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Training LSTM on texts

Training CNN on images

Training GNN on graphs

Individual Modelling



Message Passing Neural Networks

1. Compute messages
M12  = Message(X1, X2, e12)

M13  = Message(X1, X3, e13)

M15  = Message(X1, X5, e15)

Example: M12  = W * X1 +  X2 * MLP(e12) 

2. Aggregate messages
Mean aggregation: 

M1 new = 1/3 * ( M12 + M13 + M15 )

3. Update node feature (for node 1)
Update by MLP: 

X1 new = W * X1 + U * M1 new + b, where W, U and b are learnable parameters
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Q: Want to update node 1 in one-hop

e12

e13

e15



Language Transformer Model (Vaswani 2017 et al.) Vision Transformer Model (Dosovitskiy 2021 et al.)

Unified Encoding Scheme: Transformer

Homogeneous: Transformer Encoder

Heterogeneous:  Positional Encoding



Path Graph

Grid (Lattice) Graph

Special Graphs

Example: 

I am an ETH student

I am an ETH student

Example: 

split image into 9 patches

patch 1

patch 9



Path Graph                                                   1-dim coordinate system:

0        1        2        3

Grid (Lattice) Graph                                      2-dim coordinate system :

Positional Encoding for Special Graphs 

0, 0       1, 0       2, 0        3, 0

0, 1       1, 1       2, 1        3, 1
   
0, 2       1, 2       2, 2        3, 2
  
0, 3       1, 3       2, 3        3, 3 

Origin

Origin

x

x

y

Absolute PE: Sinusoidal 

Relative PE: 

PEij= PEi – PEj



It is hard to directly observe positional encodings for general graphs!

Positional Encoding for General Graphs 

• There’s no natural Coordinate system for graphs

• Canonical Ordering is limited to planar graphs 

O(n log n)

• Some solutions: DFS / BFS / Random Walk
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Design Space for Graph Transformers

Family of Graph Transformers (Luis et al. 2024)

Positional Encoding Message Passing / Global Attention



Positional Encoding (PE)

• Shortest Path Distance (SPD) 
• Example: for node 1, SPD PE is [0,  0.1, 0.2, 0.5, 0.3, 0.3]

• Laplacian Decomposition on Graph Laplacians

• Random Walk: 
• Example: Walk length = 5, starting from node 1:  (1, 3, 4, 2, 6) => generate a RW corpus

• Remember Word2Vec

• Node2Vec: Biased Random Walk
• Explore more: (1, 3, 4, 2, 6)

• Return more:  (1, 3, 1, 2, 1)
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Global Attention  vs. MPNN

: Propagation in MPNN

Complexity: O(|V|) for sparse 

graphs where |V| >> |E|

Capture neighborhood nodes

: Propagation in MPNN

Complexity: O(|V|2)

Capture all nodes in graph

: Additional propagation in graph 

transformer



Inductive Bias

Model Sets

RNN

GNN

CNN

• Prior Information / Hypothesis / Inherence

• Examples:

• Recurrent NN: Sequential Data (Shift invariant)

• Graph NN: Structured Data (Permutation invariant)

• Convolution NN: Grid Data (Translation invariant)

Inductive Bias

Time Dependence

Neighbor Aggregation

Local Connectivity



Inductive Bias (CNN vs. Transformer)

• CNNs serves locality while self-attention layers are global

Neighbor information is

aggregated by the kernel

in CNN.

Positions of pixels are unknown for

self-attention blocks.

Locality:  Locality: 



Graph Inductive Bias (MPNN vs. Graph Transformer)

• MPNNs serves locality while self-attention layers in GT are global

Neighbor nodes’ information

is aggregated by MPNN

Locality: 

Potential unlinked nodes are supposed

to be linked under the settings of graph

transformer.

Locality: 



Pros and cons of MPNN and GT

Pros

• MPNN focus on local dependencies. It’s more effective where local graph topology takes matter.

• GT focus on global dependencies. It works well on graph level tasks.  

Cons

• MPNN suffers from over-smoothing where all node representations are the same.

• Graph transformers suffer from the missing of graph inductive bias (local topology). 



Combine MPNN and GT: GraphGPS

GraphGPS Layer (Rampášek et al. 2022) 

Good  : Insert MPNN to GT will 

bring graph inductive bias in GT.

Bad  : New model inherits 

oversmoothing from MPNN

Without MPNN in GT? 

Yes, if PE + GT is as good as MPNN.



Overview: GRIT

Overall architecture of GRIT 

Transformer with Positional Encoding

Internal architecture of GRIT



Relative Random Walk Probabilities (RRWP)

• RRWP is a positional encoding method for graph

• Define 𝑨: Adjacency Matrix

• Define 𝑫: Diagonal Degree Matrix

• Define 𝑴 = 𝑫−𝟏𝑨

Example:
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𝑨

𝑫

𝑫−𝟏

𝑴



Relative Random Walk Probabilities (RRWP)

• Define RRWP: 𝑷 = [𝑰,𝑴,𝑴𝟐, … ,𝑴𝑲]

Example:
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𝑴𝟑



Relative Random Walk Probabilities (RRWP)

• Define RRWP: 𝑷 = [𝑰,𝑴,𝑴𝟐, … ,𝑴𝑲]

Example:
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𝑰

𝑴

𝑴𝟐

𝑴𝟑

Q: What is 𝑷2,3
if K = 3? 

𝑷2,3
= [0, 0, 0.278, 0]



RRWP + MLP is expressive

Expressive power:

Using RRWP could approximate other PE(s) with MLP



Test graph isomorphism: WL-test

2: {1, {1, 1}}
3: {1, {1, 1, 1}}

4: {2, {2, 3}}
5: {2, {3, 3}}
6: {3, {2, 2, 3}}



Test graph isomorphism: WL-test

7: {4, {4, 6}}
8: {5, {6, 6}}
9: {6, {4, 5, 6}}



Expressive power of GNN

GIN is as powerful as WL test

How Powerful are Graph Neural Networks?, Xu et al., 2018



GD-WL: General WL-test with PE

• Intuition: coloring with SPD

• SPD fails with GD-WL

• Reason: for each node, k-hop neighbor array is fixed:

(3, 6, 6 ,3, 1)

=> {{1, 1, 1}, {2, 2, 2, 2, 2, 2}, {3 ,3 ,3 ,3 ,3 ,3}, {4, 4, 4}, {5}}

Rethinking the expressive power of gnns via graph biconnectivity, Zhang et al., ICLR 2023



RRWP is more expressive than SPD 

RRWP succeeds with GD-WL



Recall: GRIT

Overall architecture of GRIT 

Transformer with Positional Encoding

Internal architecture of GRIT





Flexible Attention

Initialization



Flexible Attention

Initialization

Attention Computation：

Recall MPNN:                                                

Is it a MPNN? No, we need to compute attention for each pair of nodes.



Injecting Degree Information

• Degree information injection:

• Why we need degree scaler?
➢ Attention is innately invariant to node degrees (mean-aggr in GNN)

Therefore, it reduces expressive power

➢ Adding degree information will introduce inductive bias 



• Degree information injection:

• Why we need degree scaler?
➢ Attention is innately invariant to node degrees (mean-aggr in GNN)

Therefore, it reduces expressive power

➢ Adding degree information will introduce inductive bias 

• BatchNorm is favored over LayerNorm
➢ LayerNorm would cancel out the effect brought by degree scaler.

Injecting Degree Information



Experiment: Baselines

➢SOTA GT: GraphGPS

➢Other Graph Transformers: 
 SAN, Graphormer, K-Subgraph SAT, EGT, Graphormer-URPE, Graphormer-GD

➢SOTA GNN: 
 CIN, CRaW1, GIN-AK+

➢Other GNNs:
 GIN, GAT, GatedGCN, GatedGCN-LSPE, PNA, DGN, GSN



Experiment: Overview of Benchmarks

Task type:

➢ PATTERN, CLUSTER: node classification (inductive)

➢Others: graph classification / graph regression

Benchmark 1

Benchmark 2

Benchmark 3



Benchmark 1: Common Benchmarks for GT(s)

➢ ZINC: molecule dataset

➢ MNIST, CIFAR10: image classification datasets

➢ PATTEN, CLUSTER: synthetic datasets sampled from Stochastic Block Model



➢ GRIT has on average better or on par performance when it is compared with GraphGPS

➢ GRIT has overwhelming advantages when it is compared with GNNs 

Benchmark 1: Common Benchmarks for GT(s)



Benchmark 2: Long Range Graph Benchmark

➢ Peptides: Amino acid datasets

➢ Peptides-func: 10-task multi-label classification

➢ Peptides-struct: 11-task regression 

➢ Long range dataset => Transformer captures long range information => GTs are better



Benchmark 3: Large Dataset

➢ Large Scale Graph Datasets (over 3,000,000 graphs)

➢ GRIT has on par performance with GraphGPS

➢ GRIT has less parameters than GraphGPS

◼ PCQM4Mv2 (OGB)



Ablation Study : Architectural Design Choices



Opinion: Future works

Advantages:

➢ Fewer params compared to other GTs 

➢ Importance of positional encodings (GRIT)

Disadvantages:

➢Bottleneck 1: Complexity of attention: O(n^2)

➢Bottleneck 2: Upper bound on expressive power 



Conclusion

➢ Design choices for including graph inductive bias in GT (PE / MPNN)

➢ RRWP encodings are expressive

➢ RRWP initialization is more expressive than SPD under GD-WL tests

➢ GRIT is new SOTA graph transformer which excludes message passing 



Any Questions



Fig 10: Structure-aware GT (Chen et al. 2022) 

• Structure-Aware

Others: Graph Transformer w/ Both Attention



Others: Experimental Complexity



Others: Detailed dataset descriptions 



Others: Hyper-parameter settings



Benchmark 3: Large Dataset

➢ 250,000 molecule graphs

➢ Higher order GNNs are included in baselines

➢ Positional encoding enhanced GNNs are also included

◼ ZINC-full Dataset



Ablation Study 2: Parameter K of RRWP



Others: Hyper-parameter settings



GRIT attention is successful 

at matching both the sparsity 

pattern and attention 

magnitudes of the target (far 

left)

Others: Synthetic Experiments

Visualization of learned attention scores for the synthetic experiment 

on learning to attend to (k = 1, 2, 3)-hop neighbors



Others: Synthetic Experiments
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