
Parallele Programmierung FS25
Exercise Session 10

Jonas Wetzel

Plan für heute

• Organisation
• Nachbesprechung Assignment 9
• Theory
• Intro Assignment 10
• Exam questions
• Kahoot

Organisation

• Mein Name ist Jonas Wetzel
• Meine Website (Materialien und Inhalt der Übungen):

n.ethz.ch/~jwetzel
• Meine Email: jwetzel@ethz.ch
• Discord: @jonas.too

mailto:jwetzel@ethz.ch

Organisation

• Mein Name ist Jonas Wetzel
• Meine Website (Materialien und Inhalt der Übungen):

n.ethz.ch/~jwetzel
• Meine Email: jwetzel@ethz.ch
• Discord: @jonas.too
• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9

mailto:jwetzel@ethz.ch
https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9
• Falls ihr Feedback möchtet kommt bitte zu mir

https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

• Wo sind wir jetzt?

Semaphores
Barriers
Monitors
Conditional Locks

Plan für heute

• Organisation

• Nachbesprechung Assignment 9
• Theory
• Intro Assignment 10
• Exam questions
• Kahoot

Feedback: Assignment 9

8

Recap: Critical Section Properties

9

• Mutual exclusion: No more then one process executing in

the critical section

• Progress: When no process is in the critical section, any

process that requests entry must be permitted without

delay

• No starvation (bounded wait): If any process tries to

enter its critical section then that process must eventually

succeed.

P

p1: Non-critical section P

p2: while turn != 1

p3: Critical section

p4: turn = 2

Q

q1: Non-critical section Q

q2: while turn != 2

q3: Critical section

q4: turn = 1

turn = 1

P

p1: Non-critical section P

p2: while turn != 1

p3: Critical section

p4: turn = 2

Q

q1: Non-critical section Q

q2: while turn != 2

q3: Critical section

q4: turn = 1

• Mutual exclusion: E.g. State (p3,q3,_) is not

reachable

• Progress: E.g. There exists a path for P such that

state (P3, _ , _) is reachable from (P2,_,_). Typical

couterexamples: deadlocks and livelocks

• No starvation (bounded wait): Possible

starvation reveals itself as cycles in the state

diagram.

turn = 1

Feedback for Assignment 9

12

Feedback for Assignment 9

13

• One way to solve the livelock problem is to impose an

ordering when acquiring the lock on the shared

resource.

• Or one of the spouses can actually take the spoon after

certain number of retries

Feedback for Assignment 9

14

Optimistic vs Pessimistic concurrency control

Plan für heute

• Organisation
• Nachbesprechung Assignment 9

• Theory
• Recap last week

• Intro Assignment 10
• Exam questions
• Kahoot

Wieso ist das TAS lock so langsam?

Locks with atomics

• Now we can implement locks for n threads using a single

variable:

• Lock: while (!TAS(l)) {}

• Unlock: mem[l] = 0

17

Essential

Lets build a spinlock using RMW operations

In Java…

TAS Spinlock scales horribly, why?

Bus Contention

• TAS/CAS are read-modify-write operations:

• Processor assumes we modify the value even if we fail!

• Need to invalidate cache

• Threads serialize to read the value while spinning

21

Cache Coherency Protocol 

We have a sequential bottleneck!

Each call to getAndSet() invalidates cached copies! => Threads
need to access memory via Bus => Bus Contention!

“[...] the getAndSet() call forces other processors to discard their
own cached copies of the lock, so every spinning thread
encounters a cache miss almost every time, and must use the bus
to fetch the new, but unchanged value.” - The Art of Multiprocessor
Programming

Let’s visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory lock = 1

Slides by Gamal Hassan PProg FS24

Lets visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory
lock = 1

lock.getAndSet(
1)

lock = 1

Lets visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory

lock = 1

lock = 1

lock.getAndSet(
1)

lock = 1

Lets visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory

lock = 1

lock = 1

TATAS

• Idea: Use normal operation to read first, try TAS only if first read

returns 0

27

Lets try spinning on local cache

Lets visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory lock = 1

Lets visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory
lock = 1

lock.get()

lock = 1

Lets visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory

lock = 1

lock = 1

lock.get()

lock = 1

Lets visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory

lock = 1

lock = 1

lock = 1

Lets visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory

lock = 1

lock = 1

lock = 1

lock.get()

Lets visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory

lock = 1

lock = 0

lock = 1

lock.set(0)

lock = 0

Now the whole problem repeats

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory lock = 0

lock = 0

It only helped a little bit

What we learned

• (too) many threads fight for access to the same resource
• slows down progress globally and locally
• CAS/TAS: Processor assumes we modify the value even if we

fail!

Solution? Exponential Backoff
Idea: Each time TAS fails, wait longer until you re-try

• Backoff must be random!

Exponential Backoff

• Idea: Each time TAS fails, wait longer until you re-try

42

Essential

Nice!

Locks für n Threads

Filter Lock

Filter Lock

• Ist das Filter Lock fair (first come first served)?

Bakery Lock

Plan für heute

• Organisation
• Nachbesprechung Assignment 9

• Theory
• Intro Assignment 10
• Exam questions
• Kahoot

Semaphores
and Barriers

Lecture Recap: Semaphores

51

Used to restrict the number of threads that can access a specific resource.

• acquire() gets a permit, if no permit available block

• release() gives up permit, releases a blocking acquirer

Lecture Recap: Semaphores

52

Semaphore

N Threads have permit to a semaphore,

others will wait (blocked) until someone leaves the semaphore

53

2

Semaphore

Thread 1

Thread 2

Thread 3

54

1

Thread 1

Thread 2

Thread 3

acquire

CS

Semaphore

55

0

Thread 1

Thread 2

Thread 3

acquire

CS

acquire

CS

Semaphore

56

0

Thread 1

Thread 2

Thread 3

Semaphore

acquire

acquire

CS

acquire

CS

57

0

Thread 1

Thread 2

Thread 3

Semaphore

acquire

acquire

CS

release

acquire

CS

release

58

2

Thread 1

Thread 2

Thread 3

Semaphore

acquire

59

1

Thread 1

Thread 2

Thread 3

Semaphore

acquire

CS

Think of semaphores as bike rentals

Semaphores: Implementation

60

Semaphore: integer-valued abstract data type S with some initial value s≥0 and the

following atomic operations:

acquire(S) {
 wait until S > 0
 dec(S)
}

release(S) {
 inc(S)
}

Semaphores: Implementation

61

Semaphore: integer-valued abstract data type S with some initial value s≥0 and the

following atomic operations:

acquire(S) {
 wait until S > 0
 dec(S)
}

release(S) {
 inc(S)
}

What is the difference between a Lock and a Semaphore?

Building a lock with Semaphores

Semaphores aren’t Locks!

• We can build Locks with Semaphores
• Some key differences:

• More than one Thread can be in critical section!
• How many depends on the number of permits
• Threads can release() a Semaphore without accquiring before!
• The is no notion of “holding” a Semaphore as we have with ”holding”

Locks

Semaphores: Implementation

64

Semaphore: integer-valued abstract data type S with some initial value s≥0 and the

following atomic operations:

acquire(S) {
 wait until S > 0
 dec(S)
}

release(S) {
 inc(S)
}

When would you use a semaphore?

Semaphores

• Locks provide means to enforce atomicity via mutual exclusion
• They lack the means for threads to communicate about changes
• We need something stronger to coordinate threads (e.g. to

implement rendezvous)

Semaphores: Usage example

66

Semaphores: Usage example

67

S = new Semaphore(n) - create a new semaphore with n permits

Semaphores

Rendezvous with Semaphores

• Two processes P and Q execute code
• Rendezvous: locations in code, where P and Q wait for the other to

arrive. Synchronize P and Q.

First attempt, whats wrong?

Deadlock :(

We are never able to release! Both P and Q wait endlessly for each
other 

Attempt two, better?

Yes, that works!

Yes, that works!

Many context
switches

Lets do better!

Order does no longer matter

How about more than two threads? Barriers!

How about more than two threads? Barriers!

First attempt

Wrong

How about this?

How about this?

Works, but we want it to be reusable!

Reusable Barrier

Reusable Barrier

Scheduling Scenario

Reusable Barrier 2nd try

Doesn’t quite work yet

Solution: Two-Phase Barrier

Barriers code examples

• See code

Teaching Awards

• Ich wäre dankbar, wenn ihr für mich abstimmen könntet!

Monitors and Lock Conditions

Lecture Recap: Monitors

93

Monitors provide two kinds of thread synchronization: mutual exclusion and

cooperation using a lock

• higher level mechanism than

semaphores and more powerful

• instance of a class that can be used

safely by several threads

• all methods of a monitor are executed

with mutual exclusion

Lecture Recap: Monitors

94

Monitors provide two kinds of thread synchronization: mutual exclusion and

cooperation using a lock

When thread is sent to wait we release the lock !

Can a monitor induce a deadlock?

• the possibility to make a thread

waiting for a condition

• signal one or more threads that

a condition has been met

Monitors in Java

95

Uses intrinsic lock (synchronized) of an object

wait() – the current thread waits until it is signaled

notify() – wakes up one waiting thread

notifyAll() – wakes up all waiting threads

Monitors in Java

96

Uses intrinsic lock (synchronized) of an object

wait() – the current thread waits until it is signaled

notify() – wakes up one waiting thread

notifyAll() – wakes up all waiting threads

When do you use notify, when notifyAll?

Monitors in Java: Signal & Continue

97

• signalling process continues running

• signalling process moves signalled

process to entry queue

More theory:

• Signal & Continue (SC) : The process

who signal keep the mutual exclusion and

the signaled will be awaken but need to

acquire the mutual exclusion before

going. (Java’s option)

• Signal & Wait (SW) : The signaler is

blocked and must wait for mutual

exclusion to continue and the signaled

thread is directly awaken and can start

continue its operations.

• Signal & Urgent Wait (SU) : Like SW but

the signaler thread has the guarantee

than it would go just after the signaled

thread

• Signal & Exit (SX) : The signaler exits

from the method directly after the signal

and the signaled thread can start directly.

Monitors in Java: Signal & Continue

98

• signalling process continues running

• signalling process moves signalled

process to entry queue

More abstractly there are 4 options:

• Signal & Continue (SC) : The process

who signal keep the mutual exclusion and

the signaled will be awaken but need to

acquire the mutual exclusion before

going. (Java’s option)

• Signal & Wait (SW) : The signaler is

blocked and must wait for mutual

exclusion to continue and the signaled

thread is directly awaken and can start

continue its operations.

• Signal & Urgent Wait (SU) : Like SW but

the signaler thread has the guarantee

than it would go just after the signaled

thread

• Signal & Exit (SX) : The signaler exits

from the method directly after the signal

and the signaled thread can start directly.

Monitors in Java: Example P/C Queue

99

A simple implementation, correct?

Monitors in Java: Example P/C Queue

101

1. Queue is full

2. Process Q enters enqueue(), sees isFull(),
and goes to the waiting list.

3. Process P enters dequeue()

4. In this moment process R wants to enter

enqueue() and blocks

5. P signals Q and thus moves it into the ready

queue, P then exits dequeue()

6. R enters the monitor before Q and sees
!isFull(), fills the queue, and exits the monitor

7. Q resumes execution assuming isFull() is

false

=> Inconsistency!

synchronized void enqueue(long x) {
if (isFull()){
 try {
 wait();
 }
 catch (InterruptedException e) {}
 doEnqueue(x);
 notifyAll();
}

A simple implementation, correct?

Whats the problem here?

• Producers and Consumers are in the same “wait” queue
• We must use notifyAll() because we can not target only producer

(or consumer)

Lets try Locks

The Lock interface:
• lock(): Acquires the lock, blocks until it is acquired
• tryLock(): Acquire lock only if its lock is free when function is called
• unlock(): Release the lock

How do we wait/notify?

Use Conditions!

105

Can be used to implement monitors!

Java Locks provide conditions that can be instantiated Condition

 notFull = lock.newCondition();

Java conditions offer

 .await() – the current thread waits until condition is

signaled

 .signal() – wakes up one thread waiting on this condition

 .signalAll() – wakes up all threads waiting on this condition

What is the difference to a Monitor?

Lock Conditions

106

AwaitCondition 1

Condition 2

Condition 3

Lock Conditions in Comparison to Monitor

107

AwaitCondition 1

Condition 2

Condition 3

Lock Conditions: Example P/C Queue

108

Lock Conditions: Example P/C Queue

109

Why do we need the lock?

110

What is still not perfect?

notFull and notEmpty signal will be sent in any case, even when no
threads are waiting.

• This is expensive!

A simple solution: Sleeping Barber

Sleeping barber requires additional counters for checking if processes are
waiting:
𝑚 ≤ 0 ⇔ buffer full & -𝑚 producers (clients) are waiting
𝑛 ≤ 0 ⇔ buffer empty & -𝑛 consumers (barbers) are waiting

P/C, Sleeping Barber Variant

P/C, Sleeping Barber Variant

Guidelines to using condition waits

• Always have a condition predicate
• Always test the condition predicate:

• before calling wait
• after returning from wait
• Always call wait in a loop

• Ensure state is protected by lock associated with condition
• What could go wrong if you don’t? (e.g. in sleeping barber variant)

Plan für heute

• Organisation
• Nachbesprechung Assignment 9
• Theory

• Intro Assignment 10
• Kahoot
• Exam questions

Assignment 10

116

Task 1 - Dining Philosophers

117

Originally proposed by E. W. Dijkstra

Imagine five philosophers who spend their lives

thinking and eating.

They sit around a circular table with five chairs with a

big plate of spaghetti.

However, there are only five chopsticks available.

Task 1 - Dining Philosophers

118

Each philosopher thinks and when he gets hungry

picks up the two chopsticks closest to him.

• If a philosopher can pick up BOTH chopsticks, he

eats for a while.

• After a philosopher finishes eating, he puts down

the chopsticks and starts to think again.

Find a solution that…

119

• Makes deadlocks impossible

• Has no starvation

• More than one parallel eating philosopher is

possible

Task 2 – Monitors, Conditions and Bridges

120

Only either 3 cars or one truck may be on the bridge at each moment.

Implement Classes BridgeMonitor and BridgeCondition

How to Test my Implementation?

Implement method invariant() to check if the state is valid: at the end of a

method there are never too many cars or trucks on the bridge

Task 3 – Semaphores and Databases

121

Use semaphores to implement login and logout

database functionality that supports up to 10

concurrent users

Use barrier to implement 2-phase backup

functionality.

Task 3 – Semaphores and Databases

122

Implement Classes MySemaphore and MyBarrier

Use monitors for both to avoid busy loop

• Put processes to sleep, when there is no entry into semaphore

• Wake up a waiting process when releasing a semaphore

acquire(S) {
 wait until S > 0
 dec(S)
}

release(S) {
 inc(S)
}

Try to understand the existing DatabaseJava

implementation before implementing your own

semaphore and barrier.

Plan für heute

• Organisation
• Nachbesprechung Assignment 9
• Theory
• Intro Assignment 10

• Kahoot
• Exam questions

Kahoot!

Plan für heute

• Organisation
• Nachbesprechung Assignment 9
• Theory
• Intro Assignment 10
• Kahoot
• Exam questions

Yes

True

Feedback

• Falls ihr Feedback möchtet sagt mir bitte Bescheid!
• Schreibt mir eine Mail oder auf Discord

Teaching Awards

• Ich wäre dankbar, wenn ihr für mich abstimmen könntet!

Danke

• Bis nächste Woche!

	Default Section
	Slide 1: Parallele Programmierung FS25
	Slide 2: Plan für heute
	Slide 3: Organisation
	Slide 4: Organisation
	Slide 5: Organisation
	Slide 6: Organisation

	nachbesprechung ex9
	Slide 7: Plan für heute
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

	recap
	Slide 15: Plan für heute
	Slide 16: Wieso ist das TAS lock so langsam?
	Slide 17
	Slide 18: Lets build a spinlock using RMW operations
	Slide 19: In Java…
	Slide 20: TAS Spinlock scales horribly, why?
	Slide 21
	Slide 22: Cache Coherency Protocol 
	Slide 23: Let’s visualize this
	Slide 24: Lets visualize this
	Slide 25: Lets visualize this
	Slide 26: Lets visualize this
	Slide 27
	Slide 28: Lets try spinning on local cache
	Slide 29: Lets visualize this
	Slide 30: Lets visualize this
	Slide 31: Lets visualize this
	Slide 32: Lets visualize this
	Slide 33: Lets visualize this
	Slide 34: Lets visualize this
	Slide 35: Now the whole problem repeats
	Slide 36
	Slide 37
	Slide 38
	Slide 39: It only helped a little bit
	Slide 40
	Slide 41: What we learned
	Slide 42
	Slide 43
	Slide 44: Nice!
	Slide 45: Locks für n Threads
	Slide 46: Filter Lock
	Slide 47: Filter Lock
	Slide 48: Bakery Lock

	semaphores (new)
	Slide 49: Plan für heute
	Slide 50: Semaphores
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: Building a lock with Semaphores
	Slide 63: Semaphores aren’t Locks!
	Slide 64
	Slide 65: Semaphores
	Slide 66
	Slide 67
	Slide 68: Semaphores
	Slide 69: Rendezvous with Semaphores
	Slide 70: First attempt, whats wrong?
	Slide 71: Deadlock :(
	Slide 72: Attempt two, better?
	Slide 73: Yes, that works!
	Slide 74: Yes, that works!
	Slide 75: Lets do better!
	Slide 76: Order does no longer matter
	Slide 77: How about more than two threads? Barriers!
	Slide 78: How about more than two threads? Barriers!
	Slide 79
	Slide 80: First attempt
	Slide 81: Wrong
	Slide 82: How about this?
	Slide 83: How about this?
	Slide 84: Reusable Barrier
	Slide 85: Reusable Barrier
	Slide 86: Scheduling Scenario
	Slide 87: Reusable Barrier 2nd try
	Slide 88: Doesn’t quite work yet
	Slide 89: Solution: Two-Phase Barrier
	Slide 90: Barriers code examples
	Slide 91: Teaching Awards

	monitors
	Slide 92: Monitors and Lock Conditions
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100: A simple implementation, correct?
	Slide 101
	Slide 102: A simple implementation, correct?
	Slide 103: Whats the problem here?
	Slide 104: Lets try Locks
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111: What is still not perfect?
	Slide 112: P/C, Sleeping Barber Variant
	Slide 113: P/C, Sleeping Barber Variant
	Slide 114: Guidelines to using condition waits

	preview ex1-
	Slide 115: Plan für heute
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122

	kahoot
	Slide 123: Plan für heute
	Slide 124: Kahoot!

	exam questons
	Slide 125: Plan für heute
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137

	end
	Slide 138: Feedback
	Slide 139: Teaching Awards
	Slide 140: Danke

