
Parallele Programmierung FS25
Exercise Session 11

Jonas Wetzel

Plan für heute

• Organisation
• Nachbesprechung Assignment 10
• Theory
• Intro Assignment 11
• Exam questions
• Kahoot

Organisation

• Mein Name ist Jonas Wetzel
• Meine Website (Materialien und Inhalt der Übungen):

n.ethz.ch/~jwetzel
• Meine Email: jwetzel@ethz.ch
• Discord: @jonas.too

mailto:jwetzel@ethz.ch

Organisation

• Mein Name ist Jonas Wetzel
• Meine Website (Materialien und Inhalt der Übungen):

n.ethz.ch/~jwetzel
• Meine Email: jwetzel@ethz.ch
• Discord: @jonas.too
• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9

mailto:jwetzel@ethz.ch
https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9
• Falls ihr Feedback möchtet kommt bitte zu mir

https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

• Wo sind wir jetzt?

Reader Writer Lock
Lock granularity
Coarse-grained, Fine-grained, optimistic locking,
lazy locking
Concurrent LinkedList

To come: lock free synchronization, lock free data
structures, Linearizability, Consensus

Plan für heute

• Organisation

• Nachbesprechung Assignment 10
• Theory
• Intro Assignment 11
• Exam questions
• Kahoot

Task 1 - Dining Philosophers

8

Originally proposed by E. W. Dijkstra

Imagine five philosophers who spend their lives

thinking and eating.

They sit around a circular table with five chairs with a

big plate of spaghetti.

However, there are only five chopsticks available.

Task 1 - Dining Philosophers

9

Each philosopher thinks and when he gets hungry

picks up the two chopsticks closest to him.

• If a philosopher can pick up BOTH chopsticks, he

eats for a while.

• After a philosopher finishes eating, he puts down

the chopsticks and starts to think again.

Find a solution that…

10

• Makes deadlocks impossible

• Has no starvation

• More than one parallel eating philosopher is

possible

Assignment 10

11

Dining Philosophers:
One philosophers left side

is anothers right side!

But we take left first, then
right. So we hold one fork,
then wait – leads to cycle

in dependency graph.

Essential

Assignment 10

12

Dining Philosophers:

• To avoid cyclic dependencies: Lock-ordering!

• Number all forks, take the one with smaller number first.
• Same principle we saw with bank-account already!

Essential

Assignment 10

13

F0

F1

F2

F3

F4

Take smaller
first -

success

Take bigger
next -

success

Take smaller
first -

success

Take bigger
next -

success

Two can eat at the
same time.

Three is impossible (would
need six forks).

Essential

Assignment 10

14

F0

F1

F2

F3

F4 Now only one is
eating.

All others have to
wait -
Not great, not
terrible (no
deadlock!)

Assignment 10

15

Now only one is
eating.

All others have to
wait -
Not great, not
terrible (no
deadlock!)

Dining Philosophers:

• The only way to ensure that two can always
eat at the same time is to introduce additional
elements (communication, a waiter, etc.)

Task 2 – Monitors, Conditions and Bridges

16

Only either 3 cars or one truck may be on the bridge at each moment.

Implement Classes BridgeMonitor and BridgeCondition

How to Test my Implementation?

Implement method invariant() to check if the state is valid: at the end of a

method there are never too many cars or trucks on the bridge

Assignment 10 – Bridge with monitor

17

Is this really needed?

Why notifyAll()?
We only want to wake up one

car or maybe a truck (if
carCount ==0)

Essential

Assignment 10 – Bridge with condition

18

Make two separate
groups of “waiters”

Essential

Assignment 10 – Bridge with condition

19

Choose who to wake up
based on conditions.

Essential

Task 3 – Semaphores and Databases

20

Use semaphores to implement login and logout

database functionality that supports up to 10

concurrent users

Use barrier to implement 2-phase backup

functionality.

Task 3 – Semaphores and Databases

21

Implement Classes MySemaphore and MyBarrier

Use monitors for both to avoid busy loop

• Put processes to sleep, when there is no entry into semaphore

• Wake up a waiting process when releasing a semaphore

acquire(S) {
 wait until S > 0
 dec(S)
}

release(S) {
 inc(S)
}

Assignment 10 – Semaphore implementation

22

Why a while loop here and not an
if?

Does this have to be notifyAll()?

Note that we use “this” here –
could also have created new
object (see Bridge monitor)

Essential

Assignment 10 – Barrier implementation

23

Essential

Why do we distinguish
between draining and

non-draining?

Two-Phase Barrier

Plan für heute

• Organisation
• Nachbesprechung Assignment 10

• Theory & Intro Assignment 11
• Exam questions
• Kahoot

Assignment 11

26

• Implement SortedList with different lock strategies

• Exercise about effective use of locks
• Coarse grained vs. fine grained locks
• Tricks to avoid locking altogether for certain operations

• Measure the performance impact of your implementation choice

SortedListInterface

Add, Remove and Find unique elements in a sorted linked list.

add(c)

27

a b d e

Essential

SortedListInterface

Add, Remove and Find unique elements in a sorted linked list.

add(c)

find b and d

b.next=c

c.next=d
28

a b d e

c

Essential

SortedListInterface

Add, Remove and Find unique elements in a sorted linked list.

remove(c)

29

a b c d

Essential

SortedListInterface

Add, Remove and Find unique elements in a sorted linked list.

remove(c)

find b and c

b.next=c.next

30

a b c d

Essential

List and Node

public interface SortedListInterface<T extends Comparable<T>> {

 public boolean add (T item);

 public boolean remove (T item);

 public boolean contains (T item);

}

31

Make sure we can sort
the entries in the list!

Implement those methods in a
thread-safe way

Implementation tipps

32

• Keep an abstract Node to store list element:

 private class Node {
 public Node next ;

 public T item;

 }

• Code is simpler if we always have two sentinel nodes in the list:

 public SequentialList() {
 first = new Node(Integer.MIN_VALUE);

 first.next = new Node(Integer.MAX_VALUE);

 }

Coarse Grained Locking

33

public synchronized boolean add(T x) {...};

public synchronized boolean remove(T x) {...};

public synchronized boolean contains(T x) {...};

add(c)

a b d e

Essential

Coarse Grained Locking

34

public synchronized boolean add(T x) {...};

public synchronized boolean remove(T x) {...};

public synchronized boolean contains(T x) {...};

a b d e

Essential

Coarse Grained Locking

35

public synchronized boolean add(T x) {...};

public synchronized boolean remove(T x) {...};

public synchronized boolean contains(T x) {...};

Simple, but a bottleneck for many threads, why?

a b d e

c

Essential

Fine grained Locking

Often more intricate than visible at a first sight

• requires careful consideration of special cases

Idea: split object into pieces with separate locks

• no mutual exclusion for algorithms on disjoint pieces

36

Essential

Let's try this

remove(c)

37

a b c d

Essential

Let's try this

remove(c)

Locking the predecessor is ok?

38

a b c d

Essential

Let's try this

A: remove(c)

B: remove(b)

c not deleted!

39

a b c d

AB

Essential

Let's try this

A: remove(c)

B: remove(b)

• c not deleted!

When removing, lock the successor defensively. 40

a b c d

AB

B

A

Waiting

Essential

Let's try this

A: remove(c)

B: remove(b)

• c not deleted!

When removing, lock the successor defensively. 41

a b c d
B B

Essential

What's the problem?

When deleting, the next field of next is read, i.e. next also has to be
protected.

42

a b d e

BB

find a and b

a.next=b.next

Essential

What about add?

add(b’)

43

a b c d

b’

Essential

What about add?

A: add(b’)

B: remove(b)

• b’ not added!

44

a b c d

b’

AB

Essential

What about add?

A: add(b’)

B: remove(b)

• b’ not added!

• To fix this lock the successor defensively as in the remove case
45

a b c d

b’

AB

B
Waiting

A

Essential

What about add?

A: add(b’)

B: remove(b)

• b’ not added!

• Solution: lock the successor defensively.
46

a b c d

b’

B B

Essential

The choice

• How do we get to the
data we need to work
on?

Hand-over-hand locking (remove d)

48

a b d e

pred=-∞,curr=a

check(a<d)

a b d e

pred=a,curr=b
check(b<d)

a b d e

pred=b,curr=d
check(d<d)

if(d==d)

 remove(d)

Essential

Hand-over-hand locking (remove d)

49

a b d e

pred=-∞,curr=a

check(a<d)

a b d e

pred=a,curr=b
check(b<d)

a b d e

pred=b,curr=d
check(d<d)

if(d==d)

 remove(d)

What about add(c)
and contains(e)?

Essential

Hand-over-hand locking

Benefits:

• Multiple readers and writers can be actively doing work in the
same list.

• Readers and writers that are traversing the list in the same order
will not pass each other.

• The locks taken on parts of the list won't deadlock with each
other, because multiple locks are acquired in the same order.

50

Essential

Hand-over-hand locking

But what’s bad?

• We can have “traffic jam”, Threads can’t overtake each other

• O(n) locks acquired/released => Big Overhead!

51

Essential

Optimistic
Synchronization

52

Idea

Algorithm:

• find nodes without locking,

• then lock the two nodes and

• check that everything is ok (validation)
• if so perform the operation (add, remove or contains) and return true

• if not return false

• finally release the two locks

e.g. add(c)
53

Essential

add(c) Aha!

Finding without locking

a b d e

Essential

add(c)

Locking

a b d e

Essential

add(c)

a b d e

Validation

Essential

add(c)

a b d e

Yes. b is still reachable

from head.

Validation

Essential

add(c)

a b d e

Yes. b still points to d.

Validation

Essential

c

add(c)

a b d e

Essential

c

add(c)

a b d e

Essential

Validation: what can go wrong?

Why do we even need validation?

61

Essential

Validation: what can go wrong?
Remove case

A: add(c)
A: find insertion point

B: remove(b)

A: lock

A: validate: rescan

A: b not reachable

 →return false

63

a b d e

a b d e
A A

a b d e
B B

Essential

Validation: what can go wrong?
Insert case

A: add(c)
A: find insertion point

B: insert(b')

A: lock

A: validate: rescan

A: d != succ(b)

 →return false

64

a b d e

a b d e
B B

b'

a b d e

A A

b'

Essential

Optimistic Summary

Optimistic List

Good:

No contention on traversals.

Traversals are wait-free.

Less lock acquisitions.

Bad:

Need to traverse list twice (find + validate)

contains() method needs to acquire locks

67

Essential

Teaching Awards

• Ich wäre dankbar, wenn ihr für mich abstimmen könntet!

Lazy Synchronisation

69

Lazy List

Like optimistic list but

• scan only once

• contains() never locks

How?

• Removing nodes causes trouble

• do it "lazily”

• add a special ”removed?” flag to the nodes

70

New Validate

• Given two locked nodes

• Pred is not marked

• Curr is not marked

• Pred points to Curr

71

b c

? ?
?

Lazy List: Remove

Find nodes to remove (as before)

Lock predecessor and current (as before)

Validate (new validation)

Logical delete: mark current node as removed

Physical delete: redirect predecessor's next

e.g. remove(c)

72

a b c d

Lazy List: Remove

Find nodes to remove (as before)

Lock predecessor and current (as before)

Validate (new validation)

Logical delete: mark current node as removed

Physical delete: redirect predecessor's next

e.g. remove(c)

73

a b c d

volatile?

Invariant

If a node is not marked then
• it is reachable from head
• and reachable from its predecessor
Only check if nodes are adjacent. Why?

A: remove(c)
 lock

 check if b or c are marked

 not marked? ok to delete:

 mark c

 delete c

74

a b c d

What is validate() now?

Lazy List: Add

• Find nodes to where to add (as before)

Lock predecessor and current (as before)

Validate (new validation)

Physical add: change predecessor's next

e.g. add(b’)

77

a b c d

b’

Lazy List: Contains

• Find nodes to return without locking

Return true if node is not marked

e.g. contains(b)

78

a b c d

?

New Validation: What can go wrong?

79

a b d e

a b d e
A A

A: add(c)
A: find insertion point

B: remove(b)

A: lock

A: validate: marks + pred --> curr

A: b marked

 →return false

a b d e
B B

New Validation: What can go wrong?

A: add(c)
A: find insertion point

B: insert(b')

• A: lock

• A: validate: marks + pred --> curr

• A: pred –x-> curr

• →return false

80

a b d e

a b d e
B B

b'

a b d e

A A

b'

Lock free data structures

So how do we build lock free data structures?

Problems with this implementation?

• Say we want to use a node pool instead of always creating new
nodes (i.e. not always use new Node() but instead take it out of a
list)

• -> ABA Problem (exam relevant)

Plan für heute

• Organisation
• Nachbesprechung Assignment 10
• Theory
• Intro Assignment 11

• Kahoot
• Exam questions

Kahoot!

Plan für heute

• Organisation
• Nachbesprechung Assignment 10
• Theory
• Intro Assignment 11
• Kahoot
• Exam questions

Types of exercises that might come in the exam
Disclaimer: This list is not guaranteed to be complete and is only meant to give you
an idea of what has been asked on previous exams.

Locks
• Usually there are not too many question on this topic. true/false questions of which

lock has which properties (fairness, starvation free)
• find bug in lock code (violation of mutual exclusion or deadlock freedom)
• draw state space diagram and/or read off correctness properties
• reproduce Peterson/Filter/Bakery lock
• prove correctness of Peterson lock or similar (but not Filter or Bakery)
Monitors, semaphores, barriers
• semaphore implementation (mostly with monitors)
• (never seen rendezvous with semaphores in an exam)
• barrier implementation (mostly with monitors)
• (only seen a task on implementing a barrier with semaphores once in FS21, 8b)
• fill out some program using monitors (similar to wait/notify exercises, maybe with

lock conditions)
Credits @aellison PProg23

https://exams.vis.ethz.ch/exams/i0svp1fh.pdf

Yes

True

Feedback

• Falls ihr Feedback möchtet sagt mir bitte Bescheid!
• Schreibt mir eine Mail oder auf Discord

Teaching Awards

• Ich wäre dankbar, wenn ihr für mich abstimmen könntet!

Danke

• Bis nächste Woche!

	Default Section
	Slide 1: Parallele Programmierung FS25
	Slide 2: Plan für heute
	Slide 3: Organisation
	Slide 4: Organisation
	Slide 5: Organisation
	Slide 6: Organisation
	Slide 7: Plan für heute

	Feedback Ass 10
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Two-Phase Barrier

	Main
	Slide 25: Plan für heute
	Slide 26
	Slide 27: SortedListInterface
	Slide 28: SortedListInterface
	Slide 29: SortedListInterface
	Slide 30: SortedListInterface
	Slide 31: List and Node
	Slide 32: Implementation tipps
	Slide 33: Coarse Grained Locking
	Slide 34: Coarse Grained Locking
	Slide 35: Coarse Grained Locking
	Slide 36: Fine grained Locking
	Slide 37: Let's try this
	Slide 38: Let's try this
	Slide 39: Let's try this
	Slide 40: Let's try this
	Slide 41: Let's try this
	Slide 42: What's the problem?
	Slide 43: What about add?
	Slide 44: What about add?
	Slide 45: What about add?
	Slide 46: What about add?
	Slide 47: The choice
	Slide 48: Hand-over-hand locking (remove d)
	Slide 49: Hand-over-hand locking (remove d)
	Slide 50: Hand-over-hand locking
	Slide 51: Hand-over-hand locking
	Slide 52: Optimistic Synchronization
	Slide 53: Idea
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61: Validation: what can go wrong?
	Slide 62
	Slide 63: Validation: what can go wrong? Remove case
	Slide 64: Validation: what can go wrong? Insert case
	Slide 66: Optimistic Summary
	Slide 67: Optimistic List
	Slide 68: Teaching Awards
	Slide 69: Lazy Synchronisation
	Slide 70: Lazy List
	Slide 71: New Validate
	Slide 72: Lazy List: Remove
	Slide 73: Lazy List: Remove
	Slide 74: Invariant
	Slide 75
	Slide 76
	Slide 77: Lazy List: Add
	Slide 78: Lazy List: Contains
	Slide 79: New Validation: What can go wrong?
	Slide 80: New Validation: What can go wrong?
	Slide 81: Lock free data structures
	Slide 82
	Slide 83
	Slide 84: So how do we build lock free data structures?
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93: Problems with this implementation?

	ending
	Slide 94: Plan für heute
	Slide 95: Kahoot!
	Slide 96: Plan für heute
	Slide 97: Types of exercises that might come in the exam
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110: Feedback
	Slide 111: Teaching Awards
	Slide 112: Danke

