
Parallele Programmierung FS25
Exercise Session 12

Jonas Wetzel

Plan für heute

• Organisation
• Nachbesprechung Assignment 11
• Theory
• Intro Assignment 12
• Exam questions
• Kahoot

Organisation

• Mein Name ist Jonas Wetzel
• Meine Website (Materialien und Inhalt der Übungen):

n.ethz.ch/~jwetzel
• Meine Email: jwetzel@ethz.ch
• Discord: @jonas.too

mailto:jwetzel@ethz.ch

Organisation

• Mein Name ist Jonas Wetzel
• Meine Website (Materialien und Inhalt der Übungen):

n.ethz.ch/~jwetzel
• Meine Email: jwetzel@ethz.ch
• Discord: @jonas.too
• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9

mailto:jwetzel@ethz.ch
https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9
• Falls ihr Feedback möchtet kommt bitte zu mir

https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

• Wo sind wir jetzt?

Reader Writer Lock

Lock free programming

wait free, lock free, starvation free, deadlock free

Lock free linked list

To come: Linearizability, Consensus

Plan für heute

• Organisation

• Nachbesprechung Assignment 11
• Theory
• Intro Assignment 12
• Exam questions
• Kahoot

Assignment 11

8

• Implement SortedList with different lock strategies

• Exercise about effective use of locks
• Coarse grained vs. fine grained locks
• Tricks to avoid locking altogether for certain operations

• Measure the performance impact of your implementation choice

Coarse Grained Locking

9

public synchronized boolean add(T x) {...};

public synchronized boolean remove(T x) {...};

public synchronized boolean contains(T x) {...};

a b d e

Essential

Fine Grained locking

A: remove(c)

B: remove(b)

When removing, lock the successor defensively.

10

a b c d

AB

B

A

Waiting

Essential

Optimistic Locking
Remove case

A: add(c)
A: find insertion point

B: remove(b)

A: lock

A: validate: rescan

A: b not reachable

 →return false

11

a b d e

a b d e
A A

a b d e
B B

Essential

Lazy Locking

Find nodes to remove (as before)

Lock predecessor and current (as before)

Validate (new validation)

Logical delete: mark current node as removed

Physical delete: redirect predecessor's next

e.g. remove(c)

12

a b c d

volatile?

Fine grained Locking

13

Optimistic Locking

14

Lazy Locking

15

Plan für heute

• Organisation
• Nachbesprechung Assignment 11

• Theory
• Intro Assignment 12
• Exam questions
• Kahoot

Readers-writers lock

17

Readers-writers lock

18

Readers-writers lock

19

Readers-writers lock in Java
double readSomething() {

 readerWriterLock.readLock().lock();

 try {

 double value = retrieveDoubleValue();

 return value;

 } finally {

 readerWriterLock.readLock().unlock();

 }

}

Void writeSomething(double new_value) {

 readerWriterLock.writeLock().lock();

 try {

 storeDoubleValue(new_value);

 } finally {

 readerWriterLock.writeLock().unlock();

 }

}

20

No fairness guarantees!

21

Simple reader-writer lock with monitors

22

Reader-writer lock with monitors

23

Fair reader-writer lock with monitors

Lock-free algorithm

Object readSomething() {

 return atomicReference.get();

}

Void writeSomething(Object new_object) {

 Object old_object;

 do {

 old_object = atomicReference.get();

 // Check if we want to overwrite the latest data (i.e. only write newer or better data)

 if (…) {

 return;

 }

 } while (!atomicReference.compareAndSet(old_object, new_object));

}

27

Implications

• We assume the operation CAS itself is wait free, i.e., it finishes
after constant time always

`

In general

• Using CAS is atomic: the operation (read modify write) is
indivisible

• However, using CAS to update e.g., a counter is only lock-free,
not wait-free: you don’t get a guarantee that your thread will finish
in a bounded number of steps under unbounded contention

Lock free data structures

So how do we build lock free data structures?

Problems with this implementation?

• Say we want to use a node pool instead of always creating new
nodes (i.e. not always use new Node() but instead take it out of a
list)

• -> ABA Problem (exam relevant)

Not the same get() as from
Atomic!

First Approach, simple CAS for remove

• Note that CAS(b.next,c,b’) means if b.next == c then set b.next to b’
otherwise don’t do anything

First Approach, simple CAS for remove

• We read a stale value for b.next = c! Thread B will do
CAS(a.next,b,c)

Second Approach, try to fix the issue by using mark bit which
tells us if an element was removed

Second Approach, try to fix the issue by using mark bit which
tells us if an element was removed

• Thread b checks if node c is removed,
sees mark bit is false, proceeds

• Now thread a wants to remove c, sets
mark bit of node c

• Reads c.next = d and does a
cas(b.next,c,d), which succeeds.

• Node c is removed
• Now thread b does CAS(c.next,d,c’). c’

is inserted but not in the list, as c got
removed

• We want to set the mark bit and the next pointer in one step
otherwise we face the issue from the previous slide

• We want to set the mark bit and the next pointer in one step
otherwise we face the issue from the previous slide

• So how do we do this?

• The mark bit we were talking about is just hidden in the reference
now! E.g. c.mark is now hidden in c.next!

• We can update a reference with a single CAS!

• Note that
CAS([b.next.reference, b.next.marked], [c,unmarked] , [d, unmarked])
• checks if b.next = c and b.mark = 0 (unmarked = not removed) then set

b.next = d and leave b.mark = 0 (unmarked)

Did it fix our previous problem?

• Yes, we can’t have bad interleaving anymore because thread B
checks c.mark and updates c.next in one step

• Thread B will either see mark = 0 → can insert c’ in one step or
mark = 1 which means it needs to retry

Remove , remove case

Results in node C not being
removed but still marked!

Again:

• If we implement our methods correctly and watch out for mark bit
being set, this is fine, i.e., this implementation works

• However, we would like marked nodes to be removed physically at
some point too

Results in node C not being
removed but still marked!

• In our previous example

Plan für heute

• Organisation
• Nachbesprechung Assignment 11
• Theory

• Intro Assignment 12
• Kahoot
• Exam questions

Assignment 12

• Multisensor System.

73

Multisensor System

74

Multisensor System

75

Implement two versions of the senor data set:

a) One blocking version based on a readers-writers lock (LockedSensors.java).

b) A lock-free version (LockFreeSensors.java)

Hints:

• Before you implement the readers-writers lock based version, start with a simple locked version in order to

understand. Then try a readers-writers lock but be aware that the Java-implementation does not give

fairness guarantees. What can this imply? In any case, you have the code from the lecture slides

presenting a fair RW-Lock implementation.

• The lock-free implementation solutions does NOT rely on mechanisms such as Double-Compare- And-

Swap. Also it does not rely on a lazy update mechanism. Somehow you have to make sure that with a

single reference update you change all data at once. How?

Hint

• dataRef = new AtomicReference<SensorData>();

• AtomicReference allows for CAS on an object reference
• i.e. we can replace old object with new object in one step

Questions

Plan für heute

• Organisation
• Nachbesprechung Assignment 11
• Theory
• Intro Assignment 12

• Kahoot
• Exam questions

Kahoot!

• False, remember spurious wake ups

• False, imagine max = 3. Then A,B,C arrive. Now C notifies threads A
and B but sets count to 0. Thus, only C can leave the barrier while A
and B are still stuck.

Plan für heute

• Organisation
• Nachbesprechung Assignment 11
• Theory
• Intro Assignment 12
• Kahoot
• Exam questions

Types of exercises that might come in the exam
Disclaimer: This list is not guaranteed to be complete and is only meant to give you an

idea of what has been asked on previous exams.
Locks
• Usually there are not too many question on this topic. true/false questions of which

lock has which properties (fairness, starvation free)
• find bug in lock code (violation of mutual exclusion or deadlock freedom)
• draw state space diagram and/or read off correctness properties
• reproduce Peterson/Filter/Bakery lock
• prove correctness of Peterson lock or similar (but not Filter or Bakery)
Monitors, semaphores, barriers
• semaphore implementation (mostly with monitors)
• (never seen rendezvous with semaphores in an exam)
• barrier implementation (mostly with monitors)
• (only seen a task on implementing a barrier with semaphores once in FS21, 8b)
• fill out some program using monitors (similar to wait/notify exercises, maybe with

lock conditions)
Credits @aellison PProg23

https://exams.vis.ethz.ch/exams/i0svp1fh.pdf

Yes

True

Feedback

• Falls ihr Feedback möchtet sagt mir bitte Bescheid!
• Schreibt mir eine Mail oder auf Discord

Danke

• Bis nächste Woche!

	Default Section
	Slide 1: Parallele Programmierung FS25
	Slide 2: Plan für heute
	Slide 3: Organisation
	Slide 4: Organisation
	Slide 5: Organisation
	Slide 6: Organisation
	Slide 7: Plan für heute
	Slide 8
	Slide 9: Coarse Grained Locking
	Slide 10: Fine Grained locking
	Slide 11: Optimistic Locking Remove case
	Slide 12: Lazy Locking
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Plan für heute

	reader writer lock
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

	Theroy
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Implications
	Slide 30
	Slide 31
	Slide 32: `
	Slide 33: In general
	Slide 34: Lock free data structures
	Slide 35
	Slide 36
	Slide 37: So how do we build lock free data structures?
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Problems with this implementation?
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

	lock free list
	Slide 52
	Slide 53: First Approach, simple CAS for remove
	Slide 54: First Approach, simple CAS for remove
	Slide 55: Second Approach, try to fix the issue by using mark bit which tells us if an element was removed
	Slide 56: Second Approach, try to fix the issue by using mark bit which tells us if an element was removed
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Did it fix our previous problem?
	Slide 64: Remove , remove case
	Slide 65: Again:
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

	intro assignment 12
	Slide 72: Plan für heute
	Slide 73
	Slide 74
	Slide 75
	Slide 76: Hint
	Slide 77: Questions

	Kahoot
	Slide 78: Plan für heute
	Slide 79: Kahoot!
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84: Plan für heute
	Slide 85: Types of exercises that might come in the exam
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98: Feedback
	Slide 99: Danke

