥r⃗αB∥) (8)

In simulation, we assume that

UαB(∥r⃗αB∥) = U0
αBe

−∥r⃗αB∥/R

then:

F⃗αB(r⃗αB) = −∇r⃗αB
U0
αBe

−∥r⃗αB∥/R

=
U0
αB

R
· e−∥r⃗αB∥/R · r⃗αB

∥r⃗αB∥
(9)

Direction dependence. Those repulsive forces only hold
when the pedestrians’ behaviours are in the desired direc-
tion of motion. When another pedestrian is located behind
a pedestrian, it will have a weaker influence on this current
pedestrian. We take into account the direction-dependent
weights:

w(e⃗, f⃗) =

{
1, if e⃗ · f⃗ ≥ ∥f⃗∥ cosφ,
c, otherwise

(10)

Then it is possible to rewrite the above repulsive effects
from pedestrians and borders:

F⃗αβ(e⃗α, r⃗α − r⃗β) = w(e⃗α,−f⃗αβ)f⃗αβ(r⃗α − r⃗β) (11)

F⃗αB(e⃗α, r⃗α − r⃗B) = w(e⃗α,−f⃗αB)f⃗αB(r⃗α − r⃗B) (12)

We sum up those social force terms which would result
in an overall acceleration term:

F⃗α(t) = F⃗ 0
α(v⃗α, v

0
αe⃗α) +

∑
β

F⃗αβ(e⃗α, r⃗α − r⃗β)+∑
B

F⃗αB(e⃗α, r⃗α − r⃗B)
(13)

Note that compared with the original acceleration term
presented in the paper, only the attractive term is ignored.

Cost Analysis. We define np as the number of pedes-
trians, and nB the number of borders. We decide to use the
number of all floating point operations as our cost measure
for performance analysis, including exponential and square
root. Based on this metric, 6 flops would be needed for
calculating acceleration term, 11 flops for repulsive effects
from each border, and 48 flops for the repulsive effects from
each of the other pedestrians. Summing them up yields
50n2

p + 13npnB − 42np flops regarding the whole algo-
rithm. It is now very obvious that the bottleneck lies in the
computation of repulsive effects between pedestrians.

For other metrics introduced in class, such as counting
each kind of operation separately, if ignoring the lower or-
der terms, the cost should be:

C(np) =(15n2
p) · Cadd + (24n2

p) · Cmul + (4n2
p) · Cdiv

+ (4n2
p) · Csqrt + (n2

p) · Cexp (14)

Asymptotic Complexities. Based on the analysis above,
the asymptotic runtime for our algorithm is O(n2). Since
each pedestrian only needs the space of a constant size to
store all the information needed for the computation, the
asymptotic spatial complexity for our algorithm is O(n).

3. PROPOSED METHOD

Baseline Implementation. Owing to the fact that there
is neither code provided by the author nor other resources
from the Internet, we first need to implement the algorithm
directly from the reference paper using C++. We divided
the algorithm into 3 parts according to the type of the so-
cial forces and derived the formula to calculate the gradient
with analysis. We referred to the implementation of a simi-
lar paper[5] to use a class to represent each pedestrian, made
some assumptions about the desired velocity of each pedes-
trian, and defined a class similar to Vector2d in Eigen[7], in
order to ease the implementation. It is then verified by ob-
serving the same phenomenon as in the paper, and through
simple unit tests designed ourselves. This version will be
used as the baseline to evaluate our following optimizations.
The pseudocode of the baseline implementation is described
by Algorithm 1.

Optimization 1: Inlining, Pre-computation, Strength
Reduction. Before starting to optimize the code, a detailed
analysis of the baseline implementation is performed. We
first profiled the code with the Intel VTune Profiler and con-
cluded that Repulsive pedestrian(), a function that
computes the repulsive force between pedestrians is the bot-
tleneck. Then a roofline analysis was made with Intel Ad-
visor, leading to the conclusion that the program is compute
bound if the dataset fits in the cache, or in Intel’s words, is

Algorithm 1: SFM baseline
Data:
Number of pedestrians np

Number of total iterations niter

Result:
Location of each pedestrian in each iteration rti

Initialize v⃗0i , r⃗
0
i , e⃗i, v

max
i , v0i ;

for t← 1 to niter do
for i← 1 to np do

Reset total social force: F⃗i ← 0;
Compute acceleration term:
F⃗i ← F⃗i +

1
τ (v

0
i e⃗i − v⃗ti);

Compute repulsive effects from pedestrians:
F⃗i ← F⃗i +

∑np

j=1,j ̸=i−wij∇r⃗tij
V [b(r⃗tij)];

Compute repulsive effects from borders:
F⃗i ← F⃗i +

∑nB

k=1−∇r⃗tik
U(∥r⃗tik∥);

Update:
w⃗i ← v⃗i + F⃗idt;
v⃗t+1
i ← w⃗ig(

vmax
i

∥w⃗i∥);
r⃗t+1
i ← r⃗ti + vtidt

end
end

fundamentally compute bound but also affected by memory
bandwidth, as shown in Figure 1.

The roofline analysis also shows the computation has
only been vectorized for a small fraction of the code, despite
-ftree-vectorize being used for compilation, as Intel
Advisor prompts the computation is bounded by the scalar
roofline. Further, we observed our baseline implementation
was not able to terminate with more than 214 pedestrians.
Each pedestrian struct is 80 bytes, thus the max test dataset
size is 214×80 = 1310720 bytes = 1311 KB, which fills L1
cache and most of L2 cache, but far from filling LLC. This
confirms the compute-bound nature of the program, and led
us to begin the optimization procedure on the computations
performed in Repulsive pedestrian().

We first inlined all the procedure calls in the algorithm,
which gives us a np × np, unit-stride double loop, where
np is the number of pedestrian structs, the inner loop was
originally the body of Repulsive pedestrian(). We
ignored the niter loop as it is not a part of the paper’s algo-
rithm, instead, it is used to generate enough points for vi-
sualization, thus we consider it out-of-scope for the purpose
of optimizing the algorithm described in the paper. Then we
noticed multiple divisions by constants and cosine compu-
tation on constants in the loop:

for (int i=0; i<n_p; i++) {
...
Vector2d F0_alpha=(p->v0*p->e-p->v)/tau_a;
...

1.00e-5

0.0001

0.001

0.01

0.1

1

10

100

1.00e-5 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 1.00e+5 1.00e+6 1.00e+7

DP Vector FMA Peak: 35.73 GFLOPS

D
RA

M
 B

an
dw

id
th

: 1
7.

46
 G

B/
se

c

L1
 B

an
dw

id
th

: 2
11

.1
5

G
B/

se
c

L2
 B

an
dw

id
th

: 9
2.

19
 G

B/
se

c

L3
 B

an
dw

id
th

: 3
3.

84
 G

B/
se

c

Scalar Add Peak: 4.54 GFLOPS

DP Vector Add Peak: 17.52 GFLOPS

SP Vector Add Peak: 34.99 GFLOPS

SP Vector FMA Peak: 63.3 GFLOPS

G
FLO

P
S

FLOP/Byte(Arithmetic Intensity)

Fig. 1: Roofline Plot of Baseline Implementation

for (int j=0; j<n_p; j++) {
double b

=sqrt((rab.norm()
+rabvb.norm())

*(rab.norm()+rabvb.norm())
-vb.norm()*vb.norm())/2;

f_ab
=vab0/sigma

*exp(-b/sigma)

*(rab.norm()+rabvb.norm())

*(rab/rab.norm()+rabvb/rabvb.norm())
/(4*b);

...
if (pi->e.dot(-f_ab)

>=-f_ab.norm()*cos(phi))
wef = 1.;

...
}
...

}

Where sigma, tau a, phi are constants. Since divi-
sions are much more expensive than multiplications, we first
computed the inverse of the constants outside the double
loop, then replaced divisions inside the loop by multiplica-
tion to the inverses. The expensive cosine and some other
constant computations are also lifted out of the loop:

double cos_phi = cos(100./180*M_PI);
double tau_a_inv = 1 / tau_a;
double sigma_inv = 1/ sigma;
double norm_sum = 0;
double _const = vab0*sigma_inv * 0.25;
double _const1 = UaB0/R;
for (int i=0; i<n_p; i++) {

...
}

Next, we observed the abundance of division by vector
norm computations when computing f ab and b. The norm

of a Vector2d is defined as
√
x2 + y2, combined with

division, results in inverse square-root computations. Since
square roots and divisions are both expensive operations, we
would like to replace them with cheaper ones. Therefore we
employed the famous Quake fast inverse square-root algo-
rithm:

double rab_norm_inv=rab_norm_sqr;
double x2=rab_norm_inv*0.5;
int64_t x3=*(int64_t *)&rab_norm_inv;
x3 = 0x5fe6eb50c7b537a9-(x3>>1);
rab_norm_inv=*(double *)&x3;
rab_norm_inv=rab_norm_inv

*(1.5-(x2*rab_norm_inv*rab_norm_inv));

Although the algorithm has more flops, individual oper-
ations are much cheaper. Finally, we unrolled the inner loop
which computes the repulsive force between pedestrians 4-
fold, in order to spot repeated memory accesses and poten-
tially perform scalar replacement. While we did not find
any, unrolling combined with all previous optimizations did
help us achieve 1.5x performance improvement compared
with the baseline implementation.

Optimization 2: Using Arrays. We then turned our at-
tention to the pedestrian struct itself, as the roofline analysis
indicates memory accesses can affect the computation. In
our baseline implementation, the 80-byte pedestrian struct
is of the format:

pedestrian {
int stateCurrent, stateFuture, color;
Vector2d r, v, e;
double v0, vMax;

}

Vector2d {
double x, y;

}

The np loop that computes the repulsive force between
pedestrians operates on r,v,e fields of the pedestrian struct.
The machine used to perform testing has a cache block size
of 64 bytes. This struct clearly provides poor spatial lo-
cality, as each iteration a new pedestrian struct needs to be
loaded into the cache to access the r,v,e fields, resulting
np × np cache misses in the double loop of the algorithm.
To improve spatial locality, we changed the pedestrian data
representation to multiple np length arrays:

int n_p;
int* color;
Vector2d* r, * r_next, * v, * v_next, * e;
double* v0, * vMax;

This, in theory, should improve spatial locality, as for
each pedestrian’s r,v,e data are loaded into the cache, its
three neighbouring pedestrian’s r,v,e data are also loaded,
which should reduce the number of cache misses by a factor
of 4.

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100 1000 10000 1.00e+5

SP Vector FMA Peak: 73.21 GFLOPS

DP Vector FMA Peak: 36.61 GFLOPS

L2
 B

an
dw

id
th

: 9
4.

14
 G

B/
se

c

DP Vector Add Peak: 18.27 GFLOPS

SP Vector Add Peak: 36.57 GFLOPS

Scalar Add Peak: 4.58 GFLOPS

D
RA

M
 B

an
dw

id
th

: 1
7.

92
 G

B/
se

c

L3
 B

an
dw

id
th

: 3
5.

22
 G

B/
se

c

L1
 B

an
dw

id
th

: 2
19

.2
5

G
B/

se
c

G
FLO

P
S

FLOP/Byte(Arithmetic Intensity)

Fig. 2: Optimization 2 Roofline Plot

We then performed another set of analyses to check the
effect of locality improvements. Since the number of flops
stays the same but there are fewer memory transfers, we
would expect a higher operational intensity. But the roofline
plot appears otherwise, as shown in Figure 2. There seems
to have no change in operational intensity and performance
for this version of the code. To further investigate the lo-
cality issue, we used Linux Perf tool to check the number
of cache misses between the baseline version and the ar-
rays version, yet the result shows no improvements. We
believe the reason for no locality improvement is our test
dataset all fits in the cache (214 pedestrians). Due to high
cache bandwidth, locality does not affect the performance
and speed of the computation as much as if the dataset re-
sides in memory. One observation we made is this time,
Intel Advisor suggests the computation is bounded by the
vectorized roofline instead of the scalar roofline. This in-
dicates changing to SoA enables the compiler to perform
vectorization on the computation to some degree. Although
using arrays itself did not bring any performance or speed
improvements, it enables the compiler to do vectorization
and certainly provides more room for further optimization.

Optimization 3: Combining 1 & 2, Blocking. We next
combine the array data structure with Optimization 1. This
time, the fast inverse square root algorithm starts to hinder
the performance, as Intel Advisor prompts the computations
are once again bounded by the scalar roofline. After remov-
ing the fast inverse square root algorithm, the roofline anal-
ysis results in much higher performance compared to the
baseline implementation, and it is bounded by the vector-
ized roofline, confirming that SoA enables many compiler
optimizations to take place, as shown in Figure 3.

This improvement allows us to push our dataset size to
215 pedestrians. This input size fills L2 cache but far from
filling the LLC, which motivates us to wonder if cache lo-

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100 1000 10000 1.00e+5

L1
 B

an
dw

id
th

: 2
19

.3
8

G
B/

se
c

D
RA

M
 B

an
dw

id
th

: 1
4.

93
 G

B/
se

c

DP Vector FMA Peak: 36.63 GFLOPS

Scalar Add Peak: 4.58 GFLOPS

L3
 B

an
dw

id
th

: 3
3.

26
 G

B/
se

c

DP Vector Add Peak: 18.31 GFLOPS

SP Vector Add Peak: 36.62 GFLOPS

L2
 B

an
dw

id
th

: 9
3.

95
G
B/

se
c

SP Vector FMA Peak: 72.95 GFLOPS

G
FLO

P
S

FLOP/Byte(Arithmetic Intensity)

Fig. 3: Optimization 3 Roofline Plot

cality optimizations can further improve performance since
now LLC bandwidth needs to be taken into account. Thus,
we decide to consider blocking to improve temporal local-
ity. Similar to the blocking in matrix-matrix multiplication,
we unroll the outer loop as well, switching from calculating
the repulsive effects between every 2 pedestrians to those
between 2 blocks of pedestrians. Theoretically, it should
yield better temporal locality, since it would lower the num-
ber of times needed to reload the data of each pedestrian.
However, the run time is slower than the no-blocking ver-
sion. We believe forcing blocking limits the power of the
compiler, preventing it from reordering the whole computa-
tion in a more efficient way. Thus, we chose not to consider
blocking in the following optimizations and continued with
the version which only unrolls the innermost loop.

Optimization 4: AVX. Arrays provide opportunity to
perform vectorization. Specifically, we use AVX256 intrin-
sics. Looking from the pre-results of the previous optimiza-
tion methods, it seems that the compiler only performed a
little part on the array vectorization, which means that there
is still space for AVX256 intrinsics to do further vectoriza-
tion. The previous inner loop unrolling × 4 enables one
time vectorization for AVX256 intrinsics on a double ar-
ray. Therefore, if we continue unrolling with AVX intrin-
sics, then the overall unrolling factor to the original algo-
rithm would be 16 (4 × 4). There are three problems that
we aim to tackle. The first problem is that standard com-
piler did not support exponential calculations, therefore, we
provide two ways to overcome this problem. One way is to
perform element-wise exponential calculations before hand.
Another way is to use Intel Compiler which provides the
mm256 exp pd expression. The second problem is that
if we do not unroll the outer loop, there are still parts that
did not use AVX expressions but we would like to create a
pure-AVX-version of the algorithm, therefore we decided to

version 10 50 100
Optimization 1 0.0 0.0 0.0
Optimization 2 0.0 0.0 0.0
Optimization 3 0.0 0.0 ≈ 0.04
Optimization 4 0.0 0.0 ≈ 0.04

Table 1: Errors on different iterations

unroll the outer-loop as well, the similar way as the blocking
operations but the outer loop expressions would be all writ-
ten in AVX intrinsics. The third problem is that we found
that the velocity terms could be pre-computed. These could
be moved out from the inner loop to a single loop withO(n)
that performs the computation with AVX expressions.

Additionally, we also removed all Vector2D variables
that are included into vectorization calculations. We only
keep the force terms to be Vector2D variables. Reason is
that 4 individual for-loops mean that computing force terms
with AVX in parallel is not possible.

4. EXPERIMENTAL RESULTS

Unit Testing.: To test the correctness of our baseline, we
did some computations by hand and made some test cases
to verify whether the code produces the same results under
a tolerance of 10−3 units. Specifically, we made some tests
for the relevant functions such as pedestrian movement, re-
pulsive force w.r.t. the buildings, and between the pedestri-
ans.

Furthermore, the correctness of the baseline version serves
as a point of reference for our optimizations. We run both
baseline and optimization with the same input to testify the
correctness of the latter, by taking the Euclidean distance
between the pedestrians. The optimized version is regarded
to be correct if the distance is within the bound of 10−3

units.
-ffast-math: the flag allows us to have faster code

(from 1.5 to 2.3 times faster, considering an input of 100
pedestrians over 200 iterations), but sacrifices the accuracy
by deviating about 10% from the baseline results.

#iterations: by increasing the number of iterations, the
relative error of each round would accumulate. Consider-
ing 100 pedestrians and performing 10, 50, and 100 itera-
tions, the relative errors w.r.t. the baseline is shown in Ta-
ble 1. Note that the measurements are done without using
-ffast-math to avoid extra errors.

Experimental Setup. All experiments were performed
on Intel i7-12700H @ 2.3 GHz with turbo boost disabled.
Cache sizes are 80KB L1, 1280KB L2, and 24MB LLC.
G++ 12.2 is used for all compilations except for AVX opti-
mizations, in which ICPC 2021.9 is used. We tested differ-
ent flag combinations as shown in Figure 4. None of them

provides much performance gain compared to another, but
we proceeded with -O3 -ffast-math -m64 -mavx2
-ftree-vectorize -march=native for all compi-
lations as it yields the most stable result during testing.

Input sizes from np = 23 to np = 214, log scale, are
tested for the Baseline, Optimization 1 and Optimization 2
codes, while np = 23 to np = 215 is tested for Optimization
3 onwards. The range is chosen because the program will
not terminate for larger input sizes, and we assumed w.l.o.g,
the input size is divisible by 4 to simplify AVX implemen-
tations. niter is fixed to 1 for all performance/runtime tests
performed.

Performance. Figure 5 shows performance over differ-
ent code versions. Input sizes of np = 23 to np = 215 are
tested, which means all test dataset fits in LLC. The baseline
implementation is only able to achieve less than 0.5 flops/-
cycle. Changing the pedestrian data structure to arrays as in
Optimization 2 has no impact on performance. Performing
pre-computation, unrolling the inner loop that computes the
repulsive force between pedestrians 4-fold, and employing
the fast inverse square root algorithm as in Optimization 2
allows for a 1.5x performance gain compared to the base-
line. By combining Optimization 1 and 2 as in Optimiza-
tion 3, the compiler is able to perform vectorization with
the optimization flags enabled, which leads to a significant
2.4x performance gain and allows us to test the input size of
np = 215. Finally, by using AVX intrinsics as in Optimiza-
tion 4, we are able to get a slightly more performance gain
at 2.5x compared to the baseline.

Given our previous analysis (Eq. 14), the total flop count
W (n) = 48n2 flops. Since we used SVML for exponential
function, which is closed source and for which Intel did not
provide much information, we measured the gap of exp()
ourselves and assume it can be fully vectorized. Consid-
ering only instruction mix and ignoring dependencies be-
tween instructions, a lower bound for the runtime should be
T (n) ≥ 30.25n2 cycles, and an associated upper bound for
performance is P (n) ≤ 1.587 flops/cycles. In this case,
Optimization 4 achieves 72% of the peak performance. It
is moderately close to the theoretical peak performance and
the gap can be explained by the dependencies between in-
structions and data transfers within the cache. We believe
it is unlikely for the code to achieve more percentage of
the peak performance as we must take dependencies and
cache transfers into account when measuring the actual per-
formance, and these factors are unavoidable.

Speedup. Figure 6 shows speedup over different code
versions. The execution time (in cycles) of the baseline im-
plementation is set to 1, and the execution time of all other
versions are normalized to the baseline execution time. In-
put sizes of np = 23 to np = 214 are tested, which means
all test dataset fits in LLC. Changing the pedestrian data
structure to arrays as in Optimization 2 has no effect on

1000 3000 5000 7000 9000 11000 13000
#pedestrians

0.430

0.435

0.440

0.445

0.450

0.455

0.460

0.465

 Intel i7-12700H @ 2.3GHz
 L1: 80KB, L2: 1280KB, L3: 24MB
 Compiler: ICPC 2021.9

Performance
[flops/cycle]

Performance plot of the baseline

-O3
-ffast-math
-mavx2
-ftree-vectorize
-O3
-ffast-math
-march=native
-mavx2
-ftree-vectorize
-O3
-ffast-math
-march=native
-mavx2
-ftree-vectorize
-m64

Fig. 4: Baseline Performance Under Different Compiler Flags

Fig. 5: Performance Plot over Different Code Versions

the execution time. By performing pre-computation, un-
rolling and using the fast inverse square root algorithm as
in Optimization 1 we are able to get around 1.6x speedup
compared to the baseline. By combining Optimization 1
and Optimization 2, as Optimization 3, which allows the
compiler to perform vectorization in addition to the man-
ual optimization we performed, we are able to get around
4x speed up for large input sizes compared to the baseline.
Finally, by using AVX intrinsics as in Optimization 4, we
are able to get slightly better than 4x speedup for larger
input sizes but the difference between Optimization 3 and

4 is minimal. We believe the reason we are unable to get
more speedup by employing AVX intrinsics is the compiler
may have compiled the code with more sophisticated vector
instructions, but by manually using intrinsics we force the
compiler to compile the code to the instruction mix dictated
by the AVX intrinsics, which is not noticeably better than
the compiler’s optimized instruction mix in this case. Since
the algorithm itself contains many unavoidable expensive
computations such as division, exponential and square root,
and vectorization only allow parallelizing computation but
does not reduce the cost of the computation itself, we be-

Fig. 6: Speedup over Different Code Versions

lieve it is unlikely for the code to be sped up further.

5. CONCLUSIONS

We optimize the computation of SFM in four different ways,
first using standard means such as unrolling, scalar replace-
ments, changing the struct etc. Then, we implemented the
vectorization using AVX intrinsics, to speed up the compu-
tations. Each optimization is built upon the previous one,
and they provide strong evidence that the compiler-level
and hardware-specific optimizations can improve the per-
formance of our code.

Due to the high quality of our baseline and the depen-
dencies of different computations, we believe that there is
no other way to further improve the computation with exist-
ing tools, as can be seen from the roofline plot.

In conclusion, with our last optimization, we are able to
speed up the computation by a factor of 4 w.r.t. the base-
line, which also allows us to push the input size from 214

pedestrians to 215. The final version of optimization has
reached approximately 72 % of the maximum theoretical
performance.

6. CONTRIBUTIONS OF TEAM MEMBERS
(MANDATORY)

Jiajun Jiang. Worked with Peiyuan on the baseline imple-
mentation and memory optimization (blocking, modifying
data structure) as in Optimization 2. Debugging. Worked
on plotting the performance plots. Helped Jiaqing on at-
tempting to reimplement the algorithm in pure C instead of
C++. Analyzed reasons for the performance results and un-
expected phenomena during testing.

Kehong Liu. Performed roofline analysis throughout
the project. Worked with Jiaqing on compute/algorithmic
optimizations as Optimization 3, and AVX intrinsics as in
Optimization 4. Worked on collecting performance data and
performance analysis. Performed cost analysis of the algo-
rithm. Analyzed reasons for the performance results and
phenomena during testing.

Jiaqing Xie. Focused on compute/algorithmic optimiza-
tions as in Optimization 1. Worked on Optimization 3 and
AVX optimizations as in Optimization 4 with Kehong. Ex-
perimented on reimplementing the algorithm in pure C and
analyzed potential issues and tradeoffs before deciding to
discard it. Performed cost analysis of the algorithm. Lead
discussion on the next steps of optimization based on anal-
ysis results.

Peiyuan Xie. Worked with Jiajun on the baseline im-
plementation and memory optimization such as blocking as
in Optimization 2. Analyzed potential memory locality is-
sues with different data and loop structures. Debugging.
Performed cost analysis of the algorithm. Implemented the
visualization script. Lead discussion on directions for opti-
mization.

7. REFERENCES

[1] Dirk Helbing and Peter Molnar, “Social force model for
pedestrian dynamics,” Physical review E, vol. 51, no. 5,
pp. 4282, 1995.

[2] Dirk Helbing, “Physikalische modellierung des dy-
namischen verhaltens von fußgängern (physical model-
ing of the dynamic behavior of pedestrians),” Available
at SSRN 2413177, 1990.

[3] Kurt Lewin, “Field theory in social science: selected
theoretical papers (edited by dorwin cartwright.).,”
1951.

[4] Dirk Helbing, “Improved fluid-dynamic model for ve-
hicular traffic,” Physical Review E, vol. 51, no. 4, pp.
3164, 1995.

[5] Dirk Helbing, Illés Farkas, and Tamas Vicsek, “Simu-
lating dynamical features of escape panic,” Nature, vol.
407, no. 6803, pp. 487–490, 2000.

[6] Sven Kreiss, “Deep social force,” arXiv preprint
arXiv:2109.12081, 2021.

[7] Gaël Guennebaud, Benoı̂t Jacob, et al., “Eigen v3,”
http://eigen.tuxfamily.org, 2010.

	 Introduction
	 Background on the Algorithm/Application
	 Proposed Method
	 Experimental Results
	 Conclusions
	 Contributions of Team Members (Mandatory)
	 References

