Parallele Programmierung FS25

Exercise Session 13
Jonas Wetzel



Plan fur heute

* Organisation

* Nachbesprechung Assignment 12
* Theory

* Intro Assignment 13

* Exam questions

* Kahoot



Organisation

e Mein Name ist Jonas Wetzel

* Meine Website (Materialien und Inhalt der Ubungen):
n.ethz.ch/~jwetzel

 Meine Email: jwetzel@ethz.ch

* Discord: @jonas.too


mailto:jwetzel@ethz.ch

Organisation

e Mein Name ist Jonas Wetzel

* Meine Website (Materialien und Inhalt der Ubungen):
n.ethz.ch/~jwetzel

 Meine Email: jwetzel@ethz.ch

* Discord: @jonas.too
* Feedback zur Session: https://forms.gle/qiDngkfSP2NUQGvc9Y



mailto:jwetzel@ethz.ch
https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

* Feedback zur Session: https://forms.gle/qiDngkfSP2NUQGvc9

e Falls ihr Feedback mochtet kommt bitte zu mir


https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

* 2764 ist nicht ungefahr gleich zu den Atomen im Universum!
e 2764 =1.84x10"19

* TmMm”3 Sand hat 10”8 Atome, also ungefahr Anzahl Atome in 10
Sandkornern ist 264

* Schatzungen fur Anzahl Sandkorner auf der Erde ist 7.5 * 10™18,
also ist 264 ungefahr das Doppelte davon



Organisation

* Kahoot Allegations



Organisation

* TA Award

e Danke!



Organisation

* Wo sind wir jetzt?
Sequential Consistency and Linearizability

To come: Consensus



Plan fur heute

* Organisation

* Nachbesprechung Assighment 12
* Theory

* Intro Assignment 13

* Exam questions

* Kahoot



Assignment 12

* Multisensor System.

thread
thread
thread

sensor data

monitor
thread

monitor
thread

monitor
thread

11



Multisensor System

Implement two versions of the senor data set:
a) One blocking version based on a readers-writers lock (LockedSensors.java).
b) A lock-free version (LockFreeSensors.java)

12



 dataRef = new AtomicReference<SensorData> () ;

 AtomicReference allows for CAS on an object reference
* i.e. we can replace old object with new object in one step



Multisensor System

1 assignment11
v (ﬂ SensorData

4 assignment11 :
\ 4 CR Sensors & ' data : double[]
A i af timestamp : long
@ update(long, doublel]) : void A . SensorData(long, double[])
A I
@ " get(double[]) : long A getValues() : doublef]

A getTimestamp() : long

4 assignment11

v (51 LockedSensors 1 assignment11
4 time : long v Q LockFreeSensors

& data: double[] A - LockFreeSensors()

A “ LockedSensors() @ .. update(long, double[]) : void
@ .. update(long, double[]) : void @ - get(double[]) : long

@ .. get(double[]) : long

14



LockedSensors

class LockedSensors implements Sensors {

long time = 0;
double data[];

private ReadWritelock lock;
private Lock readlock;
private Lock writelock;

LockedSensors() {
this(new ReadWriteMonitorLock());

}

LockedSensors(ReadWriteLock 1){
time = 0;
lock = 1;

readlock = lock.readlLock();
writelock = lock.writeLock();

public long get(double val[])

{
readlock.lock();
try{
if (time == @)
return 0;
else{
for (int i = @; i<data.length; ++1i)
val[i] = data[i];
return time;
3
}finally {
readlock.unlock();
}
3

public void update(long timestamp, double[] data)

{
writelock.lock();

try{
if (timestamp > time) {
if (this.data == null)
this.data = new double[data.length];
time = timestamp;
for (int 1=0; i<data.length;++1i)
this.data[i]= data[i];

3
3
finally {
writelock.unlock();
3

15



-

private synchronized void aquireRead(){

. . readersWating++;
LOCk Implementatlon while(writers>0 || (writersWating>0 && readersToWait<=0)){
try {
wait(Q);
public class ReadWriteMonitorLock implements ReadWritelock{ } catch (InterruptedException e) { e.printStackTrace(); }
private Lock readerlock = new ReadMonitorLock(this); }
private Lock writerlock = new WriteMonitorLock(this); readersWating--;
readersToWait--;
//Invariant @<=readers /\ 0@<=writers<=1 /\ readers*writers=0 readers++;
private int readers=0; 3
private int writers=0; private synchronized void releaseRead(){
readers--;
private int writersWating=0; notifyAll();
private int readersWating=0; ¥
private int readersToWait=0;
@0verride private synchronized void aquireWrite(){
public Lock readLock() { writersWating++;
return readerlock; while(writers>@ || readers>@ || readersToWait>0){
} try {
wait(Q);
@0verride } catch (InterruptedException e) { e.printStackTrace(); }
public Lock writeLock() { } ) )
return writerlock; writersWating--;
} N writers++,;

private synchronized void releaseWrite(){
writers--;
readersToWait = readersWating;
notifyAllQ);

16



LockFreeSensors

class LockFreeSensors implements Sensors {

AtomicReference<SensorData> data;

LockFreeSensors()
{
data = new AtomicReference<SensorData>(new SensorData(@L, new double[@]));
3
public long get(double val[]) public void update(long timestamp, double[] val)
{ {
SensorData d = data.get(); SensorData old_data;
double[] v = d.getValues(); SensorData new_data = new SensorData(timestamp, val);
if (v == null) return 0; do {
for (int 1=0; i<v.length; ++1) old_data = data.get();
val[i] = v[i]; if (old_data !'= null && old_data.getTimestamp() >= new_data.getTimestamp()) {
return d.getTimestamp(); return;
} }

} while (!data.compareAndSet(old_data, new_data));

17



LockFreeSensors

Is this wait free?

class LockFreeSensors implements Sensors {

, , ) Atomi cRef SensorData> data;
public void update(long timestamp, double[] val) fomicReferencecsensorbate data
{ LockFreeSensors()
{
SensorData old_data; data = new AtomicReference<SensorData>(new SensorData(@L, new double[0]));
SensorData new_data = new SensorData(timestamp, val); !
do {

old_data = data.get();

if (old_data !'= null &% old_data.getTimestamp() >= new_data.getTimestamp()) {
return;
}

} while (!data.compareAndSet(old_data, new_data));

} public long get(double val[])
{

SensorData d = data.get();
double[] v = d.getValues();

if (v == null) return 0;

for (int i=0; i<v.length; ++1i)

val[i] = v[i];
return d.getTimestamp();

18



Plan fur heute

* Organisation

* Nachbesprechung Assignment 12
* Theory

* Intro Assignment 13

* Exam questions

* Kahoot



Recap

Lock-Free Programming



Definitions for Lock-free Synchronisation

= |Lock-freedom: at least one thread always makes progress even if other
threads run concurrently.
Implies system-wide progress but not freedom from starvation.

' implies

= Wait-freedom: all threads eventually make progress.
Implies freedom from starvation.



Lock-free algorithm

Object readSomething() {
return atomicReference.get();

}

Void writeSomething(Object new_object) {
Object old_object;
do {
old_object = atomicReference.get();
I/l Check if we want to overwrite the latest data (i.e. only write newer or better data)

if(...){

return;

}

} while (!atomicReference.compareAndSet(old_object, new_object));

}

22



Progress conditions with and without locks

Non-blocking Blocking

(no locks) (locks)

Everyone makes
progress

Wait-free Starvation-free

Someone make progress Lock-free Deadlock-free




Implications

e Wait-free — Lock-free
e Wait-free = Starvation-free
e Lock-free =— Deadlock-free

e Starvation-free = Deadlock-free
e Deadlock-free AND Fair — Starvation-free

A CS has to be Deadlock-free and mutually exclusive!



Non-blocking algorithms

Locks/blocking: a thread can indefinitely delay another thread

Non-blocking: failure or suspension of one thread cannot cause failure or
suspension of another thread !




Non-blocking counter

Deadlock/Starvation?

public class CasCounter {
private AtomicInteger value;

public int getval() {
return value.get();
}

// increment and return new value
pUb.llc int inc() { What happens if some
int v;

do { processes see the

v = value.get(); same value?
} while (!value.compareAndSet(v, v+1));
return v+1;

}

Assume one thread dies.
Does this affect other threads?

Why not “guarantees”?
Mechanism

(a) read current value v
(b) modify value V'
(c) try to set with CAS

(d) return if success
restart at (a) otherwise

Positive result of CAS of (c) suggests
that no other thread has written
between (a) and (c)



Lock free data structures



Disadvantages of locking

Locks are pessimistic by design
* Assume the worst and enforce mutual exclusion

Performance issues

* Overhead for each lock taken even in uncontended case

* Contended case leads to significant performance degradation
* Amdabhl's law!

Blocking semantics (wait until acquire lock)

* |If athread is delayed (e.g., scheduler) when in a critical section = all threads suffer
 What if a thread dies in the critical section

*  Prone to deadlocks (and also livelocks)

Without precautions, locks cannot be used in interrupt handlers



So how do we build lock free data structures?



Stack Node

public static class Node {
public final Long item;

item

public Node next; next

public Node(Long item) { it}m

this.item = item; next

} !

public Node(Long item, Node n) { 1:2

this.item = item; l
next = n;

} NULL



Non-blocking Stack

public class ConcurrentStack {
AtomicReference<Node> top = new AtomicReference<Node>();

public void push(Long item) { .. } "
Item
public Long pop() { .. } top —> .

item
next

item
next

NULL



pop

Memorize "current
stack state" in local
variable head

public Long pop() {
Node head, next;

do {
head = top.get();
if (head == null) return null;
next = head.next;
} while (!top.compareAndSet(head, next));
Action is taken only

return head.item; if "the stack state"
} did not change

head

top

next

C€e— O €— T «<— >



push

public void push(Long item) { newi
Node newi = new Node(item);
Node head;

Memorize "current top
stack state" in local
variable head

do { head

head = top.get();
newli.next = head;
} while (!top.compareAndSet(head, newi));

=

Action is taken only
if "the stack state"
did not change

C€— N €— W €— > <—



With backoff

time
(ms)

50000

45000

40000

35000

30000

25000

20000

15000

10000

5000

0

20

40

60

80

100

120

H#threads

140

lock-free

lock-free
with backoff
©



Problems with this implementation?

* Say we want to use a node pool instead of always creating new
nodes (i.e. not always use new Node() but instead take it out of a
list)

* -> ABA Problem (exam relevant)



Node reuse

Assume we do not want to allocate for each push and maintain a node pool
instead (e.g., inside the OS or in an unmanaged language). Does this work?

public class NodePool {
AtomicReference<Node> top new AtomicReference<Node>();

public void put(Node n) { .. }

public Node get() { .. } Not the same get() as from
} Atomic!

public class ConcurrentStackP {
AtomicReference<Node> top = newAtomicReference<Node>();
NodePool pool = new NodePool();



NodePool put and get

public Node get(Long item) {

}

Node head, next;

do {
head = top.get();
if (head == null) return new Node(item);

next = head.next;
} while (!top.compareAndSet(head, next));
head.item = item;
return head;

public void put(Node n) {

¥

Node head;
do {
head = top.get();
n.next = head;
} while (!top.compareAndSet(head, n));

Only difference to Stack
above: NodePool is in-place.

A node can be placed in one
and only one in-place data
structure. This is ok for a
global pool.

So far this works.



Using the node pool

public void push(Long item) {
Node head;
Node new = pool.get(item);
do {
head = top.get();
new.next = head;
} while (!top.compareAndSet(head, new));

}

public Long pop() {
Node head, next;
do {
head = top.get();
if (head == null) return null,;
next = head.next;
} while (!top.compareAndSet(head, next));
Long item = head.item;
pool.put(head);
return item;



ABA Problem

Thread X Thread Y Thread Z Thread Z' Thread X

in the middle pops A pushes B pushes A completes pop
of pop: after read

but before CAS m \
head ’ m / ¢ head ’
top top w— top B

w
N
S
-

top

top B
next =——>» next
NULL NULL NULL NULL NULL
public Long pop() { public wvoid push(Long item) {
Node head, next; Node head;
do { Node new = pool.get(item);
time head = top.get(); do {
if (head == null) return null; )
next = head.next; head = top.get();
} while (!top.compareAndSet({head, next)); _new.next = head;
Long item = head.item; pool.put(head); return item; } while (ltop.compareAndSet(head, new));

} }



How to solve the ABA problem?

DCAS (double compare and swap)

not available on most platforms (we have used a variant for the lock-free list set)

Garbage Collection
relies on the existence of a GC
much too slow to use in the inner loop of a runtime kernel
can you implement a lock-free garbage collector relying on garbage collection?

Pointer Tagging
does not cure the problem, rather delay it
can be practical

Hazard Pointers
Transactional memory (later)



Hazard Pointers



Hazard Pointers

* ABA problem stems from reuse of a pointer P that has been read
by some thread X

* but not yet written with CAS by the thread X
* Modification takes place meanwhile by some other thread Y

* Thread X doesn’t realize that state changed and still performs
operation



Hazard Pointers

* Ourideato solve this, is that we introduce an array with n slots,
where n is the number of threads

* Before X now reads P, it marks it as hazardous by entering it into
the array (in slot assigned to thread X, i.e. ThreadlD mod Arraysize)

* After the CAS, X removes P from the array

* |f a process Y tries to reuse P, it first checks all entries of the
nazard array, and, if it finds P in there, it simply requests a new
pointer for use




Hazard Pointers

new pop()
: public int pop(int id) {
* Examine the changed pop() N o <
method: do {
do {
head = .get();
setHazarduous(head);
* We rely on garbage } while (head == || top.get() != head);
collection if we could run next = i

} while (! .compareAndSet(head, next));
setHazarduous( )

Into problems, i.e., when we
want to put something back

. . int item = . ;
INto the pOOl that IS if (!isHazardous(head))
hazardous .put(id, head);

return item;




Hazard Pointers

* The ABA problem also occurs on the node pool we are using

* We could make the pools thread-local. This does not help when
push/pop operations aren’t well balanced within the thread

* Alternatively, we could just use Hazard pointers on the global
node pool

* Previous Java code does not really improve performance in
comparison to memory allocation and garbage collection, but it
demonstrates how to solve the ABA problem



Hazard Pointers

* Questions?



SC and Linearizability



How to define correctness of concurrent
programs

* We can define different models
* Mostly just theoretical, CPU manufacturer decides on model



Essenti
Program correctness In a sequential world al

Objects encapsulate some representation of state

- We don’t reason about the representation directly, but about its visibility
from outside (via public methods) (e.g. stack.top()==3)

State must be consistent, i.e., according to the public class invariant
(e.qg., forall x. stack.push(x).pop()==x)

Each method satisfies its post-condition, given its pre-condition
Hoare Tripel aus EProg

49



Essenti
Program correctness in a concurrent world al

Sequentisl | Coneurrene

Each method described Need to describe all possible
independently. interactions between methods.
(what if enq and deq overlap? ...)

Object’s state is defined between Because methods can overlap, the
method calls. object may never be between
method calls...

Adding new method does not affect Need to think about all possible
older methods. interactions with the new method.

50



. Essenti
Execution al

g.enq(x) g.deq() 2y

g.eny(y) g.deq() =x

time

51



Essenti

Execution "
H—‘L‘I—H—H B invocation X
.—;—. ; L — B Definitely after X

Il Definitely before X

.Can't tell before
or after X

¥

52



Histories

A history is a series of invocations and responses of methods.

r.write(1)
.r.write(2)
:vold
r.write(3)
:vold
:r.read()
1

.void

= 0 o> = e

53



Histories

Histories clan be categorized by some fundamental properties:

Sequential

Complete

Equivalence to some other History
Legal

Well formed

Quiescent Consistent
Sequentially Consistent
Linearizable

54



Sequential

No interleaving at all.
First event is an invocation.
Each invocation is immediately followed by a response.

A: rwrite(1)
A: void

B: r.read()
B:1

55



Complete

No pending invocations at the end

Not complete:
A: rwrite(1)

Complete:
A: rwrite(1)
A: void

56



Essential

What are projections?

We write H|A and to say:

All events in H by thread A

57



Essential

What are projections?

We write H|q and to say:

All events in H on object g

58



Essential

Equivalence?

Histories H1 and H2 are equivalent if their
per-thread projections are the same.

H= G-=
A g.enq(3) A g.enq(3)
B p.enq(4) A q:void
B p:void B p.enq(4)
B q.deq() B p:void
A q:void B g.deq()

Bqg:3 Bqg:3 s



Legal

For all objects o: H|o is sequential and correct

Correct in the sense of the object specification

60



Well formed

For all threads t: H|t is sequential

61



* A system can be ...
e Quiescent consistent
* Sequentially consistent
* Linearizable

* And many more, it’s up to us to define




1 class LockBasedQueue<T> {
2 int head, tail;
3 T[] items;
Example: Queue i Lo ok
° ) public LockBasedQueue(int capacity) {
6 head = 0; tail = 0;
7 lock = new ReentrantlLock();
8 items = (T[])new Object[capacity];
. 9 }
¢ What does It mean for d Concurrent 10 public void enq(T x) throws FullException {
. 11 lock.lock();
object to be correct? 2 try |
13 if (tail - head == items.length)
« each method accesses and updates 1} o new fullbecentionds
. . . o tail++;
fields while holding an exclusive lock 5 | st ¢
18 lock.unlock();
* method calls take effect sequentially 2 .’
21 public T deq() throws EmptyException {
22 lock.lock();
23 try {
24 if (tail == head)
25 throw new EmptyException();
26 T x = items[head % items.length];
27 head++;
28 return Xx;
29 } finally {
30 lock.unlock();
31 }
32 }

33}



1 class LockBasedQueue<T> {
2 int head, tail;
. 3 T[] items;
Example: Queue i Lo ok
° 5 public LockBasedQueue(int capacity) {
6 head = 0; tail = 0;
7 lock = new ReentrantlLock();
8 items = (T[])new Object[capacity];

9 }
10 public void enq(T x) throws FullException {
11 lock.lock();
g.enq(a) 12 try {
13 if (tail - head == items.length)
lock() enqg(a) unlock() 14 throw new FullException();
A -4 ' ﬂ el > 15 items[tail % items.length] = x;
: | 16 tail++;
q.enq(b) 17 } finally {
lock()  enq(b)  unlock() ! ; 18 Tock.unlock() ;
= : ¥ . ek SLRCTELEELELEETEEPEEPRPERPLS > 19 }
; | ! 1 20}
: . g.deq(b) : 21 public T deq() throws EmptyException {
! 5 : : 22 Tock.lock();
lock()  unlock() , ! lock() : ) deq(b) Hnlock() . 23 try {
c e —t— — e 24 if (tail == head)
o E ! : | i ! 25 throw new EmptyException();
. ! ! ! | : ! 26 T x = items[head % items.length];
Lock B E | | 3 i | 27 head++;
Holder —.......| b - - - - - - - - - - - — e > 28 return x;
Timeline C B A C 29 } finally {
deq(empty) enq(b) eng(a) deq(b) 30 Tock.unlock();
31 }
32 }



Alternative concurrent gueue implementation

* queue is correctonlyifitis

shared by a single enqueuer and

a single dequeuer

* |t has almost the same internal
representation as the lock-based

queue

* only difference is the absence of

a lock

O 00 N WM

class WaitFreeQueue<T> {
volatile int head = 0, tail = O;
T[] items;
public WaitFreeQueue(int capacity) {
items = (T[])new Object[capacity];
head = 0; tail = 0;
}
public void enq(T x) throws FullException {
if (tail - head == items.length)
throw new FullException();
items[tail % items.length] = x;
tail++;
}
public T deq() throws EmptyException {
if (tail - head == 0)
throw new EmptyException();
T x = items[head % items.length];
head++;
return x;

}
}



How to reason about concurrent objects that
have no locks?

* objects whose methods hold exclusive locks are less desirable
than ones with finer-grained locking or no locks

* We therefore need a way to specify the behavior of concurrent
objects, and to reason about their implementations, without
relying on method-level locking

* lock-based queue example illustrates a useful principle: itis
easier to reason about concurrent objects if we can somehow
map their concurrent executions to sequential ones, and limit our
reasoning to these sequential executions



Quiescent Consistency



Quiescent consistency

Method calls should appear to happen in a one-at-a-time, sequential order
Method calls separated by a period of quiescence should appear to take
effect in their real-time order

68



Quiescent consistency

requires non-overlapping operations to appear to take effect in their real-time
order, but overlapping operations might be reordered

g.enq(X) q.deq() 2 X
L — — @
... quiescence...
size() 2 n
B --ce--- -.L ----------------------------------------------------------------------------

69



Quiescent consistency

requires non-overlapping operations to appear to take effect in their real-time
order, but overlapping operations might be reordered

Can change the order of
these operations

g.enq(X)

But not between walls

g.deq() =2 X

70



Sequential Consistency



Motivation

r.write(7)
Thread A -------- R — >
r.write(—3) rread(—7)
Thread B ------------- — - - - — >

* two threads concurrently write -3 and 7 to a shared registerr

* L ater, one thread reads r and returns the value -7

* This behavior is clearly not acceptable!

* We expect to find either 7 or -3 in the register, not a mixture of both!



Motivation

r.write(7)
Thread A -------- .
r.write(—3) r.read(—7)
Thread B ------------- e— - — e e oo oo -

two threads concurrently write -3 and 7 to a shared registerr

Later, one thread reads r and returns the value -7

This behavior is clearly not acceptable

* We expectto find either 7 or -3 in the register, not a mixture of both!

* Method calls should appear to happen in a one-at-a-time,
sequential order!



Motivation

r.write(7) r.write(—3) r.read(7)

Figure 3.5 Why method calls should appear to take effect in program order. This behavior is
not acceptable because the value the thread read is not the last value it wrote.

* single thread writes 7 and then —3 to a shared registerr. Later, it
reads r and returns 7

* For some applications, this behavior might not be acceptable
because the value the thread read is not the last value it wrote



Motivation

r.write(7) r.write(—3) r.read(7)

Figure 3.5 Why method calls should appear to take effect in program order. This behavior is
not acceptable because the value the thread read is not the last value it wrote.

* We want Method calls to appear to take effect in program order!



Combining both we get SC

* Method calls should appear to happen in a one-at-a-time,
sequential order

* Method calls should appear to take effect in program order



Combining both we get SC

* Method calls should appear to happen in a one-at-a-time,
sequential order

* Method calls should appear to take effect in program order

* Thatis, in any concurrent execution, there is a way to order the
method calls sequentially so that they (1) are consistent with
program order, and (2) meet the object’s sequential
specification



Sequential consistency

A multiprocessing system has sequential consistency if:

"...the results of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its
program."

Leslie Lamport (inventor of sequential consistency, GOAT Turing Award
Winner, concurrent master mind)

/8



In other words

* A History H is sequential, if there are no overlapping methods
(when every invocation is immediately followed by the matching
response)

* A Historyis SC (Sequentially Consistent), if:
1.Every Thread projection is a sequential history

2.Method calls appear to follow PO (Program Order), which allows for
"reordering” of method-calls if they follow the ordering determined by the

corresponding Thread-projection
* Thread projection: we write H|A to say: All events in H by thread A



. . . Essenti
Sequentlal con5|stency reqwrements al

1. Allinstructions are executed in order.

2. Every write operation becomes instantaneously visible throughout the
system.

g.enq(x) g.deq() =2y
A ------------------ M ----------------------------- —M -----------------------
g.enq(y)
B ---------------------------------------------------------- -hﬁ' ---------------------------

80



. _ . Essenti
Sequentlal con5|stency reqwrements al

1. Allinstructions are executed in order.

2. Every write operation becomes instantaneously visible throughout the
system. (all variables volatile! Shows us that standard java is not sequentially
consistent)

g.enq(x) g.deq() =2y
A —————————————————— M ----------------------------- —M -----------------------
g.enq(y)
B ---------------------------------------------------------- -hﬁ' ---------------------------

81



Sequential consistency and the real world

* In the real world, hardware architects do not adhere to this by
default

* We need to explicitly announce that we want this property (i.e.
volatile keyword)



Sequential consistency and the real world

* We need to explicitly announce that we want this property (i.e.
volatile keyword)

* This lock is only correct if we have SC

Reminder: Consequence for Peterson Lock (Flag Principle)

flag[id] = true;
victim = id;
while (flag[l-id] && victim == id);

flag[O].write(true)  victim.write(0) flag[1].read()> ? victim.read() =2 ?
A -e @ ---------- ® ®----- ® @ ------------ ® @ --------
flag[1].write(true) victim.write(1) flag[0].read() = ? victim.read() 2 ?




SC is not compositable

p. enq(X) K enq(x) P deq() =2y

g-enqly) p.enqly)  g.deq() 2x

H|p is sequentially consistent
H|qg is sequentially consistent
H is not sequentially consistent

In general: sequential consistency is not compositable

84



Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not quiescently
consistent, and vice versa

85



Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not quiescently
consistent, and vice versa

™o aendw) |
T ~qenaly)  adeq)->y

N

86



Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not quiescently

consistent, and vice versa

-

(&

Sequentially consistent

o

(can move T1!)

)

r | aenak ||

-~

T2

NOT quiescentially consistent :
there is a quiescent period
between these operations

which should “synchronize”
operations

~




Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not quiescently
consistent, and vice versa

4 )

Sequentially consistent
(can move T1)

T  aenaw |

T2




Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not quiescently
consistent, and vice versa

r [aenald] | aenaty) | [ adeq)->y |

89



Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not quiescently
consistent, and vice versa

4 )

NOT sequentially consistent

/\ i (T1 has reordered operations)
T1 i

4 )

NOT quiescentially consistent : there is
a quiescent period between these
operations which should “synchronize”
operations

\ J




Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not quiescently
consistent, and vice versa

o [aEn T | aena) | qdeany |
" . aemm |

91



Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not quiescently

consistent, and vice versa f

NOT sequentially consistent (T1
has reordered operations)

T2 . genqm




Linearizability



Motivation

g.enq(x) q.deq(y)
———————————————— p— - - - —
g.enq(y)
_________________________________ e

* Thisis SC
* Goes against our intuition, gq.enq(x) finished before g.enq(y)!



How do we fix this

* replace the requirement that method calls appear to happen in
program order with the following stronger restriction:

* Each method call should appear to take effect instantaneously at
some moment between its invocation and response



ldea

* Now we have:

* Method calls should appear to happen in a one-at-a-time,
sequential order

* Each method call should appear to take effect instantaneously at
some moment between its invocation and response



. . . o Essenti
Consistency model: Linearizability al

Linearizability provides the illusion that each operation
applied by concurrent processes takes effect
iInstantaneously between its invocation and its response.

97



. . . o Essenti
Consistency model: Linearizability al

Linearizability provides the illusion that each operation
applied by concurrent processes takes effect
iInstantaneously between its invocation and its response.

An object for which this is true for all possible executions

Is called linearizable
* Has nice properties like composabillity

98



In other words

* |If given parallel/concurrent execution is equal to some sequential
history, where a preceding method call shows effect before the

later one
* overlapping method calls can be "reordered" as wished

* reordering means, that if m, and m, overlap (independent of which
methods invocation or response was first/second) we can choose,

If m, or m, shows its effect first



In other words

* If given parallel/concurrent execution is equal to some sequential
nistory, where a preceding method call shows effect before the

later one
* overlapping method calls can be "reordered" as wished

* reordering means, that if m, and m, overlap (independent of which
methods invocation or response was first/second) we can choose,
If m, or m, shows its effect first

* Difference to SC: we can’t reorder operations even if they follow
thread projection



Essenti

Example with FIFO Queue (1) al

Is this
liInearizable?

«»

«) &)

IIIIIIIIIIIIIIIIIEﬁ!IIIIIIIIIIIIIIII” 101




Essenti

Example with FIFO Queue (1) al
IS this Yes!
linearizable?

: [
| . .

“ 102



Essenti

Example (2) al

Is this
liInearizable?

m

«»

IIIIIIIIIIIIIIIIIEﬁ!IIIIIIIIIIIIIIII” 103



Essenti

Example (2) al

Is this No!
linearizable?

104



Essenti

Example (3) al

Is this
liInearizable?

>
>

IIIIIIIIIIIIIIIIIEﬁ!IIIIIIIIIIIIIIII” 105



Essenti

Here we got
Example (3) multiple orders! al
IS this Yes!

liInearizable?

> &
mm

“ 106



Essenti

Example (4) al

Is this
liInearizable?

>
—— ¢

IIIIIIIIIIIIIIIIIEﬁ!IIIIIIIIIIIIIIII” 107




Essenti

Example (4) al

Is this
linearizable? NO!

>

IIIIIIIIIIIIIIIIIEEIIIIIIIIIIIIIIII‘} 108



Essenti

Example (4.5) al

Is this
liInearizable?

<>

<
—— )

IIIIIIIIIIIIIIIIIEﬁ!IIIIIIIIIIIIIIII” 109




Essenti

Example (4.5) al

Is this
linearizable? Yes!

110



Essenti
Difference between SC and Linearizability?  al

g.enq(x) g.deq() 2y
R o—P—e - @) ~ = === mm oo
g.enq(y)
B coom oo e e e e = ] ) — ~ = = = = = = = = == === m e mmm
] 0

time

In SC we can reorder events — as long as per-thread

order Is preserved!
111



Summary of definitions

!leisto.rie? A and B are called equivalent, if A and B's per-thread projections are
identica

A History H is called complete, if every invocation has a matching response (not
necessarily immediately after the invocation).

A History H is called well-formed, if its per-thread projections are all sequential.
Histories that are not well formed usually do not make sense.

A history H is called legal, if for every object x, the projections H|x all behave like the
sequential specification of the object x.

A History H is sequential, if there are no overlapping methods (when every invocation
Is immediately followed by the matching response)



Summary of definitions

* AHistoryis SC (Sequentially Consistent), if:
* Every Thread projection is a sequential history.

* Method calls appear to follow PO (Program Order), which allows for
"reordering” of method-calls as long as they follow the ordering
determined by the corresponding Thread-projection.

* For a program to be called SC (Sequentially Consistent), every possible
execution history has to be SC.



Summary of definitions

* A History H is linearizable, if there is an extension H' to H, which
Is equivalent (thread-projection-wise) to a legal sequential History
S, where for all methods my 2>y my = my > my

* What linearizability means, is that the given parallel/concurrent
execution is equal to some sequential history, where a preceding
method call shows effect before the later one, but overlapping
method calls can be "reordered" as wished

* The reordering means, that if m, and m, overlap (independent of
which methods invocation or response was first/second) we can
choose, if m,; or m, shows its effect first

* Linearizability implies SC



Quiescent Consistent

(composable) (not composable)

YN P&

Linearizable
(composable)

* Sequential Consistent

Thanks to @Erxuan Li, PProg25



Linearization Point

1 public boolean add(T item) |

2 int key = item.hashCode();

3 head.lock();

4 Node pred = head;

5 try |{

f Node curr = pred.next;

7 curr.lock();

B try |{

g while (curr.key < key) {

10 pri.unlnckl}}l; . . . . .

1 pred = cure;

1 red - aurry The linearization point is the
13 curr.lock(); R

14 i

1 I (curr.key == key) | point where the method takes
16 return false; o

17 | _ | effect, i.e., other threads see
15 Node newNode = mew Node(item);

19 newlode.next = curr;

20 pred.next = newNode; the Change

21 return true;

22 } finally |

23 curr.unlock();

24 ]

25 b finally |{

26 pred.unlock();

27 I

28 I



Linearization Point

public boolean add(T item) |
int key = item.hashCode();
head.lock();
Node pred = head;
try {
Node curr = pred.next;
curr.lock();
try {
while (curr.key < key) {
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
i
if (curr.key == key) |
return false;
f
Node newNode
newlode.next = curr;
pred.next = newNode;
return true;
} finally |
curr.unlock(}; <

new Node(item);

i
b finally |{

pred.unlock();
'
'

The linearization point is the
point where the method takes
effect.



Linearization Point

1 class WaitFreeQueue=T= |

7 volatile imt head = 0, tail = 0;

3 T[] items;

4 public WaitFreeQueue(int capacity) {

5 items = (T[] )new Object[capacity];

f head = 0; tail = 0;

7 i

8  public void eng(T x) throws Ful 1IException { The linearization Oint iS the

] if (tail - head == items.length) p

10 ) throw new FI.!”EEEEDT.iDI‘II:}I; .

L ftensftail % itens.Tength] - x; point where the method takes
13 i .

14 pTie T deal) theows EnptyException | effect, i.e. other threads see the
16 throw new EmptyException();

17 T x = items[head % items.length]

o T change

19 return x;

20 I
721}



Linearization Point

1 class WaitFreeQueue=T= |

7 volatile imt head = 0, tail = 0;

3 T[] items;

4 public WaitFreeQueue(int capacity) {

5 items = (T[] )new Object[capacity];

i head = 0; tail = 0;

7 I

B public woid enqg(T x) throws FullException {

g if (tail - head == items.length)
10 throw new FullException(); <

11 items[tail % items.length] = x;
12 tail+; <

13 i

14 public T deq() throws EmptyException {
15 if {tail - head == 0}

16 throw new EmptyException();

17 T x = items[head % items.length]
18 head++;

19 return x;

20 I

721}

The linearization point is the
point where the method takes
effect.



Linearization Point

1 class WaitFreeQueue=T= |

7 volatile imt head = 0, tail = 0;

3 T[] items;

4 public WaitFreeQueue(int capacity) {

5 items = (T[] )new Object[capacity];

i head = 0; tail = 0;

7 I

B public woid enqg(T x) throws FullException {

g if (tail - head == items.length)
10 throw new FullException(); <

11 items[tail % items.length] = x;
12 tail+; <

13 i

14 public T deq() throws EmptyException {
15 if {tail - head == 0}

16 throw new EmptyException(); <
17 T x = items[head % items.length]
18 head++; <

19 return x;

20 I

721}

The linearization point is the
point where the method takes
effect.



Exam questions



Exam guestion

(c) Markieren Sie alle wahren Aussagen fuer jede Mark all true statements for each of the (6)
der folgenden Historien. following histories.

.enq(3)
.enq(4)
:void
.deq()
:void

B p:3

O T
= v B v o B w o B
o g g g d

=11

() Wenn das Objekt p ein zu Beginn leerer  If the object p is an initially empty

Stack ist, ist die Historie linearisierbar. stack, the history is linearizable.
.



Exam guestion

(c) Markieren Sie alle wahren Aussagen fuer jede Mark all true statements for each of the (6)
der folgenden Historien. following histories.

.enq(3)
.enq(4)
:void
.deq()
:void

B p:3

O T
= v B v o B w o B
o g g g d

=11

() Wenn das Objekt p ein zu Beginn leerer  If the object p is an initially empty

Stack ist, ist die Historie linearisierbar. stack, the history is linearizable.
.

* yes



Exam guestion

(c) Markieren Sie alle wahren Aussagen fuer jede Mark all true statements for each of the (6)
der folgenden Historien. following histories.

.enq(3)
.enq(4)
:void
.deq()
:void
B p:3

O T
= v B v o B w o B
o g g g d

=11

(O Wenn das Objekt p eine zu Beginn leere  If the object p is an initially empty
(FIFO) Queue ist, ist die Historie lineari- (FIFO) queue, the history is lineariz-

sierbar. able. S



Exam guestion

(c) Markieren Sie alle wahren Aussagen fuer jede Mark all true statements for each of the (6)
der folgenden Historien. following histories.

A p.enq(3)
B p.enq(4)
3 B p:void
B p.deq()
5 A p:void
B p:3

—

b

=Y

=11

(O Wenn das Objekt p eine zu Beginn leere  If the object p is an initially empty
(FIFO) Queue ist, ist die Historie lineari- (FIFO) queue, the history is lineariz-

* yes

sierbar. able. S



r.read(1)

A meeeeeseeeeeeaees  —— R L L L L LR L L EE LT -
r.write(1) rread(1)
B eereeseeeeee- : RELEELE j— - e e e o - -
r.write(2)
I — - - - - - - e -

(O Wenn das Objekt r ein mit null initialisier-  If the object r is a register initialized to
tes Register ist, ist die Historie linearisier- zero, the history is linearizable.
bar.




r.read(1)

A meeeeeseeeeeeaees  —— R L L L L LR L L EE LT -
r.write(1) rread(1)
B eereeseeeeee- : RELEELE j— - e e e o - -
r.write(2)
I — - - - - - - e -

(O Wenn das Objekt r ein mit null initialisier-  If the object r is a register initialized to
tes Register ist, ist die Historie linearisier- zero, the history is linearizable.
bar.

* yes



r.read(1)

A meeeeeseeeeeeaees  —— R L L L L LR L L EE LT -
r.write(1) rread(1)
B e — - - - - — - - - - - -
r.write(2)
I — - - - - - - e -

() Wenn das Objekt r ein mit null initialisier-  If the object r is a register initialized to
tes Register ist, ist die Historie sequentiell — zero, the history is sequentially consis-
konsistent. tent.




r.read(1)

A meeeeeseeeeeeaees  —— R L L L L LR L L EE LT -
r.write(1) rread(1)
B e — - - - - — - - - - - -
r.write(2)
I — - - - - - - e -

() Wenn das Objekt r ein mit null initialisier-  If the object r is a register initialized to
tes Register ist, ist die Historie sequentiell — zero, the history is sequentially consis-
konsistent. tent.

* Yes, linearizability implies SC



A e Jr— - - oo -
r.write(1) r.read(2)
B ------------- i  ------- ﬁ --------- =
r.write(2)
C e Jr— - e -
(O Wenn das Objekt r ein mit null initialisier-  If the object r is a register initialized to

tes Register ist, ist die Historie linearisier-  zero, the history is linearizable.
bar.



A ————————————————— -ﬁ ——————————————————————————————— E
r.write(1) r.read(2)
B ------------- i  ------- ﬁ --------- =
r.write(2)
C -------------------- _ ---------------------------- E
(O Wenn das Objekt r ein mit null initialisier-  If the object r is a register initialized to
tes Register ist, ist die Historie linearisier-  zero, the history is linearizable.
bar.

* Yes



A ————————————————— -ﬁ- ——————————————————————————————— E
r.write(1) r.read(2)
B -------------------- ﬁ --------- >
r.write(2)
C -------------------- -_- ---------------------------- E
(O Wenn das Objekt r ein mit null initialisier-  If the object r is a register initialized to
tes Register ist, ist die Historie sequentiell  zero, the history is sequentially consis-
konsistent. tent.

* Yes, Linearizability implies sequential consistency.



Shared stack object

Linearizable or not?

= o

> O W = W = W o =

= o W =

= W W =

push
push

pop

push
push
pop
pop

push
pop

push
push

pop

push
push
push

pop

push
push
pop
pop

(1) <
(0)
(0)
(1)

(0) <
(0)
(1)
(1)
(1)

(1) <
(0)
(1)
(0)

(0)
(1) <
(0)
(1

--------- >
->
------- >
P
Cmm e
G >
->
o _
----------- >
e
------- >
o



Shared stack object

Linearizable or not?

yes

yes

No

yes

yes

= o

> O W = W = W o =

= o W =

= W W =

push
push

pop

push
push
pop
pop

push
pop

push
push

pop

push
push
push

pop

push
push
pop
pop

(1)
(0)
(1)

(1)
(0)
(0)
(1)

(0)
(0)
(1)
(1)
(1)

(1)
(0)
(1)
(0)

(0)
(1)
(0)
(1

> S o>
<-@-————mmmm——— >
<@ -—mmmmmmm e >
R S >
<Q®
o
. >
oo >
Koo
<
<@------———- >
<-@->
S o>
<@---——-
Cmmmmee Q@---——- >
<@-----—-——- >
oo @-——>



e =W == W we
0 n n n n n n n n n

push (x)

.pop()

:void
.push(y)
.push(y)
:void
-Pop

:void

W wkrerowwe e e e
nm n un n n nnonnnon

push (x)

:void
.push(y)
:void
.pop()

-POP
.push(y)

:void

Are these histories equivalent?

[ ] Yes [ ] No



o === W= W >

s.push(x) = A s.push(x)
s.pop() A s:void
S:X A s.push(y)
s:void A s:void
s.push(y) B s.pop()
s.push(y) B s:x
s:void A s.pop
S.pop A s:y

S:y B s.push(y)
s:void B s:void

Are these histories equivalent?

] Yes [ ] No

H|A = G|A and H|B = G|B



e =W == W we
0 n n n n n n n n n

push (x) = A s.push(x)
.pop() A s:void

' X A s.push(y)
:void A s:void
.push (y) B s.pop()
.push(y) B s:x

:void A s.pop
.pop A s:y

1y B s.push(y)
:void B s:void

Are they sequential?
H: [ ] Yes [ ] No
G: [ ] Yes [ ] No



= A s.push(x) = A s.push(x)
B s.pop() A s:void
B s:x A s.push(y)
A s:void A s:void
A s.push(y) B s.pop()
B s.push(y) B s:x
A s:void A s.pop
A s.pop A s:y
A s:y B s.push(y)
B s:void B s:void

Are they sequential?

H: [ ] Yes [8] No
G: [8] Yes [ ] No

A history is sequential iff:

1. The first event 1s an invocation
2. Each invocation 1is immediately followed by a response



Kreuzen sie alle korrekten Aussagen an.

O

[l

[

Es existieren sequentiell konsistente His-

torien die nicht linearisierbar sind.
Alle linearisierbaren Historien sind se-

quentiell konsistent.

Unter der Annahme, das H nur die Ob-
jekte x und y enthélt, gilt: Wenn H|x
and H|y linearisierbar sind, dann ist H

linearisierbar.
Unter der Annahme, das H nur die

Objekte x und y enthalt, gilt: Wenn
H|z and H |y sequentiell konsistent sind,
dann ist H sequentiell konsistemt.

Mark all correct statements.

There exist sequentially consistent

histories which are not linearizable.
All linearizable histories are sequen-

tially consistent.

If H|x and H|y are linearizable, H
is linearizable (assuming x and y are
the only objects present in H)

If H|z and H |y are sequentially con-
sistent, H is sequentially consistent
(assuming = and y are the only ob-
jects present in H)



Kreuzen sie alle korrekten Aussagen an. Mark all correct statements.

8 Es existieren sequentiell konsistente His-

torien die nicht linearisierbar sind.
& Alle linearisierbaren Historien sind se-

quentiell konsistent.

8 Unter der Annahme, das H nur die Ob-
jekte x und y enthélt, gilt: Wenn H|x
and H|y linearisierbar sind, dann ist H

linearisierbar.
O Unter der Annahme, das H nur die

Objekte x und y enthalt, gilt: Wenn
H|z and H |y sequentiell konsistent sind,
dann ist H sequentiell konsistemt.

There exist sequentially consistent

histories which are not linearizable.
All linearizable histories are sequen-

tially consistent.

If H|x and H|y are linearizable, H
is linearizable (assuming x and y are
the only objects present in H)

If H|z and H |y are sequentially con-
sistent, H is sequentially consistent
(assuming = and y are the only ob-
jects present in H)



Counterexample last statement

p. enq(X) K enq(x) P deq() =2y

q.enqly) _pendly)  gdeq() >x

H|p is sequentially consistent
H|qg is sequentially consistent
H is not sequentially consistent

In general: sequential consistency is not composable
141



cConsensus



Recap: Consensus Protocols

| propose
1123H-

We
agreed
on“23”.

!

| propose
II42H-

A few moments later...
(a finite number of steps)

We
agreed
on “23”

Which other
scenarios are
allowed?



Consistent Result

| propose | propose
1123”' 1142”'

!

:E: This is illegal!
ELEE Consensus result needs to be
We consistent: the same on all threads.
agreed
on“23”.
We
agreed

on “42”



Valid Result

| propose
1123”'

We
agreed
on“420".

!

| propose
1142”'

agreed
on “420”

This is illegal!

Consensus result needs to be valid:
proposed by some thread.



Wait-Free

| propose
1123H-

| cannot finish
because | am
waiting for
the other
thread.

| propose
II42II-

| will not
schedule you
now!

4

This is illegal!

Consensus needs to be wait-free:
All threads finish after a finite
number of steps, independent of
other threads.



Consistent, Valid, Wait-free

* You need to know these 3 properties



Simplification: Binary Consensus

* Instead of proposing an integer, every thread now proposes either 0 or 1

* Equivalent to “normal” consensus for two threads
= How can we proof this?

binary_decide(bit b) { int_decide(int d) {
return int_decide(b) prop[id] =d
} other = (id + 1)%2;
int win = bin_decide(id);
We can implement binary return prop[win];
consensus using normal }
consensus.

We can implement binary
consensus using normal consensus
(id in {0,1} and unique).



Consenus Number

* The consensus number of C is the largest n for which C solves n-
thread consensus

* Atomic Registers have consensus number 1. CAS has consensus
number o, Can be shown by construction



CAS consensus

class CASConsensus f{
private final int FIRST -1;
private AtomicInteger r = new AtomicInteger(FIRST);
private AtomicIntegerArray proposed;

public Object decide(Object value) f{
Nty = .get();
.set(i, value);
if (r.compareAndSet(FIRST, i))
return .get(i);
else
return .get(r.get());




Implementing two thread consensus with TAS

* Assume you have a machine with atomic registers and an atomic test-and-set operation with the
following semantics (X is initialized to 1):

int TAS() {
res = X;
if (res==1) {
X=0;
}
return res;

}

* Implement a two-process consensus protocol using TAS() and atomic registers.



Implementing two thread consensus - Solution

* Code for both threads
read own_value;
read other_value;
if (TAS() == 0){
return own_value;
}else
return other_value;



State Diagrams of Two-thread Consensus Protocols

Cycles among states cannot exist in a
wait-free algorithm: The state “looks”
the same each time we visit, so we
are trapped forever in the loop and
not wait-free.

Start state, both threads (A and B)
have not yet executed the first
instruction of the consensus
protocol.

Each state has at most two successors:
Either A or B execute an instruction.



Anatomy of a State (in two-thread consensus)

Shared Variables
Thread local
variables of A Thread local
variables of B
Program
- counter of B
Program

counter of A




Anatomy of a State

The states are different, since A has
Shared Variables different local variables and program
rl=3 counter values.

Thread loca

variables of A Thread loca
variables of B

v=0 Program

counter of B
Program
counter of A S1
Shared Variables
ri=3
Thread loca

variables of A Thread loca
variables of B

Yet from B’s perspective they look the y=0
same! (Until A writes x into a shared
variable!) Program

Program
counter of B
S1

counter of A




Critical States

There is always at least one bivalent
state (the start state).

This state is bivalent but all
his successors are :
0 @ We call such states critical.
Frm this state we only reach

states with output 1, so it is
also univalent. o
Output states are always
univalent.



Quiz: Label the States

It is also critical, since it is
bivalent and all its successors
are univalent.

This state is bivalent, as we
can reach 0 and 1 output
states.

The start state is always

bivalent!

Output states are al\  Qutput statesa  Output states are always
univalent. univaler univalent.



Critical State Existence Proof

Lemma: Every consensus protocol has a
critical state.

Proof: From (bivalent) start state, let the treads only
move to other bivalent states.

e If it runs forever the protocol is not wait free.

e If it reaches a position where no moves are possible
this state is critical.



Impossibility Proof Setup — Critical State

Assume we are in the critical

state (which must exist). @ So what actions can a thread
Assume that if A moves next perform in his “move”?
we end up with O, if B moves

next we end up with 1. Either read or write a shared

(w.l.0.g., can switch names) register! — Let’s see why.



Impossibility Proof Setup — Possible actions of a thread

critical
So what actions can a thread
perform in his “move”?

What happens if A just reads
from and writes to local vars?

— — — — — — — — - —_——_——

Now the I From B’s perspective I
scheduler these two states look
pauses A, and I exactly the same! |
B runs solo B cannot know that o .
I one of them must I C;)nclustlc-)n.IFlrst mstruc::on
I output 0! I after Cflthi::l state must be a
read or write of a shared
I I | variable!
- ~ \
I - ~ \\
Output must

Output must

be O be 1



Impossibility Proof Setup — Possible actions of a thread

We know reading/writing B can read the
local variables cannot lead @ same variable
out of a critical state — what
remains? B canread a
different variable
A can read a
shared variable B can write the

same variable
A can write a
shared variable

B can write a
different variable

Many cases...
let’s make tables



Many Cases to check

First
Action

First Action

A:r1l.read() A: r1.write() A: r1.write() A: r2.write()

:rl.read()
Second Action
:r2.read()
s rl.write()
: r2.write() ’
Second Action

A:rl.read() A:r2.read() A: rl.write() A: r2.write()

:rl.read()

:r2.read()

:r1.write()

: r2.write()

Is binary
consensus
possible for any
of those?

Can we simplify
somehow?

Let’s say A always moves first,
otherwise, switch names.

Similarly, we can call the
register A reads rl in both
cases.



Impossibility Proof Case |: A reads

Output is decided (0) A reads B does X Output is decided (1)
due to critical state. due to critical state.
B does X

O From B’s perspective
these two states look

exactly the same!
However B needs to
output different
values!



What did we just prove?

Second Action

First Action
A:rl.read() A: r1.write()
B: r1.read()
B: r2.read() ?
B: r1.write() ®

B: r2.write()

Is binary
consensus
possible for any
of those?



Impossibility Proof Case I’: B reads

Output is decided (0) B reads A does X Output is decided (1)
due to critical state. due to critical state.
A does X

O From B’s perspective
these two states look

exactly the same!
However A needs to
(eventually) output

different values!



What did we just prove?

First Action

Second Action

B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()

A:rl.read() A: r1.write()

Is binary
consensus
possible for any
of those?



Impossibility Proof Case Il: A and B write to different
registers

Output is decided (0) A writes rl B writes r2 Output is decided (1)

due to critical state. —rmemm - N SN T T T T —due to critical state.
i 1
| ;
; !
i .

1
I
I
!
EB writes r2 :

-
. .
. -

2" Output 1

_ -
.
.-
L -
-t
.
l’

——————————
———————

Output O !

Exactly the same state!

However it should be outputting 0
/ 1 depending on where it was
reached from!



What did we just prove?

Second Action

First Action
A:rl.read() A: r1.write()
B: r1.read()
B: r2.read()
B: r1.write()

B: r2.write()

Is binary
consensus
possible for any
of those?



Impossibility Proof Case lll: A and B write to the same
register

Output is decided (0) A writes ¥ B writes r Output is decided (1)
due to critical state. due to critical state.

O O

B writes r l
O From B’s perspective
these two states look

exactly the same!
However B needs to
output different
values!



That’s all

Second Action

First Action
A:rl.read() A: rl.write()
B: r1.read()
B: r2.read()
B: r1.write()
B: r2.write()

1985, 2.5k citations

Is binary
consensus
possible for any
of those?

No

Impossibility of Distributed Consensus with One Faulty
Process

MICHAEL J. FISCHER

Yale University, New Haven, Connecticut

NANCY A. LYNCH

Massachusetts Institute of Technology, Cambridge, Massachuseits
AND

MICHAEL S. PATERSON

University of Warwick, Coventry, England

Abstract. The consensus problem involves an asynchronous system of processes, some of which may he



Plan fur heute

* Organisation

* Nachbesprechung Assignment 12
* Theory

* Intro Assighment 13

* Kahoot

* Exam questions



Assignment 13

* |s about SC and linearizability
* Use my slides and definitions if you struggle

* Histories and their properties:
* Sequential Consistency
* Linearizability
* Equivalence
e Completeness
e etc.



Assignment 13

* |s about SC and linearizability

Sequential Consistency

For each of the following histories, indicate if they are sequentially consis Linearizability
objects r and s are registers (initially zero), q is a FIFO (initially empty).

Which of the following histories are linearizable? Infer the object type from the supp

A: -—|r.write(l) |-~—————"""""""""""""""""—— X - T
B: lr.read () :0] - registers are initially zero, stacks/queues initially empty.
c: -—-— |r.read():1|————
A: s.push (1)
A: g.enq(b) A: void
B: q.enq(3) B: s.push(2)
A VO%d B: wvoid
B: void B
A: g.deqgl() : s.pop ()
B: g.deqg() A: s.pop()
A: 3 B: 1
B: 3 A: 2
A: ——|s.write(l) [-———————————mm o A: ——|s.write (1) |———————————————
2: ______ |r.read():0|———; _____ ;_()__IT ______ B: — |lr.read () :1|—|r.read():0| ———
T T T T T T T T T T T T T T T T T T r.rea sl
A —|s.write(1) |——F"——F""""——————— Foamivalanca

B: — |r.read () :1|-——|r.read() :0|———



Recap Histories

Histories can be categorized by some fundamental properties:

Sequential: 15t action invocation; no interleavings

Complete: no pending invocations

Equivalence to some other History: for all threads A: HA= G|A
Legal: for all objects r: H|r is sequential and correct

Well formed: for all threads A: H|A is sequential

Quiescent Consistent: correct with reordering of “overlapping” calls
Sequentially Consistent: correct with reordering regarding threads
Linearizable: choosing linearization points to make execution correct

Thanks to @Erxuan Li, PProg25

Note: the above definitions are not formal



Questions



LOCK FREE LIST-BASED SET

(NOT SKIP LIST!)

Some of the material from "Herlihy: Art of
Multiprocessor Programming”



First Approach, simple CAS for remove

Does this work?

A: remove(c) B: CAS(b.next,c,b’)

B: add(b"') B 4

.y .*
e -®
..........
iiiiiiiii

A: CAS(b.next,c,d)

ok? CAS decides who wins =2 this seems to work

50 does this CAS approach
work generally??

* Note that CAS(b.next,c,b’) means if b.next == c then set b.nextto b’
otherwise don’t do anything



First Approach, simple CAS for remove

Another scenario

A: remove(c)
B: remove(b)

CAS CAS

¢ not deleted! ®

* WWe read a stale value for b.next = c! Thread B will do
CAS(a.next,b,c)



Second Approach, try to fix the issue by using mark bit which
tells us if an element was removed

B: c.mark ?
A: remove(c) B: CAS(c.next,d,c')
B: add(c')
| \/'—O/F a
c' not added! @ A: CAS(c.mark,false,true)

A: CAS(b.next,c,d)



Second Approach, try to fix the issue by using mark bit which
tells us if an element was removed

B: c.mark ?
A: remove(c) B: CAS(c.next,d,c')
B: add(c')

* Thread b checks if node c is removed, / Y
sees mark bitis false, proceeds ~—
¢' not added! ® A: CAS(c.mark,false,true)
* Now thread a wants to remove c, sets A: CAS(bnextcd)

mark bit of node c

* Reads c.next =d and does a
cas(b.next,c,d), which succeeds.

e Node c is removed

* Now thread b does CAS(c.next,d,c’). ¢’
Is iInserted but not in the list, as c got
removed




The problem

The difficulty that arises in this and many other problems is:
= We cannot (or don't want to) use synchronization via locks

= We still want to atomically establish consistency of two things
Here: mark bit & next-pointer

* We want to set the mark bit and the next pointer in one step
otherwise we face the issue from the previous slide



* We want to set the mark bit and the next pointer in one step
otherwise we face the issue from the previous slide

e So how do we do this?



The Java solution

Java.util.concurrent.atomic
AtomicMarkableReference<V> {

boolean attemptMark(V expectedReference, boolean newMark) DCASon V

boolean compareAndSet(V expectedReference, V newReference, and mark
boolean expectedMark, boolean newMark)

V get(boolean[] markHolder)
V getReference()
boolean isMarked()

set(V newReference, boolean newMark)

} reference mark bit

26%Bytes=562,949,953,421,312 Petabytes



The Java solution

Java.util.concurrent.atomic
AtomicMarkableReference<V> {

boolean attemptMark(V expectedReference, boolean newMark) DCASon V
boolean compareAndSet(V expectedReference, V newReference, and mark
boolean expectedMark, boolean newMark)
V get(boolean[] markHolder)
V getReference()
boolean isMarked()
set(V newReference, boolean newMark)
} reference mark bit

address [F-‘

* The mark bit we were talking about is just hidden in the reference
now! E.g. c.mark is now hidden in c.next!

* We can update a reference with a single CAS!

2%4Bytes=562,949,953,421,312 Petabytes



The algorithm using AtomicMarkableReference

= Atomically

= Swing reference and
= Update flag

= Remove in two steps
= Set mark bit in next field
= Redirect predecessor’s pointer



Algorithm idea

1. try to set mark (c.next
Why “try to”? How can y ( )

A: remove(c) it fail? What then? 2. try CAS(
[b.next.reference, b.next.marked],
[c,unmarked], [d,unmarked]);
@Mark
H—s O ’ poces

b

* Note that
CAS( [ b.next.reference, b.next.marked ], [ c,unmarked], [d, unmarked])

* checks if b.next = c and b.mark = 0 (unmarked = not removed) then set
b.next =d and leave b.mark = 0 (unmarked)



Did it fix our previous problem?

B: c.mark?
A: remove(c) B: CAS(c.next,d,c')
B: add(c')

¢' not added! ® A: CAS(c.markfalse,true)
A: CAS(b.next,c,d)

* Yes, we can’t have bad interleaving anymore because thread B
checks c.mark and updates c.next in one step

* Thread B will either see mark =0 = can insert ¢’ in one step or
mark =1 which means it needs to retry



Remove , remove case

It helps!
1. try to set mark (c.next)
A: remove(c) 2. try CAS(
B b [b.next.reference, b.next.marked],
) Pemove( ) [c,unmarked], [d,unmarked]);
@Mark @Mark
x > O > o > ————
Results in node C not being 1. try to set mark (b.next)
removed but still marked! 2. try CAS(

[a.next.reference, a.next.marked],
[b,unmarked], [c,unmarked]);



It helps!
1. try to set mark (c.next)

A: remove(c) 2. try CAS(
B: b [b.next.reference, b.next.marked],
+ remove(b) [c,unmarked], [d,unmarked]);
@Mark @Mark
x > O—b O—b —————

Results in node C not being 1. try to set mark (b.next)

removed but still marked! 2. try CAS(
[a.next.reference, a.next.marked],
[b,unmarked], [c,unmarked]);

* If we implement our methods correctly and watch out for mark bit
being set, this is fine, i.e., this implementation works

* However, we would like marked nodes to be removed physically at
some point too



Traversing the list

Q: what do you do when you find a “logically” deleted node in your path?
A: finish the job.

CAS the predecessor’s next field
Proceed (repeat as needed)

)( > o > -———



Find node

public Window find(Node head, int key) { class Window {

Node pred = null, curr = null, succ = null; public Node pred;

boolean[] marked = {false}; boolean snip; public Node curr;

while (true) { Window(Node pred, Node curr) {
pred = head; this.pred = pred;
curr = pred.next.getReference(); this.curr = curr;
boolean done = false; }
while (!done) { }

marked = curr.next.get(marked);
succ = marked[1l:n]; // pseudo-code to get next ptr
while (marked[@] && !done) { // marked[@] is marked bit
if pred.next.compareAndSet(curr, succ, false, false) {
curr = succ;

ked = .next.get ked) ; _
Zazce= maitg;[z?ﬁ];ge IS, if marked nodes are found,

} delete them, if deletion fails
else done = true; restart from the beginning

loop over nodes until
position found

¥
if (!done && curr.key >= key)

return new Window(pred, curr);
pred = curr;
curr = succ;

Y}




Remove

Find element and prev

public boolean remove(T item) { element from key
Boolean snip;
while (true) { If no such element -> return
Window window = find(head, key); false

Node pred = window.pred, curr = window.curr;

. | _
if (curr.key != key) { Otherwise try to logically

return false; delete (set mark bit).

} else {
Node succ = curr.next.getReference(); If no success, restart from the
snip = curr.next.attemptMark(succ, true); very beginning
if (!snip) continue;
pred.next.compareAndSet(curr, succ, false, false); Try to physically delete the
return true; element, ignore result  (2)

} ®

} N N —— N O N —————




Add

public boolean add(T item) {
boolean splice;
while (true) {
Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key == key) {
return false; ,
Otherwise create new node,
} else { set next / mark bit of the

element to be inserted

Find element and prev
element from key

If element already exists,
return false

Node node = new Node(item);
node.next = new AtomicMarkableRef(curr, false);

if (pred.next.compareAndSet(curr, node, false, false))

return true;
} ? and try to insert. If insertion

fails (next set by other thread
} or mark bit set), retry
}



Add

public boolean add(T item) { Find element and prev
boolean splice; element from key
while (true) {
Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key == key) {
return false; :
Otherwise create new node,
} else { set next / mark bit of the

element to be inserted

If element already exists,
return false

Node node = new Node(item);
node.next = new AtomicMarkableRef(curr, false);

if (pred.next.compareAndSet(curr, node, false, false))

return true; : . .
} ? and try to insert. If insertion

fails (next set by other thread
} or mark bit set), retry

* In our previous example

B:c.mark?
A: remove(c) B: CAS(c.next,d,c')

4D
|

A: CAS(c.mark,false,true)
A: CAS(b.next,c,d)

-

c' not added! ®




Observations

= We used a special variant of DCAS (double compare and swap) in order to be
able check two conditions at once.
This DCAS was possible because one bit was free in the reference.

= We used a lazy operation in order to deal with a consistency problem. Any
thread is able to repair the inconsistency.
If other threads would have had to wait for one thread to cleanup the
inconsistency, the approach would not have been lock-free!

" This «helping» is a recurring theme, especially in wait-free algorithms where,
in order to make progress, threads must help others (that may be off in the
mountains ©)



Plan fur heute

* Organisation

* Nachbesprechung Assignment 12
* Theory

* Intro Assignment 13

* Kahoot
* Exam questions



Kahoot!



The following is a correct implementation of a reus-
able barrier in Java.

public MyBarrier

final int |

public synchronized void




The following is a correct implementation of a reus-
able barrier in Java.

public MyBarrier

final int |

'k ‘_ L

* False, remember spurious wake ups



Now the implementation is correct. (change: if ->
while)

public cl MyBarrier
1nt | 1
final int

public synchronized void a




Now the implementation is correct. (change: if ->
while)

public cl MyBarrier
1INt
final int

public synchronized void awa

+count < max

* False, imagine max = 3. Then A,B,C arrive. Now C notifies threads A
and B but sets count to 0. Thus, only C can leave the barrier while A
and B are still stuck.



Plan fur heute

* Organisation

* Nachbesprechung Assignment 12
* Theory

* Intro Assignment 13

* Kahoot

* Exam questions



Types of exercises that might come in the exam

Disclaimer: This list is not guaranteed to be complete and is only meant to give you an
idea of what has been asked on previous exams.

Locks

* Usually there are not too many question on this topic. true/false questions of which
lock has which properties (fairness, starvation free)

* find bug in lock code (violation of mutual exclusion or deadlock freedom)

* draw state space diagram and/or read off correctness properties

* reproduce Peterson/Filter/Bakery lock

* prove correctness of Peterson lock or similar (but not Filter or Bakery)
Monitors, semaphores, barriers

* semaphore implementation (mostly with monitors)

* (never seen rendezvous with semaphores in an exam)

* barrierimplementation (mostly with monitors)

* (only seen atask on implementing a barrier with semaphores once in FS21, 8b)

* fill out some program using monitors (similar to wait/notify exercises, maybe with
lock conditions)

Credits @acellison PProg23


https://exams.vis.ethz.ch/exams/i0svp1fh.pdf

11.

Barriers and Synchronization (9 points)

(a) Wir mochten eine einfache Barriere (muss
nicht wiederverwendbar sein) implementie-
ren. Die Barriere soll N threads synchronisie-
ren. Markieren Sie welche der folgenden Aus-
sagen auf die jeweiligen implementierungen
zutreffen. Sollten Sie den Code fiir ineffizient
halten, nennen sie kurz den Grund.

We want to implement a simple barrier
(does not have to be reusable) that al-
lows to synchronize the execution of N
threads. Mark whether each of the fol-
lowing statements is true for each imple-
mentation. If you consider this code to
be inefficient, shortly state why.

i1 class Barrier {
2 AtomicInteger i = new AtomicInteger(0);
3 final int threads = N;
4 public void await() throws InterruptedException {
5 int cur_threads = i.incrementAndGet();
6 if (cur_threads < threads) {
7 while (i.get() < threads) {}
8 }
9 }
10 }

(O Der gezeigte Code hat die gewiinschte Se-  Code has the desired semantics.

mantik.



Barriers and Synchronization (9 points)

11. (a) Wir mochten eine einfache Barriere (muss ~ We want to implement a simple barrier  (4)
nicht wiederverwendbar sein) implementie-  (does not have to be reusable) that al-
ren. Die Barriere soll N threads synchronisie-  lows to synchronize the execution of N
ren. Markieren Sie welche der folgenden Aus-  threads. Mark whether each of the fol-
sagen auf die jeweiligen implementierungen  lowing statements is true for each imple-
zutreffen. Sollten Sie den Code fiir ineffizient — mentation. If you consider this code to

halten, nennen sie kurz den Grund. be inefficient, shortly state why.
I 1 class Barrier {
2 AtomicInteger i = new AtomicInteger(0);
3 final int threads = N;
4 public void await() throws InterruptedException {
5 int cur_threads = i.incrementAndGet();
6 if (cur_threads < threads) {
7 while (i.get() < threads) {}
8 }
9 }
10 }

(O Der gezeigte Code hat die gewiinschte Se-  Code has the desired semantics.
mantik.

True, there is no data race since incrementAndGet increases i atomically.



Barriers and Synchronization (9 points)

11. (a) Wir mochten eine einfache Barriere (muss ~ We want to implement a simple barrier (4)
nicht wiederverwendbar sein) implementie-  (does not have to be reusable) that al-
ren. Die Barriere soll N threads synchronisie-  lows to synchronize the execution of N
ren. Markieren Sie welche der folgenden Aus-  threads. Mark whether each of the fol-
sagen auf die jeweiligen implementierungen  lowing statements is true for each imple-
zutreffen. Sollten Sie den Code fiir ineffizient =~ mentation. If you consider this code to

halten, nennen sie kurz den Grund. be inefficient, shortly state why.
1. 1 class Barrier {
2 AtomicInteger i = new AtomicInteger(0);
3 final int threads = N;
4 public void await() throws InterruptedException {
5 int cur_threads = i.incrementAndGet();
6 if (cur_threads < threads) {
7 while (i.get() < threads) {}
8 }
9 }
10 }

(O Der Code beendet sich immer. Code will always complete.



Barriers and Synchronization (9 points)

11. (a) Wir mochten eine einfache Barriere (muss ~ We want to implement a simple barrier (4)
nicht wiederverwendbar sein) implementie-  (does not have to be reusable) that al-
ren. Die Barriere soll N threads synchronisie-  lows to synchronize the execution of N
ren. Markieren Sie welche der folgenden Aus-  threads. Mark whether each of the fol-
sagen auf die jeweiligen implementierungen  lowing statements is true for each imple-
zutreffen. Sollten Sie den Code fiir ineffizient — mentation. If you consider this code to

halten, nennen sie kurz den Grund. be inefficient, shortly state why.

i1 class Barrier {
2 AtomicInteger i = new AtomicInteger(0);
3 final int threads = N;
1 public void await() throws InterruptedException {
5 int cur_threads = i.incrementAndGet();
6 if (cur_threads < threads) {
7 while (i.get() < threads) {}
8 }
9 }
10 }

() Der Code beendet sich immer. Code will always complete.

True, it is a correct barrier implementation.



11.

Barriers and Synchronization (9 points)

(a) Wir mochten eine einfache Barriere (muss
nicht wiederverwendbar sein) implementie-
ren. Die Barriere soll N threads synchronisie-
ren. Markieren Sie welche der folgenden Aus-
sagen auf die jeweiligen implementierungen
zutreffen. Sollten Sie den Code fiir ineffizient
halten, nennen sie kurz den Grund.

We want to implement a simple barrier (4)
(does not have to be reusable) that al-

lows to synchronize the execution of N
threads. Mark whether each of the fol-
lowing statements is true for each imple-
mentation. If you consider this code to

be inefficient, shortly state why.

i1 class Barrier {
2 AtomicInteger i = new AtomicInteger(0);
3 final int threads = N;
4 public void await() throws InterruptedException {
5 int cur_threads = i.incrementAndGet();
6 if (cur_threads < threads) {
7 while (i.get() < threads) {}
8 }
9 }

(O Der Code verendet die Rechenressourcen  Code might not use compute re-
unter Umsténden ineffizient. Warum? sources efficiently. Why?



Barriers and Synchronization (9 points)

11. (a) Wir mochten eine einfache Barriere (muss ~ We want to implement a simple barrier  (4)
nicht wiederverwendbar sein) implementie-  (does not have to be reusable) that al-
ren. Die Barriere soll N threads synchronisie-  lows to synchronize the execution of N
ren. Markieren Sie welche der folgenden Aus-  threads. Mark whether each of the fol-
sagen auf die jeweiligen implementierungen  lowing statements is true for each imple-
zutreffen. Sollten Sie den Code fiir ineffizient  mentation. If you consider this code to

halten, nennen sie kurz den Grund. be inefficient, shortly state why.

i class Barrier {
2 AtomicInteger i = new AtomicInteger(0);
3 final int threads = N;
4 public void await() throws InterruptedException {
5 int cur_threads = i.incrementAndGet();
6 if (cur_threads < threads) {
7 while (i.get() < threads) {}
8 }
9 }
10 }

(O Der Code verendet die Rechenressourcen  Code might not use compute re-
unter Umsténden ineffizient. Warum? sources efficiently. Why?

True, the waiting threads are busy waiting.



11.

1 class Barrier {

2 int 1 = 0;

3 final int threads = N;

1 public synchronized void await() throws InterruptedException {
5 ++1 ;

6 while (i < threads) { wait(); }

7 notify();

8 ¥

o }

(O Der gezeigte Code hat die gewiinschte Se-  Code has the desired semantics.
mantik.



11.

1 class Barrier {

2 int 1 = 0;

3 final int threads = N;

1 public synchronized void await() throws InterruptedException {
5 ++1 ;

6 while (i < threads) { wait(); }

7 notify();

8 ¥

o }

(O Der gezeigte Code hat die gewiinschte Se-  Code has the desired semantics.
mantik.

Yes



. 1 class Barrier {

2 int 1 = 0;

3 final int threads = N;

1 public synchronized void await() throws InterruptedException {
5 ++1 ;

6 while (i < threads) { wait(); }

7 notify();

8 }

o 1}

(O Der Code beendet sich immer. Code will always complete.



. 1 class Barrier {

2 int 1 = 0;
3 final int threads = N;
1 public synchronized void await() throws InterruptedException {
5 ++1 ;
6 while (i < threads) { wait(); }
7 notify();
8 }
o 1}
(O Der Code beendet sich immer. Code will always complete.

True



11.

o }

class Barrier {
int 1 = 0;
final int threads = N;
public synchronized void await() throws InterruptedException {
++1 ;

while (i < threads) { wait(); }
notify();

Der Code verendet die Rechenressourcen  Code might not use compute re-

unter

Umstéanden ineffizient. Warum? sources efficiently. Why?



. 1 class Barrier {

2 int 1 = 0;

3 final int threads = N;

1 public synchronized void await() throws InterruptedException {
5 ++1 ;

6 while (i < threads) { wait(); }

7 notify();

8 }

o 1}

(O Der Code verendet die Rechenressourcen  Code might not use compute re-
unter Umsténden ineffizient. Warum? sources efficiently. Why?

False, the code makes use of wait/notify and thus does not waste compute resources.



Feedback

* Falls ihr Feedback mochtet sagt mir bitte Bescheid!
* Schreibt mir eine Mail oder auf Discord



Danke

* Bis nachste Woche!



	Default Section
	Slide 1: Parallele Programmierung FS25
	Slide 2: Plan für heute
	Slide 3: Organisation
	Slide 4: Organisation
	Slide 5: Organisation
	Slide 6: Organisation
	Slide 7: Organisation
	Slide 8: Organisation
	Slide 9: Organisation
	Slide 10: Plan für heute
	Slide 11
	Slide 12
	Slide 13: Hint
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Plan für heute
	Slide 20: Recap
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Implications
	Slide 25
	Slide 26: `
	Slide 27: Lock free data structures
	Slide 28
	Slide 29: So how do we build lock free data structures?
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Problems with this implementation?
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Hazard Pointers
	Slide 42: Hazard Pointers
	Slide 43: Hazard Pointers
	Slide 44: Hazard Pointers
	Slide 45: Hazard Pointers
	Slide 46: Hazard Pointers

	sc and linearizability
	Slide 47: SC and Linearizability
	Slide 48: How to define correctness of concurrent programs
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Example: Queue
	Slide 64: Example: Queue
	Slide 65: Alternative concurrent queue implementation
	Slide 66: How to reason about concurrent objects that have no locks?
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72: Motivation
	Slide 73: Motivation
	Slide 74: Motivation
	Slide 75: Motivation
	Slide 76: Combining both we get SC
	Slide 77: Combining both we get SC
	Slide 78
	Slide 79: In other words
	Slide 80
	Slide 81
	Slide 82: Sequential consistency and the real world
	Slide 83: Sequential consistency and the real world
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94: Motivation
	Slide 95: How do we fix this
	Slide 96: Idea
	Slide 97
	Slide 98
	Slide 99: In other words
	Slide 100: In other words
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112: Summary of definitions
	Slide 113: Summary of definitions
	Slide 114: Summary of definitions
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120

	exam questions
	Slide 121: Exam questions
	Slide 122: Exam question
	Slide 123: Exam question
	Slide 124: Exam question
	Slide 125: Exam question
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141

	consensus
	Slide 142
	Slide 143: Recap: Consensus Protocols
	Slide 144: Consistent Result
	Slide 145: Valid Result
	Slide 146: Wait-Free
	Slide 147: Consistent, Valid, Wait-free
	Slide 148: Simplification: Binary Consensus
	Slide 149: Consenus Number
	Slide 150
	Slide 151: Implementing two thread consensus with TAS
	Slide 152: Implementing two thread consensus - Solution
	Slide 153: State Diagrams of Two-thread Consensus Protocols
	Slide 154: Anatomy of a State (in two-thread consensus)
	Slide 155: Anatomy of a State
	Slide 156: Critical States
	Slide 157: Quiz: Label the States
	Slide 158: Critical State Existence Proof
	Slide 159: Impossibility Proof Setup – Critical State
	Slide 160: Impossibility Proof Setup – Possible actions of a thread
	Slide 161: Impossibility Proof Setup – Possible actions of a thread
	Slide 162: Many Cases to check
	Slide 163: Impossibility Proof Case I: A reads
	Slide 164: What did we just prove?
	Slide 165: Impossibility Proof Case I’: B reads
	Slide 166: What did we just prove?
	Slide 167: Impossibility Proof Case II: A and B write to different registers
	Slide 168: What did we just prove?
	Slide 169: Impossibility Proof Case III: A and B write to the same register
	Slide 170: That’s all

	intro assignment 13
	Slide 171: Plan für heute
	Slide 172: Assignment 13
	Slide 173: Assignment 13
	Slide 174
	Slide 175: Questions

	lock free list
	Slide 176
	Slide 177: First Approach, simple CAS for remove
	Slide 178: First Approach, simple CAS for remove
	Slide 179: Second Approach, try to fix the issue by using mark bit which tells us if an element was removed
	Slide 180: Second Approach, try to fix the issue by using mark bit which tells us if an element was removed
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187: Did it fix our previous problem?
	Slide 188: Remove , remove case 
	Slide 189: Again:
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195

	kahoot
	Slide 196: Plan für heute
	Slide 197: Kahoot!
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202: Plan für heute
	Slide 203: Types of exercises that might come in the exam
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216: Feedback
	Slide 217: Danke


