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Main Question

Which tasks can be learned while protecting private data

Answer: Any task which is online learnable

differential privacy: young area
online learning: mature area

Yucheng Sun, Jiaqing Xie (ETH) Private Learner is Online Learner 3 / 53



Online & Private Learning

Online Learning and Private Learning are closely related.

”Differential privacy may be ensured for free in online linear optimization”
[AS17]

”DP-inspired stability is well-suited to designing online learning algorithms
with excellent guarantees” [Abe+19]

”Differential privacy is enabled by stability and ensures stability” [DR+14]
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Proof of Equivalence

Two directions:

1) Private Learnable ⇒ Online Learnable

2) Online Learnable⇒ Private Learnable
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1) Private Learnable ⇒ Online Learnable

One direction: Private Learnable ⇒ Finite Littlestone dimension ⇒ Online
Learnable

1) Private Learnable ⇒ Finite Littlestone dimension ✓

”Every approximately differentially private learning algorithm for a class H
with Littlestone dimension d requires Ω(log∗(d)) examples” [Alo+19]

2) Finite Littlestone dimension ⇒ Online Learnable ✓

”Hypothesis is online learnable iff it has a finite Littlestone dimension”
[BPS09]
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2) Online Learnable ⇒ Private Learnable ?

Another direction: Online Learnable ⇒ Finite LittleStone dimension ⇒
Private Learnable

1) Online Learnable ⇒ Finite LittleStone dimension ✓
”Hypothesis is online learnable iff it has a finite Littlestone dimension”

2) Finite LittleStone dimension ⇒ Private Learnable: If true, then the
equivalence is proved.

Idea: introduce stability. We prove 1) Finite LittleStone dimension ⇒
Stability ⇒ Private Learnable [This paper]
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Overview

Online learning, Littlestone dimension and SOA

Stability

Finite Littlestone dimension ⇒ Stability

Differential Privacy

Stability ⇒ Private learnable
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Online Learning

Definition (Online Learning)

Hypothesis class H = {h : X → {±1}}. Examples of inputs (x1, y1), ...,
(xn, yn) ∈ X × {±1}.
For each time step t

1 observe one instance xt from the examples

2 predict the label ŷt with h ∈ H

3 receive the true label yt
4 compute the loss(ŷt , yt)

5 update H with some metrics

6 continue till t = n
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Online Learning

Definition (Goal of Online Learning)

We want to minimize the regret, the number of mistakes compared to the
best hypothesis in H:

R(n) =
n∑

t=1

1[yt ̸= ŷt ]− min
h∗∈H

n∑
t=1

1[yt ̸= h∗]

Theorem (Boundedness of R(n))

R(n) has been proved to be bounded:

Ω(
√
dn) ≤ R(n) ≤ O(

√
dn log n)

where d is the Littlestone Dimension
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Online Learnable ⇔ Finite Littlestone dimension

1. Boundedness of R(n) ⇔ hypothesis class H is online learnable with
finite littlestone dimension

2. Next step: littlestone dimension and mistake bound
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Littlestone Dimension

Definition (Mistake bound)

Number of possible mistakes that an online learning algorithm A made
during prediction. Let’s denote it by MA(H)

Theorem (Upper-Boundedness)

Consistent algorithm returns a |H| − 1 upper bound. Halving algorithm
returns a log2 |H| upper bound.

Definition (Lower-Boundedness ⇒ LittleStone Dimension)

The best achievable lower bound for MA(H), which is denoted by
LDim(H). For any online learning algorithm A, we have:

MA(H) ≥ LDim(H)
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Littlestone Dimension
Intuition:
1) We view online-learning as the game between the gamer and the
environment. The environment wants the gamer to make mistakes. Under
the settings of a 0-1 binary classification scenario, if a learner picks the
prediction yt , the environment will pick 1− yt
2) How to make maximum mistakes? Answer: Build a complete binary
tree where each sample corresponds to one node in the tree. If a
prediction given by gamer is 0, then environment would give 1 (right
prediction) and travel to left child
3) Example:

Figure: Complete binary tree where LDim = 2 (tree depth T)
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Standard Optimal Algorithm (SOA)

Algorithm (Standard Optimal Algorithm)

The best achievable mistake lower bound is achievable by implementing
Standard Optimal Algorithm (SOA), where we have:

MA(H) = LDim(H)

For each time step t

1 observe one instance xt from the examples

2 choose b ∈ {±1}, let H ′ = {h ∈ H : h(xt) = b}. We predict
h′ = argmaxb LDim(H ′)

3 receive the true label yt
4 compute the loss

5 Update H
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Standard Optimal Algorithm (SOA)

Definition (Realizable to non-realizable samples)

So far samples could be shattered by H ⇔ Samples are realizable.

1 If the incoming sample xt+1, yt+1 maintains the realizability, update H
by SOA.

2 Else:
h′(xt+1) = yt+1

while keeping other h′(·) unchanged.
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Milestone 1: Online Learner

Current:

Hypothesis with finite Littlestone dimension is online-learnable

Optimal online-learnable learning algorithm w.r.t. mistake bound
model is given by SOA

Next step:

SOA is used in stable learner as an algorithm

introduce stability
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Stability

Definition (Global Stability)

Let n be the sample size and η a stability parameter. Algorithm A is (n, η)
globally stable w.r.t D if there exists a hypothesis h s.t.

P
S∼Dn

[A(S) = h] ≥ η
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Stability ⇒ Generalization

Proposition (Global Stable Learner ⇒ generalize well)

Suppose A is realizable learner (loss(A(S)) = 0 for any realizable S). D is
a realizable distribution s.t. A is (n, η) stable and P

S∼Dn
[A(S) = h] ≥ η for

a hypothesis h, then

lossD(h) ≤
ln(1/η)

n
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Milestone 2: Online + Stable Learner

A hypothesis class H has a finite LDim d,

A = SOA , h ∈ H, P
S∼Dn

[SOA(S) = h] ≥ η, lossD(h) ≤ ln(1/η)
n

Intuition:

Proposition (Finite LDim)

Suppose the hypothesis class has a finite LDim d. If we could find specific
finite η and n, using SOA, properties of stability and generalization of a
stable learner are ensured.

The direction Finite Littlestone ⇒ Global stable learner ✓
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Finite Littlestone ⇒ Global stable learner

Theorem

Let H be a hypothesis class with Littlestone dimension d ≤ 1, let α > 0,
set number of samples

n = 22
d+2+14d+1⌈2

d+2

α
⌉

D is a realizable distribution and S ∼ Dn, then there exists a randomized
algorithm G: X × {±1} → {±1}X and a hypothesis f ∈ H: with the
following properties:

P[G (S) = f ] ≥ 1

(d + 1)22d+1
and lossD(f ) ≤ α
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Distribution Dk

Q: How are samples randomly chosen from original distribution D ?
A: The sampling depends on tournament samples
Aim: To make sure that each round the algorithm will make a mistake

Algorithm (Choosing Dk)

Dk = Dk(k , n) are defined by induction on k:
D0: outputs the empty sample ∅ with prob. 1 For each k:

1 Draw S0,S1 ∼ Dk−1 and T0,T1 ∼ Dn

2 f0 = SOA(S0 ◦ T0), f1 = SOA(S1 ◦ T1), ◦ means append

3 If f0 = f1, GOTO 1

4 Pick x ∈ {x : f0(x) ̸= f1(x)} and sample y ∼ {±1} uniformly

5 If f0(x) ̸= y, output S0 ◦ T0 ◦ (x, y), else S1 ◦ T1 ◦ (x, y)

k mistakes were made. SOA(S ◦ T ) is consistent with T (realizable).
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Monte-Carlo Variants of Distribution Dk

Problem : From 1) to 3), it might generate infinite number of samples
(unbounded) from D.

Solution : In order to circumvent being stuck in the sampling period, if
more than N examples are sampled from D, break immediately and output
Fail.
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Milestone 3: Prove Finite littlestone dimension ⇒ Stability

Finite littlestone dimension ⇒ Stable learner

prove stability

prove stability ⇒ generalization

prove number of generated samples is finite

Optimal f ∗ in hypothesis that looses the lower bound
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Existence of Frequent Hypothesis

Lemma (global stability)

There exists k ≤ LDim d and an hypothesis f : X → {±1} s.t.

P
S∼Dk ,T∼Dn

[SOA(S ◦ T ) = f ] ≥ η = 2−2d+2
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Proof: Existence of Frequent Hypothesis (Skip)

Sketch Proof (by contradiction):

1) Suppose P
S∼Dd ,T∼Dn

[SOA(S ◦ T ) = f ] < 2−2d+2

2) ρk : prob. that all k tournament examples are consistent with c where c
is the target concept.
3) two cases: S0,S1 ∈ Dk−1 are all consistent with c, therefore, each ρk−1

leads to ρ2k−1. And f0 ̸= f1. We have that P[f0 = f1] < 2−2d+2
< 8 · 2−2d+2

according to 1).
4) conditioned on uniformly distributed y with prob 1/2. put it all together
it will produce:

ρk ≥ 1

2
(ρ2k−1 − 8 · 2−2d+2

)
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Proof: Existence of Frequent Hypothesis (Skip)

(Continue)

5) ρ0 = 1, we can prove by induction that for k ≤ d , ρk ≥ 4 · 2−2k+1

Suppose it stands for k-1, then for k

ρk ≥
ρ2k−1 − 8 · 2−2d+2

2

≥ (4 · 2−2k )2 − 8 · 2−2d+2

2

= 8 · 2−2k+1 − 4 · 2−2d+2

≥ 4 · 2−2k+1
since k ≤ d

6) so ρk ≥ 2−2d+2
. SOA does not make more than d mistakes, so if all

tournament examples are consistent with c then SOA(S ◦ T ) = f , then

P
S∼Dd ,T∼Dn

[SOA(S ◦ T ) = f ] ≥ 2−2d+2
, contradicts 1)
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Proof

Finite littlestone dimension ⇒ Stable learner

prove stability ✓

prove stability ⇒ generalization

prove number of generated samples is finite

Optimal f ∗ in hypothesis that looses the lower bound
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Generalization

Lemma (Generalization)

Let k be such that Dk is defined. Then every f s.t.

P
S∼Dk ,T∼Dn

[SOA(S ◦ T ) = f ] ≥ 2−2d+2

satisfies

lossD(f ) ≤
2d+2

n
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Proof: Generalization (Skip)

Sketch Proof (similar to generalization proof before):

1) A be the event that SOA(S ◦ T ) = f , by definition P[A] ≥ 2−2d+2

2) B be the event that f is consistent with T, by definition
P[B] = (1− α)n again if we let α = lossD(f )
3) We’ve mentioned when SOA(S ◦ T ) = f ,then f must be consistent
with T. So that A ⊆ B
4) solve the inequality: 2−2d+2 ≤ (1− α)n ≤ e−αn leads to the
generalization bound.

Yucheng Sun, Jiaqing Xie (ETH) Private Learner is Online Learner 30 / 53



Proof

Finite littlestone dimension ⇒ Stable learner

prove stability ✓

prove stability ⇒ generalization ✓

prove number of samples is finite

Optimal f ∗ in hypothesis that looses the lower bound
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Expected Sample Complexity

Lemma

Let k be s.t. Dk is well-defined. Mk denotes the number of examples of D
drawn in the process of generating S ∼ Dk . Then:

E[Mk ] ≤ 4k+1 · n

, where n is the number of inputs.

Proof skipped here.
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Algorithm G

Algorithm

1 Consider the distribution D̂k , where n = ⌈2d+2

α ⌉ (From generalization
bound)

2 Sampling upper bound is set to 22
d+2+14d+1 · n. Inverse of stability

bound times E[Mk ]

3 Draw k ∈ {0, 1, ..., d} uniformly at random

4 Output h = SOA(S ◦ T ), S ∼ D̂k ,T ∼ Dn
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Proof

Finite littlestone dimension ⇒ Stable learner

prove stability ✓

prove stability ⇒ generalization ✓

prove number of generated samples is finite ✓

Optimal f ∗ in hypothesis that looses the lower bound
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Put all things together

We leave : there exists a f such that :

P
S∼D̂k ,T∼Dn

[SOA(S ◦ T ) = f ] ≥ 2−2d+2

d + 1

and
lossD(f ) ≤ α

We already achieved the sample size n = 22
d+2+14d+1 · ⌈2d+2

α ⌉.
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Proof

Assume optimal k∗ and f = f ∗, we have lossD(f
∗) ≤ lossD(f ) = α

Markov’s inequality:

P[Mk∗ > 22
d+2+14d+1 · ⌈2

d+2

α
⌉] ≤ 2−2d+2−1

P
S∼D̂k∗ ,T∼Dn

[SOA(S ◦ T ) = f ∗] = P
S∼Dk∗ ,T∼Dn

[SOA(S ◦ T ) =

f ∗ and Mk∗ < 22
d+2+14d+1 · ⌈2d+2

α ⌉] ≥ 2−2d−1 ≥ 2−2d+2−1

k = k∗ with probability 1
d+1 . Finish the proof.
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Proof

Finite littlestone dimension ⇒ Stable learner ✓

prove stability ✓

prove stability ⇒ generalization ✓

prove number of generated samples is finite ✓

Optimal f ∗ in hypothesis that looses the lower bound ✓
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Differential Privacy (General definition)

Definition

A randomized algorithm M : X n → Rk is said to be (ϵ, δ)-differentially
private if for all measurable S ⊆ Rk and all neighboring datasets x , y ∈ X :

Pr(M(x) ∈ S) ≤ eϵ Pr(M(y) ∈ S) + δ ,

where two datasets x , y are said to be neighboring if they only differ in one
entry.

I.e., an attacker cannot confidently infer whether a sample is in the input
dataset given the output of the algorithm.
When (ϵ, δ) decrease, the level of privacy increases.
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Two nice property of differential privacy

Theorem (Post-processing)

Let M : X n → Rk be an (ϵ, δ)-differentially private algorithm. Let
f : Rk → Rk be an arbitrary mapping. Then f ◦M is also
(ϵ, δ)-differentially private.

Theorem (Composition theorem)

Let M1 : X n → Rk be an (ϵ1, δ1)-differentially private algorithm and
M2 : X n → Rk be an (ϵ2, δ2)-differentially private-algorithm, then their
combination M1,2(x) = (M1(x),M2(x)) is (ϵ1 + ϵ2, δ1 + δ2)-differentially
private.
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Global stable learner ⇒Private Learning

To prove this statement, the paper constructs a private learner

Constructed using existing algorithms as black boxes

Building block 1: Generic Private Learner [Kas+08]
Building block 2: Stable Histograms [Kor+09; BNS19]
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Generic Private Learner

Theorem

Let H ⊆ {±1}X be a collection of hypothesis. For

n = O

(
log(|H|) + log(1/β)

αϵ

)
there exists an (ϵ, δ)−differentially private algorithm
GenericLearner : (X × {±1})n → H such that the following holds.
Let D be a distribution over (X × {±1}) such that there exists h∗ ∈ H
with lossD(h

∗) ≤ α. Then on input S ∼ Dn, algorithm GenericLearner
outputs, with probability at least 1− β, a hypothesis ĥ ∈ H such that
lossD(ĥ) ≤ 2α.
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Stable Histogram

Theorem (Stable Histogram)

Let X be any data domain. For

n ≥ O

(
log(1/ηβδ)

ηϵ

)
there exists an (ϵ, δ)-differentially private algorithm Hist which, with
probability at least 1− β, on input S = (x1, ..., xn) outputs a list L ⊂ X
and a sequence of estimates α ∈ [0, 1]|L| such that

Every x with freqS(x) ≥ η appears in L and

For every x ∈ L, the estimate ax satisfies |ax − freqS(x)| ≤ η
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Construction of a private learner

Algorithm

Require: Stable learner G, Stable Histogram algorithm Hist, generic
learner GenericLearner

Step 1. Let S1, ...,Sk each consist of m i.i.d. samples from D. Run G on
each batch of samples producing h1 = G (S1), ..., hk = G (Sk).

Step 2. Run the Stable Histogram algorithm Hist on input
H = (h1, ..., hk) using privacy parameters (ϵ/2, δ) and accuracy parameters
(η/8, β/3), producing a list L of frequent hypotheses.

Step 3. Let S ′ consist of n′ i.i.d. samples from D. Run GenericLearner(S ′)
using the collection of hypotheses L with privacy parameter (ϵ/2, 0) and
accuracy parameters (α/2, β/3) to output a hypothesis ĥ.
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Proof of correctness

To prove the correctness of the algorithm, one need to prove:

1 The algorithm is (ϵ, δ) private.

2 The algorithm is accurate.
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Proof of correctness (privacy part)

Proof.

We know Step 2 is (ϵ/2, δ)−differentially private, Step 3 is
(ϵ/2, 0)−differentially private.
By using composition theorem, we can immediately prove the algorithm is
(ϵ/2 + ϵ/2, δ)−differentially private.
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Proof of correctness (accuracy part)

Proof.

Assume the optimal classifier is h∗ and lossD(h
∗) = α/2.

1. Using standard generalization argument, one can show that w.p. at
least 1− β/3,

|freqH(h)− Pr
S∼Dm

[G (s) = h]| ≤ η

8

for every h ∈ {±1}X as long as k ≥ O(log(1/β)/η).
2. Conditioning on 1. By the correctness of the Stable Histogram
algorithm, we know w.p. 1− β/3 HIST produces a list L containing h∗

with the estimate ah∗ ≥ η − η/8− η/8 = 3
4η.

3. By the correctness of private generic learner, GenericLearner can
successfully find ĥ ∈ L and lossD(ĥ) ≤ α.

By using the union bound, we know the algorithm successfully find a
correct solution w.p. 1− β.
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Global stable learner ⇒Private Learning (formal
statement)

Theorem

Let H be a concept class over data domain X . Let
G : (X × {±1})m → {±1}X be a randomized algorithm such that, for D a
realizable distribution and S ∼ Dm, there exists a hypothesis h such that
Pr [G (S) = h] ≥ η and lossD(h) ≤ α/2. Then for some

n = O

(
m log(1/ηβδ)

nϵ
+

log(1/ηβ)

αϵ

)
there exists an (ϵ, δ)-differentially private algorithm
M : (X × {±1})m → {±1}X which, given n i.i.d. samples from D,
produces a hypothesis hˆ such that lossD(ĥ) ≤ α with probability at least
1− β.

Yucheng Sun, Jiaqing Xie (ETH) Private Learner is Online Learner 48 / 53



Table of Contents

1 Background

2 Online Learning ⇒ Global stable learner

3 Global stable learner ⇒Private Learning

4 Follow-up questions

Yucheng Sun, Jiaqing Xie (ETH) Private Learner is Online Learner 49 / 53



Sharper Quantitative Bounds

The upper bound on the differentially private sample complexity of a class
H has a double exponential dependence on its Littlestone dimension
Ldim(H)

[Alo+19] proved a lower bound which depends on log(Ldim(H))

Can every class H be privately learned with sample complexity
poly(VC (H), log(Ldim(H)))?
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Study of global stability

This paper introduced global stability as a definition of stability, and
showed its connection to differentially privacy

Its natural to wonder whether global stability has connection with other
definitions of stability

For example, [CMY23] viewed stability as a variant of replicability, and
created a variant called list replicability, which has an algorithmic
equivalence to global stability
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Extension to multi-class classification and regression

It is natural to ask whether this equivalence holds for multi-class
classification and regression problem

[JKT20] showed Private Learnable ⇒ Online Learnable. But it is hard to
show Online Learnable ⇒ Private Learnable
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Supplementary 1

Proposition (Stable Learner ⇒ generalize well)

Suppose A is realizable learner (loss(A(S)) = 0 for any realizable S). D is
a realizable distribution s.t. A is (n, η) stable and P

S∼Dn
[A(S) = h] ≥ η for

a hypothesis h, then

lossD(h) ≤
ln(1/η)

n

Sketch Proof:
1) let α = lossD(h). Since A is realizable, then A(S) = h means that ∃ h
s.t. h is realizable
2) P[h is realizable] = (1− α)n. The probability that h correctly classifies
the sample is equal to 1− α. All n independent samples so (1− α)n

3) P
S∼Dn

[A(S) = h] ⇒ P[h is realizable], so η ≤ (1− α)n. With the

inequality 1− α ≤ e−α ⇒ η ≤ e−nα ⇒ α ≤ 1
n ln(

1
η )
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