
Parallele Programmierung FS25
Exercise Session 13

Jonas Wetzel

Plan für heute

• Organisation
• Nachbesprechung Assignment 12
• Theory
• Intro Assignment 13
• Exam questions
• Kahoot

Organisation

• Mein Name ist Jonas Wetzel
• Meine Website (Materialien und Inhalt der Übungen):

n.ethz.ch/~jwetzel
• Meine Email: jwetzel@ethz.ch
• Discord: @jonas.too

mailto:jwetzel@ethz.ch

Organisation

• Mein Name ist Jonas Wetzel
• Meine Website (Materialien und Inhalt der Übungen):

n.ethz.ch/~jwetzel
• Meine Email: jwetzel@ethz.ch
• Discord: @jonas.too
• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9

mailto:jwetzel@ethz.ch
https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9
• Falls ihr Feedback möchtet kommt bitte zu mir

https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

• 2^64 ist nicht ungefähr gleich zu den Atomen im Universum!

• 2^64 ≈ 1.84×10^19

• 1mm^3 Sand hat 10^8 Atome, also ungefähr Anzahl Atome in 10
Sandkörnern ist 2^64

• Schätzungen für Anzahl Sandkörner auf der Erde ist 7.5 * 10^18,
also ist 2^64 ungefähr das Doppelte davon

Organisation

• Kahoot Allegations

Organisation

• TA Award

• Danke!

Organisation

• Wo sind wir jetzt?

Sequential Consistency and Linearizability

To come: Consensus

Plan für heute

• Organisation

• Nachbesprechung Assignment 12
• Theory
• Intro Assignment 13
• Exam questions
• Kahoot

Assignment 12

• Multisensor System.

11

Multisensor System

12

Implement two versions of the senor data set:

a) One blocking version based on a readers-writers lock (LockedSensors.java).

b) A lock-free version (LockFreeSensors.java)

Hint

• dataRef = new AtomicReference<SensorData>();

• AtomicReference allows for CAS on an object reference
• i.e. we can replace old object with new object in one step

Multisensor System

14

LockedSensors

15

Lock implementation

16

LockFreeSensors

17

LockFreeSensors

18

Is this wait free?

Plan für heute

• Organisation
• Nachbesprechung Assignment 12

• Theory
• Intro Assignment 13
• Exam questions
• Kahoot

Recap

Lock-free algorithm

Object readSomething() {

 return atomicReference.get();

}

Void writeSomething(Object new_object) {

 Object old_object;

 do {

 old_object = atomicReference.get();

 // Check if we want to overwrite the latest data (i.e. only write newer or better data)

 if (…) {

 return;

 }

 } while (!atomicReference.compareAndSet(old_object, new_object));

}

22

Implications

`

Lock free data structures

So how do we build lock free data structures?

Problems with this implementation?

• Say we want to use a node pool instead of always creating new
nodes (i.e. not always use new Node() but instead take it out of a
list)

• -> ABA Problem (exam relevant)

Not the same get() as from
Atomic!

Hazard Pointers

Hazard Pointers

• ABA problem stems from reuse of a pointer P that has been read
by some thread X

• but not yet written with CAS by the thread X
• Modification takes place meanwhile by some other thread Y
• Thread X doesn’t realize that state changed and still performs

operation

Hazard Pointers

• Our idea to solve this, is that we introduce an array with n slots,
where n is the number of threads

• Before X now reads P, it marks it as hazardous by entering it into
the array (in slot assigned to thread X, i.e. ThreadID mod Arraysize)

• After the CAS, X removes P from the array
• If a process Y tries to reuse P, it first checks all entries of the

hazard array, and, if it finds P in there, it simply requests a new
pointer for use

Hazard Pointers

• Examine the changed pop()
method:

• We rely on garbage
collection if we could run
into problems, i.e., when we
want to put something back
into the pool that is
hazardous

Hazard Pointers

• The ABA problem also occurs on the node pool we are using
• We could make the pools thread-local. This does not help when

push/pop operations aren’t well balanced within the thread
• Alternatively, we could just use Hazard pointers on the global

node pool
• Previous Java code does not really improve performance in

comparison to memory allocation and garbage collection, but it
demonstrates how to solve the ABA problem

Hazard Pointers

• Questions?

SC and Linearizability

How to define correctness of concurrent
programs
• We can define different models
• Mostly just theoretical, CPU manufacturer decides on model

Program correctness in a sequential world

Objects encapsulate some representation of state

• We don’t reason about the representation directly, but about its visibility
from outside (via public methods) (e.g. stack.top()==3)

• State must be consistent, i.e., according to the public class invariant
(e.g., forall x. stack.push(x).pop()==x)

• Each method satisfies its post-condition, given its pre-condition
• Hoare Tripel aus EProg

49

Essenti
al

Program correctness in a concurrent world

50

Essenti
al

51

Execution
Essenti
al

52

Execution
Essenti
al

Histories

A history is a series of invocations and responses of methods.

53

Histories

Histories clan be categorized by some fundamental properties:

Sequential
Complete
Equivalence to some other History
Legal
Well formed
Quiescent Consistent
Sequentially Consistent
Linearizable

54

Sequential

No interleaving at all.
First event is an invocation.
Each invocation is immediately followed by a response.

A: r.write(1)
A: void
B: r.read()
B: 1

55

Complete

No pending invocations at the end

Not complete:
A: r.write(1)

Complete:
A: r.write(1)
A: void

56

What are projections?

57

We write H|A and to say:

All events in H by thread A

Essential

What are projections?

58

We write H|q and to say:

All events in H on object q

Essential

Equivalence?

59

Histories H1 and H2 are equivalent if their

per-thread projections are the same.

Essential

Legal

For all objects o: H|o is sequential and correct

Correct in the sense of the object specification

60

Well formed

For all threads t: H|t is sequential

61

• A system can be …
• Quiescent consistent
• Sequentially consistent
• Linearizable

• And many more, it’s up to us to define

Example: Queue

• What does it mean for a concurrent
object to be correct?

• each method accesses and updates
fields while holding an exclusive lock

• method calls take effect sequentially

Example: Queue

Alternative concurrent queue implementation

• queue is correct only if it is
shared by a single enqueuer and
a single dequeuer

• It has almost the same internal
representation as the lock-based
queue

• only difference is the absence of
a lock

How to reason about concurrent objects that
have no locks?
• objects whose methods hold exclusive locks are less desirable

than ones with finer-grained locking or no locks
• We therefore need a way to specify the behavior of concurrent

objects, and to reason about their implementations, without
relying on method-level locking

• lock-based queue example illustrates a useful principle: it is
easier to reason about concurrent objects if we can somehow
map their concurrent executions to sequential ones, and limit our
reasoning to these sequential executions

Quiescent Consistency

Quiescent consistency

• Method calls should appear to happen in a one-at-a-time, sequential order
• Method calls separated by a period of quiescence should appear to take

effect in their real-time order

68

Quiescent consistency

requires non-overlapping operations to appear to take effect in their real-time
order, but overlapping operations might be reordered

69

Quiescent consistency

requires non-overlapping operations to appear to take effect in their real-time
order, but overlapping operations might be reordered

70

Can change the order of
these operations

But not between walls

Sequential Consistency

Motivation

• two threads concurrently write −3 and 7 to a shared register r
• Later, one thread reads r and returns the value −7
• This behavior is clearly not acceptable!
• We expect to find either 7 or −3 in the register, not a mixture of both!

Motivation

• two threads concurrently write −3 and 7 to a shared register r

• Later, one thread reads r and returns the value −7

• This behavior is clearly not acceptable

• We expect to find either 7 or −3 in the register, not a mixture of both!

• Method calls should appear to happen in a one-at-a-time,
sequential order!

Motivation

• single thread writes 7 and then −3 to a shared register r. Later, it
reads r and returns 7

• For some applications, this behavior might not be acceptable
because the value the thread read is not the last value it wrote

Motivation

• We want Method calls to appear to take effect in program order!

Combining both we get SC

• Method calls should appear to happen in a one-at-a-time,
sequential order

• Method calls should appear to take effect in program order

Combining both we get SC

• Method calls should appear to happen in a one-at-a-time,
sequential order

• Method calls should appear to take effect in program order

• That is, in any concurrent execution, there is a way to order the
method calls sequentially so that they (1) are consistent with
program order, and (2) meet the object’s sequential
specification

Sequential consistency

A multiprocessing system has sequential consistency if:

"...the results of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its
program."

- Leslie Lamport (inventor of sequential consistency, GOAT Turing Award
Winner, concurrent master mind)

78

In other words

• A History H is sequential, if there are no overlapping methods
(when every invocation is immediately followed by the matching
response)

• A History is SC (Sequentially Consistent), if:
1.Every Thread projection is a sequential history
2.Method calls appear to follow PO (Program Order), which allows for

"reordering" of method-calls if they follow the ordering determined by the
corresponding Thread-projection

• Thread projection: we write H|A to say: All events in H by thread A

Sequential consistency requirements

1. All instructions are executed in order.

2. Every write operation becomes instantaneously visible throughout the
system.

80

Essenti
al

Sequential consistency requirements

1. All instructions are executed in order.

2. Every write operation becomes instantaneously visible throughout the
system. (all variables volatile! Shows us that standard java is not sequentially
consistent)

81

Essenti
al

Sequential consistency and the real world

• In the real world, hardware architects do not adhere to this by
default

• We need to explicitly announce that we want this property (i.e.
volatile keyword)

Sequential consistency and the real world

• We need to explicitly announce that we want this property (i.e.
volatile keyword)

• This lock is only correct if we have SC

SC is not compositable

84

H|p is sequentially consistent
H|q is sequentially consistent
H is not sequentially consistent

In general: sequential consistency is not compositable

Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not quiescently
consistent, and vice versa

85

Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not quiescently
consistent, and vice versa

86

T1

T
2

q.enq(x)

q.enq(y) q.deq() -> y

Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not quiescently
consistent, and vice versa

87

T1

T2

q.enq(x)

q.enq(y) q.deq() -> y NOT quiescentially consistent :
there is a quiescent period
between these operations

which should “synchronize”
operations

Sequentially consistent
(can move T1!)

Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not quiescently
consistent, and vice versa

88

T1

T2

q.enq(x)

q.enq(y) q.deq() -> y

Sequentially consistent
(can move T1)

Quiescentially consistent (no
quiescent period between these

operations, can move T1)

Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not quiescently
consistent, and vice versa

89

T1 q.deq() -> yq.enq(x) q.enq(y)

Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not quiescently
consistent, and vice versa

90

NOT sequentially consistent
(T1 has reordered operations)

NOT quiescentially consistent : there is
a quiescent period between these

operations which should “synchronize”
operations

T1 q.deq() -> y
q.enq(x)

q.enq(y)

Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not quiescently
consistent, and vice versa

91

T1

T2

q.deq() -> y

q.enq(z)

q.enq(x) q.enq(y)

Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not quiescently
consistent, and vice versa

92

T1

T2

q.deq() -> y

q.enq(z)

q.enq(x)

NOT sequentially consistent (T1
has reordered operations)

Quiescentially consistent (no
quiescent period between these

operations, all is good)

q.enq(y)

Linearizability

Motivation

• This is SC
• Goes against our intuition, q.enq(x) finished before q.enq(y)!

How do we fix this

• replace the requirement that method calls appear to happen in
program order with the following stronger restriction:

• Each method call should appear to take effect instantaneously at
some moment between its invocation and response

Idea

• Now we have:

• Method calls should appear to happen in a one-at-a-time,
sequential order

• Each method call should appear to take effect instantaneously at
some moment between its invocation and response

Consistency model: Linearizability

• Linearizability provides the illusion that each operation

applied by concurrent processes takes effect

instantaneously between its invocation and its response.

97

Essenti
al

Consistency model: Linearizability

• Linearizability provides the illusion that each operation

applied by concurrent processes takes effect

instantaneously between its invocation and its response.

• An object for which this is true for all possible executions

is called linearizable
• Has nice properties like composability

98

Essenti
al

In other words

• If given parallel/concurrent execution is equal to some sequential
history, where a preceding method call shows effect before the
later one

• overlapping method calls can be "reordered" as wished
• reordering means, that if m₁ and m₂ overlap (independent of which

methods invocation or response was first/second) we can choose,
if m₁ or m₂ shows its effect first

In other words

• If given parallel/concurrent execution is equal to some sequential
history, where a preceding method call shows effect before the
later one

• overlapping method calls can be "reordered" as wished
• reordering means, that if m₁ and m₂ overlap (independent of which

methods invocation or response was first/second) we can choose,
if m₁ or m₂ shows its effect first

• Difference to SC: we can’t reorder operations even if they follow
thread projection

Is this

linearizable?

q.enq(x)

q.enq(y)

q.deq() -> x

q.deq() -> y

Example with FIFO Queue (1)

101time

Essenti
al

Is this

linearizable?

q.enq(x)

q.enq(y)

q.deq() -> x

time

q.deq() -> y

Yes!

Example with FIFO Queue (1)

102

Essenti
al

Is this

linearizable?

q.enq(x) q.deq() -> y

q.enq(y)

Example (2)

103time

Essenti
al

Is this

linearizable?

q.enq(x) q.deq() -> y

time

q.enq(y)

No!

Example (2)

104

Essenti
al

Is this

linearizable?

q.enq(x)

q.enq(y)

q.deq() -> q

q.deq() -> x

Example (3)

105time

Essenti
al

Is this

linearizable?

q.enq(x)

q.enq(y)

q.deq() -> y

time

q.deq() -> x

Here we got

multiple orders!

Yes!

Example (3)

106

Essenti
al

Is this

linearizable?

Write(0) Read(1) Write(2)

Write(1)

Example (4)

107

Read(1)

time

Essenti
al

Is this

linearizable?

Write(0) Read(1)

time

Write(2)

Write(1)

No!

Example (4)

108

Read(1)

Essenti
al

Is this

linearizable?

Write(0) Write(2)

Write(1) Read(1)

Example (4.5)

109time

Essenti
al

Is this

linearizable?

Write(0)

time

Write(2)

Write(1)

Yes!

Read(1)

Example (4.5)

110

Essenti
al

Difference between SC and Linearizability?

111

In SC we can reorder events – as long as per-thread

order is preserved!

Essenti
al

Summary of definitions

• Histories A and B are called equivalent, if A and B's per-thread projections are
identical

• A History H is called complete, if every invocation has a matching response (not
necessarily immediately after the invocation).

• A History H is called well-formed, if its per-thread projections are all sequential.
Histories that are not well formed usually do not make sense.

• A history H is called legal, if for every object x, the projections H|x all behave like the
sequential specification of the object x.

• A History H is sequential, if there are no overlapping methods (when every invocation
is immediately followed by the matching response)

Summary of definitions

• A History is SC (Sequentially Consistent), if:

• Every Thread projection is a sequential history.

• Method calls appear to follow PO (Program Order), which allows for
"reordering" of method-calls as long as they follow the ordering
determined by the corresponding Thread-projection.

• For a program to be called SC (Sequentially Consistent), every possible
execution history has to be SC.

Summary of definitions

• A History H is linearizable, if there is an extension H′ to H, which
is equivalent (thread-projection-wise) to a legal sequential History
S, where for all methods mₓ →ₕ mᵧ ⟹ mₓ →ₛ mᵧ

• What linearizability means, is that the given parallel/concurrent
execution is equal to some sequential history, where a preceding
method call shows effect before the later one, but overlapping
method calls can be "reordered" as wished

• The reordering means, that if m₁ and m₂ overlap (independent of
which methods invocation or response was first/second) we can
choose, if m₁ or m₂ shows its effect first

• Linearizability implies SC

Thanks to @Erxuan Li, PProg25

Linearization Point

The linearization point is the
point where the method takes
effect, i.e., other threads see
the change

Linearization Point

The linearization point is the
point where the method takes
effect.

Linearization Point

The linearization point is the
point where the method takes
effect, i.e. other threads see the
change

Linearization Point

The linearization point is the
point where the method takes
effect.

Linearization Point

The linearization point is the
point where the method takes
effect.

Exam questions

Exam question

Exam question

• yes

Exam question

Exam question

• yes

• yes

• Yes, linearizability implies SC

• Yes

• Yes, Linearizability implies sequential consistency.

Shared stack object

Linearizable or not?

Shared stack object

Linearizable or not?

yes

yes

yes

yes

no

H|A = G|A and H|B = G|B

Counterexample last statement

141

H|p is sequentially consistent
H|q is sequentially consistent
H is not sequentially consistent

In general: sequential consistency is not composable

Consensus

143

Recap: Consensus Protocols
I propose

“23”.
I propose

“42”.

A few moments later…
(a finite number of steps)

We
agreed
on“23”.

We
agreed
on “23”

Which other
scenarios are
allowed?

144

Consistent Result
I propose

“23”.
I propose

“42”.

We
agreed
on“23”.

We
agreed
on “42”

This is illegal!

Consensus result needs to be
consistent: the same on all threads.

145

Valid Result
I propose

“23”.
I propose

“42”.

We
agreed

on“420”.
We

agreed
on “420”

This is illegal!

Consensus result needs to be valid:
proposed by some thread.

146

Wait-Free
I propose

“23”.
I propose

“42”.

I cannot finish
because I am

waiting for
the other
thread.

This is illegal!

Consensus needs to be wait-free:
All threads finish after a finite
number of steps, independent of
other threads.

I will not
schedule you

now!

Consistent, Valid, Wait-free

• You need to know these 3 properties

• Instead of proposing an integer, every thread now proposes either 0 or 1

• Equivalent to “normal” consensus for two threads
▪ How can we proof this?

148

Simplification: Binary Consensus

binary_decide(bit b) {
 return int_decide(b)
}

int_decide(int d) {
 prop[id] = d; //prop is shared
 other = (id + 1)%2;
 int win = bin_decide(id);
 return prop[win];
}

We can implement binary
consensus using normal
consensus.

We can implement binary
consensus using normal consensus
(id in {0,1} and unique).

Consenus Number

• The consensus number of C is the largest n for which C solves n-
thread consensus

• Atomic Registers have consensus number 1. CAS has consensus
number ∞. Can be shown by construction

• Assume you have a machine with atomic registers and an atomic test-and-set operation with the
following semantics (X is initialized to 1):

int TAS() {

 res = X;

 if (res == 1) {

 X = 0;

 }

 return res;

}

• Implement a two-process consensus protocol using TAS() and atomic registers.

151

Implementing two thread consensus with TAS

• Code for both threads
read own_value;
read other_value;
if (TAS() == 0) {
 return own_value;
} else
 return other_value;

152

Implementing two thread consensus - Solution

153

State Diagrams of Two-thread Consensus Protocols

Start state, both threads (A and B)
have not yet executed the first
instruction of the consensus

protocol.

Each state has at most two successors:
Either A or B execute an instruction.

Cycles among states cannot exist in a
wait-free algorithm: The state “looks”

the same each time we visit, so we
are trapped forever in the loop and

not wait-free.

154

Anatomy of a State (in two-thread consensus)

Shared Variables

Thread local
variables of A Thread local

variables of B

Program
counter of A

Program
counter of B

155

Anatomy of a State
Shared Variables

r1=3

Thread local
variables of A

x=2

Thread local
variables of B

y=0

Program
counter of A

S3

Program
counter of B

S1
Shared Variables

r1=3

Thread local
variables of A

x=1

Thread local
variables of B

y=0

Program
counter of A

S5

Program
counter of B

S1

The states are different, since A has
different local variables and program
counter values.

Yet from B’s perspective they look the
same! (Until A writes x into a shared
variable!)

156

Critical States

0|1?

There is always at least one bivalent
state (the start state).

0|1 0|1

1 1 0 1

0|1 11

Output states are always
univalent.

Frm this state we only reach
states with output 1, so it is

also univalent.

This state is bivalent but all
his successors are univalent.
We call such states critical.

15
7

Quiz: Label the States

1 1 0 1

Output states are always
univalent.

Output states are always
univalent.

Output states are always
univalent.

This state is bivalent, as we
can reach 0 and 1 output

states.

It is also critical, since it is
bivalent and all its successors

are univalent.

This state is bivalent, as we
can reach 0 and 1 output

states.
The start state is always

bivalent!

158

Critical State Existence Proof

Lemma: Every consensus protocol has a
critical state.

Proof: From (bivalent) start state, let the treads only
move to other bivalent states.

• If it runs forever the protocol is not wait free.

• If it reaches a position where no moves are possible
this state is critical.

159

Impossibility Proof Setup – Critical State

0|1?

0 1

Assume we are in the critical
state (which must exist).

Assume that if A moves next
we end up with 0, if B moves

next we end up with 1.
(w.l.o.g., can switch names)

B moves
first

A moves
first

So what actions can a thread
perform in his “move”?

Either read or write a shared
register! – Let’s see why.

160

Impossibility Proof Setup – Possible actions of a thread

0|1? So what actions can a thread
perform in his “move”?

What happens if A just reads
from and writes to local vars?

critical

A: x=y+z
(x,y,z: local)

0

Output must
be 0

Output must
be 1

Now the
scheduler

pauses A, and
B runs solo

From B’s perspective
these two states look

exactly the same!
B cannot know that
one of them must

output 0!

Conclusion: First instruction
after critical state must be a
read or write of a shared
variable!

161

Impossibility Proof Setup – Possible actions of a thread

0|1?

0 1

A moves
first

B moves
first

We know reading/writing
local variables cannot lead

out of a critical state – what
remains?

A can read a
shared variable

A can write a
shared variable

B can read the
same variable

B can read a
different variable

B can write the
same variable

B can write a
different variable

Many cases…
let’s make tables

162

Many Cases to check

First Action

A: r1.read() A: r2.read() A: r1.write() A: r2.write()

Second Action
B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()

Is binary
consensus

possible for any
of those?

Can we simplify
somehow?

Let’s say A always moves first,
otherwise, switch names.

Second Action

A: r1.read() A: r2.read() A: r1.write() A: r2.write()

First
 Action

B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()
Similarly, we can call the
register A reads r1 in both
cases.

First Action

A: r1.read() A: r1.write()

Second Action
B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()

Managable… Let’s look at the cases where A reads

163

Impossibility Proof Case I: A reads

0|1?

Output is decided (0)
due to critical state.

A reads B does X Output is decided (1)
due to critical state.

B does X

From B’s perspective
these two states look

exactly the same!
However B needs to

output different
values!

164

What did we just prove?

First Action

A: r1.read() A: r1.write()

Second Action
B: r1.read() No, Case I

B: r2.read() No, Case I

B: r1.write() No, Case I

B: r2.write() No, Case I

Is binary
consensus

possible for any
of those?

165

Impossibility Proof Case I’: B reads

0|1?

Output is decided (0)
due to critical state.

B reads A does X Output is decided (1)
due to critical state.

A does X

From B’s perspective
these two states look

exactly the same!
However A needs to
(eventually) output

different values!

166

What did we just prove?

First Action

A: r1.read() A: r1.write()

Second Action
B: r1.read() No, Case I No, Case I’

B: r2.read() No, Case I No, Case I’

B: r1.write() No, Case I

B: r2.write() No, Case I

Is binary
consensus

possible for any
of those?

167

Impossibility Proof Case II: A and B write to different
registers

0|1?

Output is decided (0)
due to critical state.

A writes r1 B writes r2 Output is decided (1)
due to critical state.

B writes r2

Exactly the same state!

 However it should be outputting 0
/ 1 depending on where it was

reached from!

A writes r1

Output 0

Output 1

168

What did we just prove?

First Action

A: r1.read() A: r1.write()

Second Action
B: r1.read() No, Case I No, Case I’

B: r2.read() No, Case I No, Case I’

B: r1.write() No, Case I ?

B: r2.write() No, Case I No, Case II

Is binary
consensus

possible for any
of those?

169

Impossibility Proof Case III: A and B write to the same
register

0|1?

Output is decided (0)
due to critical state.

A writes r B writes r Output is decided (1)
due to critical state.

B writes r

From B’s perspective
these two states look

exactly the same!
However B needs to

output different
values!

170

That’s all
First Action

A: r1.read() A: r1.write()

Second Action
B: r1.read() No, Case I No, Case I’

B: r2.read() No, Case I No, Case I’

B: r1.write() No, Case I No, Case III

B: r2.write() No, Case I No, Case II

Is binary
consensus

possible for any
of those?

No

1985, 2.5k citations

Plan für heute

• Organisation
• Nachbesprechung Assignment 12
• Theory

• Intro Assignment 13
• Kahoot
• Exam questions

Assignment 13

• Is about SC and linearizability
• Use my slides and definitions if you struggle
• Histories and their properties:

• Sequential Consistency
• Linearizability
• Equivalence
• Completeness
• etc.

Assignment 13

• Is about SC and linearizability

Thanks to @Erxuan Li, PProg25

Questions

First Approach, simple CAS for remove

• Note that CAS(b.next,c,b’) means if b.next == c then set b.next to b’
otherwise don’t do anything

First Approach, simple CAS for remove

• We read a stale value for b.next = c! Thread B will do
CAS(a.next,b,c)

Second Approach, try to fix the issue by using mark bit which
tells us if an element was removed

Second Approach, try to fix the issue by using mark bit which
tells us if an element was removed

• Thread b checks if node c is removed,
sees mark bit is false, proceeds

• Now thread a wants to remove c, sets
mark bit of node c

• Reads c.next = d and does a
cas(b.next,c,d), which succeeds.

• Node c is removed
• Now thread b does CAS(c.next,d,c’). c’

is inserted but not in the list, as c got
removed

• We want to set the mark bit and the next pointer in one step
otherwise we face the issue from the previous slide

• We want to set the mark bit and the next pointer in one step
otherwise we face the issue from the previous slide

• So how do we do this?

• The mark bit we were talking about is just hidden in the reference
now! E.g. c.mark is now hidden in c.next!

• We can update a reference with a single CAS!

• Note that
CAS([b.next.reference, b.next.marked], [c,unmarked] , [d, unmarked])
• checks if b.next = c and b.mark = 0 (unmarked = not removed) then set

b.next = d and leave b.mark = 0 (unmarked)

Did it fix our previous problem?

• Yes, we can’t have bad interleaving anymore because thread B
checks c.mark and updates c.next in one step

• Thread B will either see mark = 0 → can insert c’ in one step or
mark = 1 which means it needs to retry

Remove , remove case

Results in node C not being
removed but still marked!

Again:

• If we implement our methods correctly and watch out for mark bit
being set, this is fine, i.e., this implementation works

• However, we would like marked nodes to be removed physically at
some point too

Results in node C not being
removed but still marked!

• In our previous example

Plan für heute

• Organisation
• Nachbesprechung Assignment 12
• Theory
• Intro Assignment 13

• Kahoot
• Exam questions

Kahoot!

• False, remember spurious wake ups

• False, imagine max = 3. Then A,B,C arrive. Now C notifies threads A
and B but sets count to 0. Thus, only C can leave the barrier while A
and B are still stuck.

Plan für heute

• Organisation
• Nachbesprechung Assignment 12
• Theory
• Intro Assignment 13
• Kahoot
• Exam questions

Types of exercises that might come in the exam
Disclaimer: This list is not guaranteed to be complete and is only meant to give you an

idea of what has been asked on previous exams.
Locks
• Usually there are not too many question on this topic. true/false questions of which

lock has which properties (fairness, starvation free)
• find bug in lock code (violation of mutual exclusion or deadlock freedom)
• draw state space diagram and/or read off correctness properties
• reproduce Peterson/Filter/Bakery lock
• prove correctness of Peterson lock or similar (but not Filter or Bakery)
Monitors, semaphores, barriers
• semaphore implementation (mostly with monitors)
• (never seen rendezvous with semaphores in an exam)
• barrier implementation (mostly with monitors)
• (only seen a task on implementing a barrier with semaphores once in FS21, 8b)
• fill out some program using monitors (similar to wait/notify exercises, maybe with

lock conditions)
Credits @aellison PProg23

https://exams.vis.ethz.ch/exams/i0svp1fh.pdf

Yes

True

Feedback

• Falls ihr Feedback möchtet sagt mir bitte Bescheid!
• Schreibt mir eine Mail oder auf Discord

Danke

• Bis nächste Woche!

	Default Section
	Slide 1: Parallele Programmierung FS25
	Slide 2: Plan für heute
	Slide 3: Organisation
	Slide 4: Organisation
	Slide 5: Organisation
	Slide 6: Organisation
	Slide 7: Organisation
	Slide 8: Organisation
	Slide 9: Organisation
	Slide 10: Plan für heute
	Slide 11
	Slide 12
	Slide 13: Hint
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Plan für heute
	Slide 20: Recap
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Implications
	Slide 25
	Slide 26: `
	Slide 27: Lock free data structures
	Slide 28
	Slide 29: So how do we build lock free data structures?
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Problems with this implementation?
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Hazard Pointers
	Slide 42: Hazard Pointers
	Slide 43: Hazard Pointers
	Slide 44: Hazard Pointers
	Slide 45: Hazard Pointers
	Slide 46: Hazard Pointers

	sc and linearizability
	Slide 47: SC and Linearizability
	Slide 48: How to define correctness of concurrent programs
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Example: Queue
	Slide 64: Example: Queue
	Slide 65: Alternative concurrent queue implementation
	Slide 66: How to reason about concurrent objects that have no locks?
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72: Motivation
	Slide 73: Motivation
	Slide 74: Motivation
	Slide 75: Motivation
	Slide 76: Combining both we get SC
	Slide 77: Combining both we get SC
	Slide 78
	Slide 79: In other words
	Slide 80
	Slide 81
	Slide 82: Sequential consistency and the real world
	Slide 83: Sequential consistency and the real world
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94: Motivation
	Slide 95: How do we fix this
	Slide 96: Idea
	Slide 97
	Slide 98
	Slide 99: In other words
	Slide 100: In other words
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112: Summary of definitions
	Slide 113: Summary of definitions
	Slide 114: Summary of definitions
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120

	exam questions
	Slide 121: Exam questions
	Slide 122: Exam question
	Slide 123: Exam question
	Slide 124: Exam question
	Slide 125: Exam question
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141

	consensus
	Slide 142
	Slide 143: Recap: Consensus Protocols
	Slide 144: Consistent Result
	Slide 145: Valid Result
	Slide 146: Wait-Free
	Slide 147: Consistent, Valid, Wait-free
	Slide 148: Simplification: Binary Consensus
	Slide 149: Consenus Number
	Slide 150
	Slide 151: Implementing two thread consensus with TAS
	Slide 152: Implementing two thread consensus - Solution
	Slide 153: State Diagrams of Two-thread Consensus Protocols
	Slide 154: Anatomy of a State (in two-thread consensus)
	Slide 155: Anatomy of a State
	Slide 156: Critical States
	Slide 157: Quiz: Label the States
	Slide 158: Critical State Existence Proof
	Slide 159: Impossibility Proof Setup – Critical State
	Slide 160: Impossibility Proof Setup – Possible actions of a thread
	Slide 161: Impossibility Proof Setup – Possible actions of a thread
	Slide 162: Many Cases to check
	Slide 163: Impossibility Proof Case I: A reads
	Slide 164: What did we just prove?
	Slide 165: Impossibility Proof Case I’: B reads
	Slide 166: What did we just prove?
	Slide 167: Impossibility Proof Case II: A and B write to different registers
	Slide 168: What did we just prove?
	Slide 169: Impossibility Proof Case III: A and B write to the same register
	Slide 170: That’s all

	intro assignment 13
	Slide 171: Plan für heute
	Slide 172: Assignment 13
	Slide 173: Assignment 13
	Slide 174
	Slide 175: Questions

	lock free list
	Slide 176
	Slide 177: First Approach, simple CAS for remove
	Slide 178: First Approach, simple CAS for remove
	Slide 179: Second Approach, try to fix the issue by using mark bit which tells us if an element was removed
	Slide 180: Second Approach, try to fix the issue by using mark bit which tells us if an element was removed
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187: Did it fix our previous problem?
	Slide 188: Remove , remove case
	Slide 189: Again:
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195

	kahoot
	Slide 196: Plan für heute
	Slide 197: Kahoot!
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202: Plan für heute
	Slide 203: Types of exercises that might come in the exam
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216: Feedback
	Slide 217: Danke

