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Main Question

Which tasks can be learned while protecting private data

Answer: Any task which is online learnable

differential privacy: young area
online learning: mature area
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Online & Private Learning

Online Learning and Private Learning are closely related.

" Differential privacy may be ensured for free in online linear optimization”
[AS17]

" DP-inspired stability is well-suited to designing online learning algorithms
with excellent guarantees” [Abe+19]

" Differential privacy is enabled by stability and ensures stability” [DR+14]
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Proof of Equivalence

Two directions:

1) Private Learnable = Online Learnable

2) Online Learnable=> Private Learnable
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1) Private Learnable = Online Learnable

One direction: Private Learnable = Finite Littlestone dimension = Online
Learnable

1) Private Learnable = Finite Littlestone dimension v/

"Every approximately differentially private learning algorithm for a class H
with Littlestone dimension d requires Q(log*(d)) examples” [Alo+19]

2) Finite Littlestone dimension = Online Learnable v/

"Hypothesis is online learnable iff it has a finite Littlestone dimension”
[BPS09]
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2) Online Learnable = Private Learnable ?

Another direction: Online Learnable = Finite LittleStone dimension =
Private Learnable

1) Online Learnable = Finite LittleStone dimension v/
"Hypothesis is online learnable iff it has a finite Littlestone dimension”

2) Finite LittleStone dimension = Private Learnable: If true, then the
equivalence is proved.

Idea: introduce stability. We prove 1) Finite LittleStone dimension =
Stability = Private Learnable [This paper]
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Overview

@ Online learning, Littlestone dimension and SOA
o Stability

@ Finite Littlestone dimension = Stability

o Differential Privacy

@ Stability = Private learnable
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Online Learning

Definition (Online Learning)

Hypothesis class H = {h: X — {£1}}. Examples of inputs (x1, y1), ...,
(Xn, ¥n) € X x {£1}.
For each time step t

observe one instance x; from the examples
predict the label y; with h € H

receive the true label y;

compute the loss(y¢, yt)

update H with some metrics

©0 0000

continue till t = n
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Online Learning

Definition (Goal of Online Learning)

We want to minimize the regret, the number of mistakes compared to the
best hypothesis in H:

R(n) = Z Uy # ye| - hfpi" Z Uy: # h']
=1

eH
t=1 t=

Theorem (Boundedness of R(n))
R(n) has been proved to be bounded:

Q(Vdn) < R(n) < O(y/dnlog n)

where d is the Littlestone Dimension
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Online Learnable < Finite Littlestone dimension

1. Boundedness of R(n) < hypothesis class H is online learnable with
finite littlestone dimension

2. Next step: littlestone dimension and mistake bound
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Littlestone Dimension

Definition (Mistake bound)

Number of possible mistakes that an online learning algorithm A made
during prediction. Let's denote it by Ma(H)

Theorem (Upper-Boundedness)

Consistent algorithm returns a |H| — 1 upper bound. Halving algorithm
returns a log, |H| upper bound.

Definition (Lower-Boundedness = LittleStone Dimension)

The best achievable lower bound for Ma(H), which is denoted by
LDim(H). For any online learning algorithm A, we have:

Ma(H) > LDim(H)
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Littlestone Dimension

Intuition:

1) We view online-learning as the game between the gamer and the
environment. The environment wants the gamer to make mistakes. Under
the settings of a 0-1 binary classification scenario, if a learner picks the
prediction y;, the environment will pick 1 — y;

2) How to make maximum mistakes? Answer: Build a complete binary
tree where each sample corresponds to one node in the tree. If a
prediction given by gamer is 0, then environment would give 1 (right
prediction) and travel to left child

3) Example:
. @ﬂ
= Yo

(2
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[ ® @

Figure: Complete binary tree where LDim = 2 (tree depth T)
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Standard Optimal Algorithm (SOA)

Algorithm (Standard Optimal Algorithm)

The best achievable mistake lower bound is achievable by implementing
Standard Optimal Algorithm (SOA), where we have:

Ma(H) = LDim(H)

For each time step t
@ observe one instance x; from the examples
@ choose b € {£1}, let H' = {h € H: h(x;) = b}. We predict
W = arg max, LDim(H’)
© receive the true label y;
© compute the loss
© Update H
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Standard Optimal Algorithm (SOA)

Definition (Realizable to non-realizable samples)
So far samples could be shattered by H < Samples are realizable.

@ If the incoming sample x;11, yt+1 maintains the realizability, update H
by SOA.

@ Else:
W (xe1) = ye1

while keeping other h'(-) unchanged.
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Milestone 1: Online Learner

Current:
@ Hypothesis with finite Littlestone dimension is online-learnable

@ Optimal online-learnable learning algorithm w.r.t. mistake bound
model is given by SOA

Next step:
@ SOA is used in stable learner as an algorithm

@ introduce stability
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Stability

Definition (Global Stability)

Let n be the sample size and 7 a stability parameter. Algorithm A is (n, 1)
globally stable w.r.t D if there exists a hypothesis h s.t.

SBJAGS) = >
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Stability = Generalization

Proposition (Global Stable Learner = generalize well)

Suppose A is realizable learner (loss(A(S)) = 0 for any realizable S). D is
a realizable distribution s.t. A is (n, 1) stable and < PD,,[A(S) = h| > for

a hypothesis h, then
In(1
IOSSD(h) S w
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Milestone 2: Online + Stable Learner

@ A hypothesis class H has a finite LDim d,
e A =SOA , h € H, SPD"[SOA(S) = h] > n, IOSSD(h) < |n(],.1/r])

Intuition:
Proposition (Finite LDim)
Suppose the hypothesis class has a finite LDim d. If we could find specific

finite n and n, using SOA, properties of stability and generalization of a
stable learner are ensured.

The direction Finite Littlestone = Global stable learner v
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Finite Littlestone = Global stable learner

Theorem

Let H be a hypothesis class with Littlestone dimension d < 1, let o > 0,
set number of samples

2d+2
n =2 T ]

D is a realizable distribution and S ~ D", then there exists a randomized

algorithm G: X x {£1} — {£1}X and a hypothesis f € H: with the
following properties:

P[G(S) =f] > and lossp(f) < «

1
(d + 1)227+1
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Distribution D

Q: How are samples randomly chosen from original distribution D ?
A: The sampling depends on tournament samples
Aim: To make sure that each round the algorithm will make a mistake

Algorithm (Choosing D)
Dy = Dy(k, n) are defined by induction on k:
Do: outputs the empty sample () with prob. 1 For each k:
o Draw 50,51 ~ Dk—l and To, Tl ~ D"
@ foy =SOA(Soo Tp), fi = SOA(S1 0 T1), o means append
Q Iffy="f, GOTO 1
Q Pick x € {x: fo(x) # fi(x)} and sample y ~ {£1} uniformly
Q If fo(x) # y, output Spo Too (x, y), else S1 0 Ty 0(x,y)

k mistakes were made. SOA(S o T) is consistent with T (realizable).
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Monte-Carlo Variants of Distribution Dy

Problem : From 1) to 3), it might generate infinite number of samples
(unbounded) from D.

Solution : In order to circumvent being stuck in the sampling period, if

more than N examples are sampled from D, break immediately and output
Fail.
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Milestone 3: Prove Finite littlestone dimension = Stability

Finite littlestone dimension = Stable learner
@ prove stability
@ prove stability = generalization
@ prove number of generated samples is finite

@ Optimal f* in hypothesis that looses the lower bound
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Existence of Frequent Hypothesis

Lemma (global stability)

There exists k < LDim d and an hypothesis f : X — {+1} s.t.

_ > 2d+2
5ol pi[SOAS o T) =125 =
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Proof: Existence of Frequent Hypothesis (Skip)

Sketch Proof (by contradiction):

1 P A(So T) = f] <272
) Suppose SNDd,TND"[SO (SoT)="f]<

2) pk: prob. that all k tournament examples are consistent with ¢ where c
is the target concept.

3) two cases: Sp, S1 € Dy_1 are all consistent with c, therefore, each py_1
leads to p2_,. And fo # f;. We have that P[f = f1] < 272" < 8.272""
according to 1).

4) conditioned on uniformly distributed y with prob 1/2. put it all together
it will produce:

1 _od+2
PkZE(Pi—1—8'2 )
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Proof: Existence of Frequent Hypothesis (Skip)

(Continue)

5) po = 1, we can prove by induction that for k < d,px > 4 - o2
Suppose it stands for k-1, then for k

_nd+2
Pr1—827

Pk =

2
(4-272)2 —g. 272"
>
= 2
- 8 ) 2_2k+1 . 4 ) 2_2d+2

>4.272"" gincek < d

6) so px > 2-2"2  SOA does not make more than d mistakes, so if all
tournament examples are consistent with ¢ then SOA(S o T) = f, then

s B [SOA(S o T) = f] > 272", contradicts 1)
~Dg, I~ n
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Proof

Finite littlestone dimension = Stable learner
o prove stability v/
@ prove stability = generalization
@ prove number of generated samples is finite
o

Optimal f* in hypothesis that looses the lower bound
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Generalization

Lemma (Generalization)
Let k be such that Dy is defined. Then every f s.t.

P [SOA(SoT)=f]>22"
S~Dy,T~Dn"

satisfies
d+2

lossp(f) < 2T
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Proof: Generalization (Skip)

Sketch Proof (similar to generalization proof before):

1) A be the event that SOA(S o T) = f, by definition P[A] > 2-2""
2) B be the event that f is consistent with T, by definition

P[B] = (1 — «)" again if we let a = lossp(f)

3) We've mentioned when SOA(S o T) = f ,then f must be consistent
with T. So that AC B

4) solve the inequality: 272" < (1 — )" < e leads to the
generalization bound.
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Proof

Finite littlestone dimension = Stable learner
o prove stability v/
o prove stability = generalization v’
@ prove number of samples is finite
o

Optimal f* in hypothesis that looses the lower bound
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Expected Sample Complexity

Lemma

Let k be s.t. Dy is well-defined. M) denotes the number of examples of D
drawn in the process of generating S ~ Dy. Then:

E[M,] < 4kt .n

, where n is the number of inputs.

Proof skipped here.
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Algorithm G

Algorithm
Q@ Consider the distribution Dy, where n = [%] (From generalization
bound)

@ Sampling upper bound is set to 227414441 y Inverse of stability
bound times E[M]

© Draw k € {0,1,...,d} uniformly at random

Q@ Output h=SOA(S50T), S~ Dy, T ~ D,
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Proof

Finite littlestone dimension = Stable learner
o prove stability v/
o prove stability = generalization v’
e prove number of generated samples is finite v/
o

Optimal f* in hypothesis that looses the lower bound
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Put all things together

We leave : there exists a f such that :

P SOA(SoT)=f
SNf)k,TND"[ ( )=fl= d+1

and
lossp(f) < «

. . d
We already achieved the sample size n = 22*7+14d+1. [%1
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Proof

Assume optimal k* and f = *, we have lossp(f*) < lossp(f) = «

Markov's inequality:

2d+2

P[Mj > 9291241 4d+1 | [ 1< 9—2712-1

° P [SOA(SoT)=f" = P [SOASoT)=
SNﬁk*,T’VD" SNDk*,TNDn

d+2
f*and My < 22 7+1gd+1 (2027 > =201 5 =271

@ k = k™ with probability d%rl. Finish the proof.
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Proof

Finite littlestone dimension =- Stable learner v
@ prove stability v/
@ prove stability = generalization v
o prove number of generated samples is finite v’
e Optimal f* in hypothesis that looses the lower bound v
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Differential Privacy (General definition)

Definition

A randomized algorithm M: X" — R is said to be (e, §)-differentially

private if for all measurable S C R¥ and all neighboring datasets x, y € X
Pr(M(x) € S) < e“Pr(M(y) € S) +4,

where two datasets x, y are said to be neighboring if they only differ in one
entry.

v

l.e., an attacker cannot confidently infer whether a sample is in the input
dataset given the output of the algorithm.
When (¢, ) decrease, the level of privacy increases.

Yucheng Sun, Jiaging Xie (ETH) Private Learner is Online Learner 39/53



Two nice property of differential privacy

Theorem (Post-processing)

Let M: X" — RK be an (¢, §)-differentially private algorithm. Let
f: Rk — Rk be an arbitrary mapping. Then f o M is also
(e, 0)-differentially private.

Theorem (Composition theorem)

Let My: X" — RK be an (e1, 61)-differentially private algorithm and
My X" — RK be an (e, 62)-differentially private-algorithm, then their
combination My »(x) = (M1(x), Ma(x)) is (€1 + €2, 01 + 02)-differentially
private.
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Global stable learner =Private Learning

To prove this statement, the paper constructs a private learner
Constructed using existing algorithms as black boxes

Building block 1: Generic Private Learner [Kas+08]
Building block 2: Stable Histograms [Kor+09; BNS19]

Yucheng Sun, Jiaging Xie (ETH) Private Learner is Online Learner

41/53



Generic Private Learner

Theorem
Let H C {£1}X be a collection of hypothesis. For

. O(log(lHl) + log(1/5)>

(673

there exists an (e, §)—differentially private algorithm

GenericLearner: (X x {£1})" — H such that the following holds.

Let D be a distribution over (X x {£1}) such that there exists h* € H
with lossp(h*) < «. Then on input S ~ D", algorithm GenericLearner

outputs, with probability at least 1 — (3, a hypothesis h € H such that

lossp(h) < 2a.
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Stable Histogram

Theorem (Stable Histogram)
Let X be any data domain. For

> O(Iog(z/enﬁé))

there exists an (e, 0)-differentially private algorithm Hist which, with
probability at least 1 — 3, on input S = (x1, ..., xp) outputs a list L C X
and a sequence of estimates o € [0, 1]It| such that

o Every x with freqS(x) > n appears in L and

@ For every x € L, the estimate ay satisfies |ay — freqS(x)| <n
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Construction of a private learner

Algorithm

Require: Stable learner G, Stable Histogram algorithm Hist, generic
learner GenericlLearner

Step 1. Let Sy, ..., Sk each consist of m i.i.d. samples from D. Run G on
each batch of samples producing hy = G(51), ..., hx = G(Sk).

Step 2. Run the Stable Histogram algorithm Hist on input
H = (h1, ..., hk) using privacy parameters (¢/2,6) and accuracy parameters
(n/8,3/3), producing a list L of frequent hypotheses.

Step 3. Let S’ consist of n’ i.i.d. samples from D. Run GenericLearner(S’)
using the collection of hypotheses L with privacy parameter (¢/2,0) and
accuracy parameters (a/2,3/3) to output a hypothesis h.
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Proof of correctness

To prove the correctness of the algorithm, one need to prove:

@ The algorithm is (e, 0) private.

© The algorithm is accurate.
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Proof of correctness (privacy part)

Proof.

We know Step 2 is (¢/2, §)—differentially private, Step 3 is
(e/2,0)—differentially private.

By using composition theorem, we can immediately prove the algorithm is
(e/2 + €/2, §)—differentially private. O

Yucheng Sun, Jiaging Xie (ETH) Private Learner is Online Learner 46 /53



Proof of correctness (accuracy part)

Proof.

Assume the optimal classifier is h* and lossp(h*) = /2.
1. Using standard generalization argument, one can show that w.p. at
least 1 — /3,

|freqn(h) — _Pr_[G(s) = h]| <

0|3

for every h € {£1}X as long as k > O(log(1/3)/n).

2. Conditioning on 1. By the correctness of the Stable Histogram
algorithm, we know w.p. 1 — /3 HIST produces a list L containing h*
with the estimate ap« >n —1n/8 —1n/8 = %77.

3. By the correctness of private generic learner, GenericLearner can
successfully find h € L and lossp(h) < a.

By using the union bound, we know the algorithm successfully find a
correct solution w.p. 1 — . ]

v
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Global stable learner =-Private Learning (formal
statement)

Theorem

Let H be a concept class over data domain X. Let

G : (X x {£1})™ — {£1}X be a randomized algorithm such that, for D a
realizable distribution and S ~ D™, there exists a hypothesis h such that
Pr[G(S) = h] > n and lossp(h) < a/2. Then for some

he O(mlog(l/nﬁfS) N Iog(l/nﬁ)>

ne e

there exists an (e, 0)-differentially private algorithm
M : (X x {£1})™ — {£1}X which, given n i.i.d. samples from D,
produces a hypothesis h”™ such that lossp(h) < « with probability at least

1- 8.
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Sharper Quantitative Bounds

The upper bound on the differentially private sample complexity of a class
H has a double exponential dependence on its Littlestone dimension

Ldim(H)

[Alo+19] proved a lower bound which depends on log(Ldim(H))

Can every class H be privately learned with sample complexity
poly(VC(H),log(Ldim(H)))?
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Study of global stability

This paper introduced global stability as a definition of stability, and
showed its connection to differentially privacy

Its natural to wonder whether global stability has connection with other
definitions of stability

For example, [CMY23] viewed stability as a variant of replicability, and
created a variant called list replicability, which has an algorithmic
equivalence to global stability
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Extension to multi-class classification and regression

It is natural to ask whether this equivalence holds for multi-class
classification and regression problem

[JKT20] showed Private Learnable = Online Learnable. But it is hard to
show Online Learnable = Private Learnable
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Supplementary 1

Proposition (Stable Learner = generalize well)

Suppose A is realizable learner (loss(A(S)) = 0 for any realizable S). D is
a realizable distribution s.t. A is (n, 1) stable and < IP’DH[A(S) = h| > for

a hypothesis h, then
In(1
IOSSD(h) S w

Sketch Proof:

1) let & = lossp(h). Since A is realizable, then A(S) = h means that 3 h
s.t. h is realizable

2) P[h is realizable] = (1 — «)". The probability that h correctly classifies
the sample is equal to 1 — a.. All n independent samples so (1 — «)”

3) SNIF’DH[A(S) = h] = Pfh is realizable], so n < (1 — «)". With the

inequality l —a<e ®=n<e ™=a< %In(%)
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