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1 Knowledge graphs
1.1 Entity classification on AFIB dataset (Click Colab Link here)

Graph statistics. Like many other knowledge graphs, it lacks node features. It has 8285 nodes, 58086 edges,
4 entity classes, and 90 relation types. The whole graph is undirected, with diameter 8.

Comparison between baselines and GNN. (1) Applied with a random classifier, the classification results
are uniformly distributed. We run the test 100 times and achieve an average accuracy of 0.262 with standard
deviation 0.070. (2) To build a feature classifier, we first augment the node features, i.e. adding one-hot
features and interval features to each node. We choose interval features as example and embed it into a shallow
MLP classifier. The accuracy is around 0.333 with standard deviation 0.118. (3) Our simple heterogeneous
GNN classifier consists of two RGCN layers with hidden dimension 8. The model takes "None" as input
instead of augmented features. We achieve an accuracy of 0.954 with standard deviation 0.026, which matches
the SOTA RGCN performance.
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Figure 1: Visualization of knowledge graphs (partly, triggered by 10 nodes and their neighbours).

Oversmoothing investigation. We check if the number of layers (depth) and the number of neurons (width)
affect the accuracy of our model, where depth choices are 2, 5, 10, 20, 40, 80, and width choices are 4, 8,
16, 32, 64, 128. We find that the performance deteriorates with more layers. Adding neurons to a layer does
not significantly decrease performance, and maintains an approximate on-par performance (Figure 3). We
choose a model with 80 layers which suffers from oversmoothing according to the prediction results. We
adopt Dirichlet Energy [4] as metrics, where a significant decrease in energy indicates oversmoothing. In
order to overcome oversmoothing, we have tried three methods mentioned in the survey [4]: PairNorm [8],
Regularization, and Residual Connection. We find that PairNorm not only improves the performance,
but also overcomes the oversmoothing problem; residual connection overcomes oversmoothing but does not
increase the performance significantly; regularization slightly mitigates oversmoothing.

1.2 Entity classification AM dataset (Click Colab Link here)

Graph statistics and baselines. Like AFIB dataset, it lacks node features. It has 1666764 nodes, 11976642
edges, 11 entity classes, and 266 relation types. The whole graph is undirected, with average node degree
approximately 7.19. The average accuracy of the random classifier is around 0.091 (approximately %), close
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Figure 2: Depth vs Dirichlet energy with four methods. Figure 3: Depth/Width vs Accuracy.

to the uniform distribution. Then we augment features and construct an MLP model as a feature baseline,
where seeds are set for reproduction. The average accuracy is around 0.253, with standard deviation 0.132.

Comparison of GNN models. Before applying GNN models, we first use k_hop_subgraph to sub-sample
the graph so that it does not exceed CUDA memory. Then we choose two GNN models with a big performance
difference in the AFIB dataset (width=8, depth=2 and width=8, depth=60) and apply them to the AM dataset.
We run three experiments for each model with the same seeds and achieve average accuracies of 0.864 and
0.806 respectively. The reason why an expected big difference does not occur is that k_hop_subgraph has
limited the graph depth and thus precluded the oversmoothing problem. To enhance the performance, we keep
the depth unchanged while increase the width to 16, and achieve an accuracy of 0.874.

Model Accuracy
Random Baseline 0.262 £+ 0.070
Feature Baseline 0.333 £0.118

Model Accuracy Parameters
Random Baseline | 0.092 4 0.022 -
Feature Baseline | 0.252 4 0.132

Shallow RGCN 0.954 =+ 0.026 Shallow RGCN 0.864 4,526,355

Deep RGCN + PariNorm 0.917 Deep RGCN 0.806 5104731

Deep RGCN + Regular. 0.417 Enhanced RGCN 0.874 6.121.499
Deep RGCN + Res. 0.417

Table 1: Results of AFIB dataset. Table 2: Results of AM dataset.

1.3 Link prediction on FB15k-237 dataset (Click Colab Link here)

Data exploration and baselines. This dataset also lacks node features. It has 14541 nodes, 272115 training
edges, 17535 validation edges, 20466 test edges, and 237 edge types. The whole graph is directed, with
average node degree approximately 18.71. A random baseline gives a MRR 0.00048 and H@10 0.0005. A
feature baseline gives a a MRR 0.0042 and H@10 0.0059.

GNN architecture. We use encoder-decoder achitecture: RGCN encoder and TransE [1]] decoder. The encoder
consists two-layer RGCN with ReLU activation and dropout. We set the bias hyper-parameter in each GNN
layer to False. Node embeddings are extract from the last layer of RGCN. For the decoder, we initialize
relation embedding, extract head and tail embeddings and perform TransE. Other choices could be RGCN +
RotatE or RGCN + DistMult, but here we only tried RGCN + TransE. MRR could achieve 0.25 and H@ 10
could achieve 0.4 under a normal setting. Then we perform a hyper-parameter search to find a state-of-the-art
encoder-decoder architecture. During the hyper-parameter setting, we narrow the design space where we fix
the number of layers to be 2, the dropout rate to be 0. We search the hidden dimension of GNN layers only
to show an example of hyper-parameter searching since end-to-end optimization takes a long time. A larger
hidden dimension led to better results.

Feature augmentations on graphs. We consider two types of augmentation methods on graphs: feature
level and structure level. Feature level augmentation for knowledge graph is to initialize node embeddings
since it lacks node features. One-hot features or constant features are taken into consideration. We fix the
hyper-parameters which were explored by hyper-parameter search. RGCN with one-hot features reached MRR
0.2437 and H@10 0.3969. RGCN with constant features reached MRR 0.2372 and H@10 0.3659 . Feature
augmentation on heterogeneous graphs such as FB15k-237 is useless. Instead we may consider structural
augmentation on heterogeneous graphs: adding virtual node or dropping edges. Adding virtual node gave an
on-par performance with MRR 0.2485 and H@10 0.4 approximately. We show that general augmentation
methods for homogeneous graphs do not work well for heterogeneous graphs.


https://colab.research.google.com/drive/1d1get2-DCjUF69SQ0zQMqgro0leCf_Gy?usp=sharing

Model MRR H@10 B
Random Baseline 0.0005 | 0.0004 e
Feature Baseline 0.0042 | 0.0058 o8
RGCN + TransE 0.2534 | 0.4046
RGCN + TransE + Constant 0.2372 | 0.3659 g
RGCN + TransE + One-Hot 0.2437 | 0.3969 Egm
RGCN + TransE + Virtual Node 0.2485 | 0.3999 -
RGCN + TransE Constrast + TransE 0.2007 | 0.2959 02
RGCN + DistMult Constrast. + TransE | 0.1987 | 0.2789
RGCN + DistMult Constrast + DistMult | 0.1538 | 0.2822 e e N —
Table 3: Results of FB15k-237 dataset. Table 4: Triplet loss vs epochs.

Contrastive learning. We use RGCN to extract the embedding for each node. As for anchor, we treat an
existing triplet head-relation-tail as an anchor. The positive triplet has the same relation type as the anchor’s
relation, which also exists in training dataset. The negative triplet has the relation different than those with
anchor and positive triplets. Then the embedding is then computed by DistMult or TransE for anchor, positive
and negative. We use the Tripletloss to pretrain the embedding for entities. We find that pretraining with TransE
has a lower MRR and H@10 than an end-to-end optimization pipeline. We also try to perform contrastive
learning with DistMult distance and use the embedding with either DistMult or TransE decoder. We find that
under our encoder-decoder settings, contrastive learning method does not work as expected. As mentioned
in a recent research, a pure GNN-based method, pure translational distance model (transe) or pure semantic
matching models (distmult) should be more suitable to contrastive learning in terms of consistency|[2].

2 Graphsin 3D

2.1 Voxel format (Click Colab Link here)

Dataset statistics and baselines. In the ModelNet10 dataset, each data is a 3D shape, with an array RY <3
storing the coordinates of points, an array R3* ¥ storing the point indices of faces, and a label describing
its class. The dataset consists of a training set of 3991 shapes and a test set of 908 shapes, and contains 10
classes. We preprocess the dataset by normalizing the range of point coordinates to [-1, 1] for scale consistency
and numerical stability. The random classifier returns a random class for each sample, where the accuracy is
around 0.1, following the uniform distribution.

Voxel size: 0.05 Voxel size: 0.1 Voxel size: 0.2
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Figure 4: Chair example with different voxel sizes.
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Figure 5: Chair example in mesh and point cloud.


https://colab.research.google.com/drive/1YNHIu6qluv71CboENUOeRbXGTqHgmHKL?usp=sharing

Voxelization and CNN. We use the Open3D library to voxelize the dataset by creating a 3D array with
elements 1 or O indicating whether the shape occupies the corresponding voxels. We compare three voxel
sizes 0.05, 0.1, 0.2. First, we visualize the voxelization results in Figure 4. Then, we build a 3D CNN for the
classification task. Drawing the idea from 3D ShapeNet [6], we use three Conv3d layers followed by two
Linear layers, and we use ReLU as activation layers. We have achieved accuracies of around 0.896, 0.893,
0.889 respectively. The accuracy slightly decreases as the voxel size increases, since a smaller voxel size
captures more details of the shape.

2.2 Point clouds (Click Colab Link here)

Coordinate baseline. The second way to represent a 3D shape is a point cloud, storing a list of point
coordinates. After normalization, we use the SamplePoints function to sample 1024 points for each shape.
First, we visualize the point cloud in Figure 5. Then we build a GNN coordinate baseline. Since a point cloud
contains no edge information, we utilize the knn_graph function to generate edges based on the distance
between points, where we choose 16 neighbors for each point. After obtaining edge indices, we build a
two-layer GCN network with ReLU and global _max_pool. We achieve an accuracy of 0.868.

PointNet. We then test the performance of PointNet [3]], using the implementation of pointNet.pytorch. We
first apply a transformation to the input, then use three Conv1d layers without feature transformation, followed
by a max pooling and three Linear layers. We choose three sampling sizes 512, 1024, 2048 and achieve
accuracies of around 0.900, 0.893, 0.889 respectively. We find that the accuracy slightly decreases as the
sampling size increases, which is probably due to overfitting, especially when the sampling size is larger
than the original size. Comparison of 3D CNN and PointNet: (1) Information aggregation: CNN extracts
neighboring information at each Conv3d layer, while PointNet only uses one max pooling layer; (2) Input
adaptivity: one architecture of CNN only receives one voxel size, while PointNet has no limitations on
sampling size. Our experiments show that these two methods achieve comparable results.

2.3 Meshes (Click Colab Link here)

Mesh GNN. The third way to represent a 3D shape is a mesh. Since point coordinates can be viewed as
node features and faces can be transferred into edge indices, GNN can be applied. First, we only use the
connection information as input, that is, to the edge indices while replace the coordinates by scalars. The
accuracy is only 0.117, close to random guess. This happens because edges only provide relative information
which is much weaker than the absolute information from the coordinates. Then we add coordinates back
and achieve an accuracy of 0.807. Compared with original edges, we find that dynamically generated edges
(DynamicEdgeConv) [5] can achieve a much better accuracy of 0.925.

Answers to report questions: 1. Similar to voxels and point clouds, mesh also allows resolution adjustment.
We can insert or delete points at certain locations according to our need, and the corresponding edges and
faces are also changed. 2. Since PointNet takes no connection information as input, dataset augmentations on
structural modifications such as virtual nodes/edges will only reduce the performance of GNN.

Rotation-invariant GNN. In order to handle transformations in the dataset, we apply LGR-Net [7] and
compare its performance with PointNet and fixed-edge GNN. We conduct three tests for each model: 1.
original training set & original test set; 2. original training set & rotated test set; 3. rotated training set &
rotated test set. We find that LGR-Net shows a robust performance, with negligible differences in rotated
datasets, while the other two models are sensitive to rotations.

Model Accuracy
3D CNN 0.896 Model ori—ori | ori—rot | rot—rot
PointNet 0.900 LGR-Net 0.839 0.837 | 0.839
GNN: Edges 0.117 PointNet 0.900 0.135 0.591
GNN: Coords + Edges 0.807 GNN: Coords + Edges | 0.807 0.131 0.318
gII:IIII:II (C:ggigz : gﬁgﬂiﬁ: ?EZZE%SEB; 8322 Table 6: Results of rotation-invariant test. Here ori and

rot refer to original and rotated dataset.
Table 5: Results of different representations.
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