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Organisation

• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9
• Falls ihr Feedback möchtet kommt bitte zu mir

https://forms.gle/qiDnqkfSP2NUQGvc9


Organisation

• 2^64 ist nicht ungefähr gleich zu den Atomen im Universum!

• 2^64 ≈ 1.84×10^19

• 1mm^3 Sand hat 10^8 Atome, also ungefähr Anzahl Atome in 10 
Sandkörnern ist 2^64

• Schätzungen für Anzahl Sandkörner auf der Erde ist 7.5 * 10^18, 
also ist 2^64 ungefähr das Doppelte davon



Organisation

• Kahoot Allegations 



Organisation

• TA Award

• Danke!



Organisation

• Wo sind wir jetzt?

Sequential Consistency and Linearizability

To come: Consensus



Plan für heute

• Organisation

• Nachbesprechung Assignment 12
• Theory
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Assignment 12

• Multisensor System. 

11



Multisensor System

12

Implement two versions of the senor data set:

a) One blocking version based on a readers-writers lock (LockedSensors.java).

b) A lock-free version (LockFreeSensors.java)



Hint

• dataRef = new AtomicReference<SensorData>();

• AtomicReference allows for CAS on an object reference
• i.e. we can replace old object with new object in one step



Multisensor System
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LockedSensors
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Lock implementation
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LockFreeSensors
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LockFreeSensors

18

Is this wait free?
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Lock-free algorithm

Object readSomething() {

    return atomicReference.get();

}

Void writeSomething(Object new_object) {

    Object old_object;

    do {

        old_object = atomicReference.get();

        // Check if we want to overwrite the latest data (i.e. only write newer or better data) 

        if ( … ) {

            return; 

        }

    } while (!atomicReference.compareAndSet(old_object, new_object));

}
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Implications





`



Lock free data structures





So how do we build lock free data structures?













Problems with this implementation?

• Say we want to use a node pool instead of always creating new 
nodes (i.e. not always use new Node() but instead take it out of a 
list)

• -> ABA Problem (exam relevant)



Not the same get() as from 
Atomic!











Hazard Pointers



Hazard Pointers

• ABA problem stems from reuse of a pointer P that has been read 
by some thread X 

• but not yet written with CAS by the thread X
• Modification takes place meanwhile by some other thread Y
• Thread X doesn’t realize that state changed and still performs 

operation



Hazard Pointers

• Our idea to solve this, is that we introduce an array with n slots, 
where n is the number of threads

• Before X now reads P, it marks it as hazardous by entering it into 
the array (in slot assigned to thread X, i.e. ThreadID mod Arraysize)

• After the CAS, X removes P from the array
• If a process Y tries to reuse P, it first checks all entries of the 

hazard array, and, if it finds P in there, it simply requests a new 
pointer for use



Hazard Pointers

• Examine the changed pop() 
method:

• We rely on garbage 
collection if we could run 
into problems, i.e., when we 
want to put something back 
into the pool that is 
hazardous



Hazard Pointers

• The ABA problem also occurs on the node pool we are using
• We could make the pools thread-local. This does not help when 

push/pop operations aren’t well balanced within the thread
• Alternatively, we could just use Hazard pointers on the global 

node pool
• Previous Java code does not really improve performance in 

comparison to memory allocation and garbage collection, but it 
demonstrates how to solve the ABA problem



Hazard Pointers

• Questions?



SC and Linearizability



How to define correctness of concurrent 
programs
• We can define different models
• Mostly just theoretical, CPU manufacturer decides on model 



Program correctness in a sequential world

Objects encapsulate some representation of state

• We don’t reason about the representation directly, but about its visibility 
from outside (via public methods) (e.g. stack.top()==3)

• State must be consistent, i.e., according to the public class invariant 
(e.g., forall x. stack.push(x).pop()==x)

• Each method satisfies its post-condition, given its pre-condition
• Hoare Tripel aus EProg
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Program correctness in a concurrent world
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Execution
Essenti
al
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Execution
Essenti
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Histories

A history is a series of invocations and responses of methods.
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Histories

Histories clan be categorized by some fundamental properties:

Sequential
Complete
Equivalence to some other History
Legal
Well formed
Quiescent Consistent
Sequentially Consistent
Linearizable
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Sequential

No interleaving at all.
First event is an invocation.
Each invocation is immediately followed by a response.

A: r.write(1)
A: void
B: r.read() 
B: 1
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Complete

No pending invocations at the end

Not complete:
A: r.write(1)

Complete:
A: r.write(1)
A: void 
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What are projections?

57

We write H|A and to say:

All events in H by thread A

Essential



What are projections?
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We write H|q and to say:

All events in H on object q

Essential



Equivalence?

59

Histories H1 and H2 are equivalent if their 

per-thread projections are the same.

Essential



Legal

For all objects o: H|o is sequential and correct

Correct in the sense of the object specification
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Well formed

For all threads t: H|t is sequential
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• A system can be …
• Quiescent consistent
• Sequentially consistent
• Linearizable

• And many more, it’s up to us to define



Example: Queue

• What does it mean for a concurrent 
object to be correct? 

• each method accesses and updates 
fields while holding an exclusive lock 

• method calls take effect sequentially



Example: Queue



Alternative concurrent queue implementation

• queue is correct only if it is 
shared by a single enqueuer and 
a single dequeuer

• It has almost the same internal 
representation as the lock-based 
queue

• only difference is the absence of 
a lock



How to reason about concurrent objects that 
have no locks?
• objects whose methods hold exclusive locks are less desirable 

than ones with finer-grained locking or no locks
• We therefore need a way to specify the behavior of concurrent 

objects, and to reason about their implementations, without 
relying on method-level locking

• lock-based queue example illustrates a useful principle: it is 
easier to reason about concurrent objects if we can somehow 
map their concurrent executions to sequential ones, and limit our 
reasoning to these sequential executions



Quiescent Consistency



Quiescent consistency

• Method calls should appear to happen in a one-at-a-time, sequential order
• Method calls separated by a period of quiescence should appear to take 

effect in their real-time order
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Quiescent consistency

requires non-overlapping operations to appear to take effect in their real-time 
order, but overlapping operations might be reordered
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Quiescent consistency

requires non-overlapping operations to appear to take effect in their real-time 
order, but overlapping operations might be reordered

70

Can change the order of 
these operations

But not between walls



Sequential Consistency



Motivation

• two threads concurrently write −3 and 7 to a shared register r
• Later, one thread reads r and returns the value −7
• This behavior is clearly not acceptable!
• We expect to find either 7 or −3 in the register, not a mixture of both! 



Motivation

• two threads concurrently write −3 and 7 to a shared register r

• Later, one thread reads r and returns the value −7

• This behavior is clearly not acceptable

• We expect to find either 7 or −3 in the register, not a mixture of both! 

• Method calls should appear to happen in a one-at-a-time, 
sequential order!



Motivation

•  single thread writes 7 and then −3 to a shared register r. Later, it 
reads r and returns 7

• For some applications, this behavior might not be acceptable 
because the value the thread read is not the last value it wrote



Motivation

•  We want Method calls to appear to take effect in program order!



Combining both we get SC

• Method calls should appear to happen in a one-at-a-time, 
sequential order 

• Method calls should appear to take effect in program order



Combining both we get SC

• Method calls should appear to happen in a one-at-a-time, 
sequential order 

• Method calls should appear to take effect in program order

• That is, in any concurrent execution, there is a way to order the 
method calls sequentially so that they (1) are consistent with 
program order, and (2) meet the object’s sequential 
specification 



Sequential consistency

A multiprocessing system has sequential consistency if:

"...the results of any execution is the same as if the operations of all the 
processors were executed in some sequential order, and the operations of 
each individual processor appear in this sequence in the order specified by its 
program." 

- Leslie Lamport (inventor of sequential consistency, GOAT Turing Award 
Winner, concurrent master mind)
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In other words

• A History H is sequential, if there are no overlapping methods 
(when every invocation is immediately followed by the matching 
response)

• A History is SC (Sequentially Consistent), if:
1.Every Thread projection is a sequential history
2.Method calls appear to follow PO (Program Order), which allows for 

"reordering" of method-calls if they follow the ordering determined by the 
corresponding Thread-projection

• Thread projection: we write H|A to say: All events in H by thread A



Sequential consistency requirements

1. All instructions are executed in order.

2. Every write operation becomes instantaneously visible throughout the 
system.

80
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Sequential consistency requirements

1. All instructions are executed in order.

2. Every write operation becomes instantaneously visible throughout the 
system. (all variables volatile! Shows us that standard java is not sequentially 
consistent)

81
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Sequential consistency and the real world

• In the real world, hardware architects do not adhere to this by 
default

• We need to explicitly announce that we want this property (i.e. 
volatile keyword)



Sequential consistency and the real world

• We need to explicitly announce that we want this property (i.e. 
volatile keyword)

• This lock is only correct if we have SC



SC is not compositable
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H|p is sequentially consistent
H|q is sequentially consistent
H is not sequentially consistent

In general: sequential consistency is not compositable



Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:
 
there exist sequentially consistent executions that are not quiescently 
consistent, and vice versa

85



Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:
 
there exist sequentially consistent executions that are not quiescently 
consistent, and vice versa
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T1

T
2

q.enq(x)

q.enq(y) q.deq() -> y



Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:
 
there exist sequentially consistent executions that are not quiescently 
consistent, and vice versa
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T1

T2

q.enq(x)

q.enq(y) q.deq() -> y NOT quiescentially consistent : 
there is a quiescent period 
between these operations 

which should “synchronize” 
operations

Sequentially consistent 
(can move T1!)



Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:
 
there exist sequentially consistent executions that are not quiescently 
consistent, and vice versa

88

T1

T2

q.enq(x)

q.enq(y) q.deq() -> y

Sequentially consistent 
(can move T1)

Quiescentially consistent (no 
quiescent period between these 

operations, can move T1)



Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:
 
there exist sequentially consistent executions that are not quiescently 
consistent, and vice versa
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T1 q.deq() -> yq.enq(x) q.enq(y)



Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:
 
there exist sequentially consistent executions that are not quiescently 
consistent, and vice versa

90

NOT sequentially consistent 
(T1 has reordered operations)

NOT quiescentially consistent : there is 
a quiescent period between these 

operations which should “synchronize” 
operations

T1 q.deq() -> y
q.enq(x)

q.enq(y)



Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:
 
there exist sequentially consistent executions that are not quiescently 
consistent, and vice versa
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T1

T2

q.deq() -> y

q.enq(z)

q.enq(x) q.enq(y)



Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:
 
there exist sequentially consistent executions that are not quiescently 
consistent, and vice versa
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T1

T2

q.deq() -> y

q.enq(z)

q.enq(x)

NOT sequentially consistent (T1 
has reordered operations)

Quiescentially consistent (no 
quiescent period between these 

operations, all is good)

q.enq(y)



Linearizability



Motivation

• This is SC
• Goes against our intuition, q.enq(x) finished before q.enq(y)!



How do we fix this

• replace the requirement that method calls appear to happen in 
program order with the following stronger restriction:

• Each method call should appear to take effect instantaneously at 
some moment between its invocation and response



Idea

• Now we have:

• Method calls should appear to happen in a one-at-a-time, 
sequential order 

• Each method call should appear to take effect instantaneously at 
some moment between its invocation and response



Consistency model: Linearizability

• Linearizability provides the illusion that each operation 

applied by concurrent processes takes effect 

instantaneously between its invocation and its response. 

97
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Consistency model: Linearizability

• Linearizability provides the illusion that each operation 

applied by concurrent processes takes effect 

instantaneously between its invocation and its response. 

• An object for which this is true for all possible executions 

is called linearizable
• Has nice properties like composability 

98
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In other words

• If given parallel/concurrent execution is equal to some sequential 
history, where a preceding method call shows effect before the 
later one

• overlapping method calls can be "reordered" as wished
• reordering means, that if m₁ and m₂ overlap (independent of which 

methods invocation or response was first/second) we can choose, 
if m₁ or m₂ shows its effect first



In other words

• If given parallel/concurrent execution is equal to some sequential 
history, where a preceding method call shows effect before the 
later one

• overlapping method calls can be "reordered" as wished
• reordering means, that if m₁ and m₂ overlap (independent of which 

methods invocation or response was first/second) we can choose, 
if m₁ or m₂ shows its effect first

• Difference to SC: we can’t reorder operations even if they follow 
thread projection



Is this 

linearizable?

q.enq(x)

q.enq(y)

q.deq() -> x

q.deq() -> y

Example with FIFO Queue (1) 

101time
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Is this 

linearizable?

q.enq(x)

q.enq(y)

q.deq() -> x

time

q.deq() -> y

Yes!

Example with FIFO Queue (1) 
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Is this 

linearizable?

q.enq(x) q.deq() -> y

q.enq(y)

Example (2) 

103time
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Is this 

linearizable?

q.enq(x) q.deq() -> y

time

q.enq(y)

No!

Example (2) 
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Is this 

linearizable?

q.enq(x)

q.enq(y)

q.deq()  -> q

q.deq() -> x

Example (3) 

105time
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Is this 

linearizable?

q.enq(x)

q.enq(y)

q.deq()  -> y

time

q.deq() -> x

Here we got 

multiple orders! 

Yes!

Example (3) 
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Is this 

linearizable?

Write(0) Read(1) Write(2)

Write(1)

Example (4)

107

Read(1)

time

Essenti
al



Is this 

linearizable?

Write(0) Read(1)

time

Write(2)

Write(1)

No!

Example (4)

108

Read(1)

Essenti
al



Is this 

linearizable?

Write(0) Write(2)

Write(1) Read(1)

Example (4.5)

109time
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Is this 

linearizable?

Write(0)

time

Write(2)

Write(1)

Yes!

Read(1)

Example (4.5)

110
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Difference between SC and Linearizability?

111

In SC we can reorder events – as long as per-thread 

order is preserved!

Essenti
al



Summary of definitions

• Histories A and B are called equivalent, if A and B's per-thread projections are 
identical

• A History H is called complete, if every invocation has a matching response (not 
necessarily immediately after the invocation).

• A History H is called well-formed, if its per-thread projections are all sequential. 
Histories that are not well formed usually do not make sense.

• A history H is called legal, if for every object x, the projections H|x all behave like the 
sequential specification of the object x.

• A History H is sequential, if there are no overlapping methods (when every invocation 
is immediately followed by the matching response)



Summary of definitions

• A History is SC (Sequentially Consistent), if:

•   Every Thread projection is a sequential history.

•   Method calls appear to follow PO (Program Order), which allows for 
"reordering" of method-calls as long as they follow the ordering 
determined by the corresponding Thread-projection.

• For a program to be called SC (Sequentially Consistent), every possible 
execution history has to be SC.



Summary of definitions

• A History H is linearizable, if there is an extension H′ to H, which 
is equivalent (thread-projection-wise) to a legal sequential History 
S, where for all methods mₓ →ₕ mᵧ ⟹ mₓ →ₛ mᵧ

• What linearizability means, is that the given parallel/concurrent 
execution is equal to some sequential history, where a preceding 
method call shows effect before the later one, but overlapping 
method calls can be "reordered" as wished

• The reordering means, that if m₁ and m₂ overlap (independent of 
which methods invocation or response was first/second) we can 
choose, if m₁ or m₂ shows its effect first

• Linearizability implies SC



Thanks to @Erxuan Li, PProg25



Linearization Point

The linearization point is the 
point where the method takes 
effect, i.e., other threads see 
the change



Linearization Point

The linearization point is the 
point where the method takes 
effect.



Linearization Point

The linearization point is the 
point where the method takes 
effect, i.e. other threads see the 
change



Linearization Point

The linearization point is the 
point where the method takes 
effect.



Linearization Point

The linearization point is the 
point where the method takes 
effect.



Exam questions



Exam question



Exam question

• yes



Exam question



Exam question

• yes





• yes





• Yes, linearizability implies SC





• Yes



• Yes, Linearizability implies sequential consistency.



Shared stack object

Linearizable or not?



Shared stack object

Linearizable or not?

yes

yes

yes

yes

no





H|A = G|A and H|B = G|B











Counterexample last statement

141

H|p is sequentially consistent
H|q is sequentially consistent
H is not sequentially consistent

In general: sequential consistency is not composable



Consensus
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Recap: Consensus Protocols
I propose 

“23”.
I propose 

“42”.

A few moments later…
(a finite number of steps)

We 
agreed 
on“23”.

We 
agreed 
on “23”

Which other 
scenarios are 
allowed?
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Consistent Result
I propose 

“23”.
I propose 

“42”.

We 
agreed 
on“23”.

We 
agreed 
on “42”

This is illegal!

Consensus result needs to be 
consistent: the same on all threads.
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Valid Result
I propose 

“23”.
I propose 

“42”.

We 
agreed 

on“420”.
We 

agreed 
on “420”

This is illegal!

Consensus result needs to be valid: 
proposed by some thread.
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Wait-Free
I propose 

“23”.
I propose 

“42”.

I cannot finish 
because I am 

waiting for 
the other 
thread.

This is illegal!

Consensus needs to be wait-free: 
All threads finish after a finite 
number of steps, independent of 
other threads.

I will not 
schedule you 

now!



Consistent, Valid, Wait-free

• You need to know these 3 properties



• Instead of proposing an integer, every thread now proposes either 0 or 1

• Equivalent to “normal” consensus for two threads
▪ How can we proof this?
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Simplification: Binary Consensus

binary_decide(bit b) {
  return int_decide(b)
}

int_decide(int d) {
  prop[id] = d; //prop is shared
  other = (id + 1)%2;
  int win = bin_decide(id);
  return prop[win];
}

We can implement binary 
consensus using normal 
consensus.

We can implement binary 
consensus using normal consensus 
(id in {0,1} and unique).



Consenus Number

• The consensus number of C is the largest n for which C solves n-
thread consensus

• Atomic Registers have consensus number 1. CAS has consensus 
number ∞. Can be shown by construction





• Assume you have a machine with atomic registers and an atomic test-and-set operation with the 
following semantics (X is initialized to 1):

int TAS() {

    res = X;

    if (res == 1) {

        X = 0;

    }

    return res;

}

• Implement a two-process consensus protocol using TAS() and atomic registers.

151

Implementing two thread consensus with TAS



• Code for both threads
read own_value;
read other_value;
if (TAS() == 0) {
    return own_value;
} else
    return other_value;

152

Implementing two thread consensus - Solution
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State Diagrams of Two-thread Consensus Protocols

Start state, both threads (A and B) 
have not yet executed the first 
instruction of the consensus 

protocol.

Each state has at most two successors:  
Either A or B execute an instruction.

Cycles among states cannot exist in a 
wait-free algorithm: The state “looks” 

the same each time we visit, so we 
are trapped forever in the loop and 

not wait-free.
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Anatomy of a State (in two-thread consensus)

Shared Variables

Thread local 
variables of A Thread local 

variables of B

Program 
counter of A

Program 
counter of B
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Anatomy of a State
Shared Variables

r1=3

Thread local 
variables of A

x=2

Thread local 
variables of B

y=0

Program 
counter of A

S3

Program 
counter of B

S1
Shared Variables

r1=3

Thread local 
variables of A

x=1

Thread local 
variables of B

y=0

Program 
counter of A

S5

Program 
counter of B

S1

The states are different, since A has 
different local variables and program 
counter values.

Yet from B’s perspective they look the 
same! (Until A writes x into a shared 
variable!)
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Critical States

0|1?

There is always at least one bivalent 
state (the start state).

0|1 0|1

1 1 0 1

0|1 11

Output states are always 
univalent.

Frm this state we only reach 
states with output 1, so it is 

also univalent.

This state is bivalent but all 
his successors are univalent. 
We call such states critical.



15
7

Quiz: Label the States

1 1 0 1

Output states are always 
univalent.

Output states are always 
univalent.

Output states are always 
univalent.

This state is bivalent, as we 
can reach 0 and 1 output 

states.

It is also critical, since it is 
bivalent and all its successors 

are univalent.

This state is bivalent, as we 
can reach 0 and 1 output 

states.
The start state is always 

bivalent!
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Critical State Existence Proof

Lemma: Every consensus protocol has a 
critical state.

Proof: From (bivalent) start state, let the treads only 
move to other bivalent states.

• If it runs forever the protocol is not wait free. 

• If it reaches a position where no moves are possible 
this state is critical.
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Impossibility Proof Setup – Critical State

0|1?

0 1

Assume we are in the critical 
state (which must exist).

Assume that if A moves next 
we end up with 0, if B moves 

next we end up with 1. 
(w.l.o.g., can switch names)

B moves 
first

A moves 
first

So what actions can a thread 
perform in his “move”?

Either read or write a shared 
register! – Let’s see why.
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Impossibility Proof Setup – Possible actions of a thread

0|1? So what actions can a thread 
perform in his “move”?

What happens if A just reads 
from and writes to local vars?

critical

A: x=y+z 
(x,y,z: local)

0

Output must 
be 0

Output must 
be 1

Now the 
scheduler 

pauses A, and 
B runs solo

From B’s perspective 
these two states look 

exactly the same! 
B cannot know that 
one of them must 

output 0!

Conclusion: First instruction 
after critical state must be a 
read or write of a shared 
variable!



161

Impossibility Proof Setup – Possible actions of a thread

0|1?

0 1

A moves 
first

B moves 
first

We know reading/writing 
local variables cannot lead 

out of a critical state – what 
remains?

A can read a 
shared variable

A can write a 
shared variable

B can read the 
same variable

B can read a 
different variable

B can write the 
same variable

B can write a 
different variable

Many cases…
let’s make tables 
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Many Cases to check

First Action

A: r1.read() A: r2.read() A: r1.write() A: r2.write()

Second Action
B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()

Is binary 
consensus 

possible for any 
of those?

Can we simplify 
somehow?

Let’s say A always moves first,
otherwise, switch names.

Second Action

A: r1.read() A: r2.read() A: r1.write() A: r2.write()

First
 Action

B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()
Similarly, we can call the 
register A reads r1 in both 
cases.

First Action

A: r1.read() A: r1.write()

Second Action
B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()

Managable… Let’s look at the cases where A reads
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Impossibility Proof Case I: A reads

0|1?

Output is decided (0) 
due to critical state.

A reads B does X Output is decided (1) 
due to critical state.

B does X

From B’s perspective 
these two states look 

exactly the same! 
However B needs to 

output different 
values!
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What did we just prove?

First Action

A: r1.read() A: r1.write()

Second Action
B: r1.read() No, Case I

B: r2.read() No, Case I

B: r1.write() No, Case I

B: r2.write() No, Case I

Is binary 
consensus 

possible for any 
of those?
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Impossibility Proof Case I’: B reads

0|1?

Output is decided (0) 
due to critical state.

B reads A does X Output is decided (1) 
due to critical state.

A does X

From B’s perspective 
these two states look 

exactly the same! 
However A needs to 
(eventually) output 

different values!
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What did we just prove?

First Action

A: r1.read() A: r1.write()

Second Action
B: r1.read() No, Case I No, Case I’

B: r2.read() No, Case I No, Case I’

B: r1.write() No, Case I

B: r2.write() No, Case I

Is binary 
consensus 

possible for any 
of those?



167

Impossibility Proof Case II: A and B write to different 
registers

0|1?

Output is decided (0) 
due to critical state.

A writes r1 B writes r2 Output is decided (1) 
due to critical state.

B writes r2

Exactly the same state!

 However it should be outputting 0 
/ 1 depending on where it was 

reached from!

A writes r1

Output 0

Output 1
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What did we just prove?

First Action

A: r1.read() A: r1.write()

Second Action
B: r1.read() No, Case I No, Case I’

B: r2.read() No, Case I No, Case I’

B: r1.write() No, Case I ?

B: r2.write() No, Case I No, Case II

Is binary 
consensus 

possible for any 
of those?
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Impossibility Proof Case III: A and B write to the same 
register

0|1?

Output is decided (0) 
due to critical state.

A writes r B writes r Output is decided (1) 
due to critical state.

B writes r

From B’s perspective 
these two states look 

exactly the same! 
However B needs to 

output different 
values!



170

That’s all
First Action

A: r1.read() A: r1.write()

Second Action
B: r1.read() No, Case I No, Case I’

B: r2.read() No, Case I No, Case I’

B: r1.write() No, Case I No, Case III

B: r2.write() No, Case I No, Case II

Is binary 
consensus 

possible for any 
of those?

No

1985, 2.5k citations



Plan für heute

• Organisation
• Nachbesprechung Assignment 12
• Theory

• Intro Assignment 13
• Kahoot
• Exam questions



Assignment 13

• Is about SC and linearizability 
• Use my slides and definitions if you struggle
• Histories and their properties:

• Sequential Consistency
• Linearizability
• Equivalence
• Completeness
• etc.



Assignment 13

• Is about SC and linearizability 



Thanks to @Erxuan Li, PProg25



Questions





First Approach, simple CAS for remove

• Note that CAS(b.next,c,b’) means if b.next == c then set b.next to b’ 
otherwise don’t do anything



First Approach, simple CAS for remove

• We read a stale value for b.next = c! Thread B will do 
CAS(a.next,b,c)



Second Approach, try to fix the issue by using mark bit which 
tells us if an element was removed



Second Approach, try to fix the issue by using mark bit which 
tells us if an element was removed

• Thread b checks if node c is removed, 
sees mark bit is false, proceeds

• Now thread a wants to remove c, sets 
mark bit of node c

• Reads c.next = d and does a 
cas(b.next,c,d), which succeeds.

• Node c is removed
• Now thread b does CAS(c.next,d,c’). c’ 

is inserted but not in the list, as c got 
removed



• We want to set the mark bit and the next pointer in one step 
otherwise we face the issue from the previous slide



• We want to set the mark bit and the next pointer in one step 
otherwise we face the issue from the previous slide

• So how do we do this?





• The mark bit we were talking about is just hidden in the reference 
now! E.g. c.mark is now hidden in c.next!

• We can update a reference with a single CAS!





• Note that 
CAS( [ b.next.reference, b.next.marked  ],  [ c,unmarked] , [d, unmarked] )
• checks if b.next = c and b.mark = 0 (unmarked = not removed) then set 

b.next = d and leave b.mark = 0 (unmarked)



Did it fix our previous problem?

• Yes, we can’t have bad interleaving anymore because thread B 
checks c.mark and updates c.next in one step

• Thread B will either see mark = 0 → can insert c’ in one step or 
mark = 1 which means it needs to retry



Remove , remove case 

Results in node C not being 
removed but still marked!



Again:

• If we implement our methods correctly and watch out for mark bit 
being set, this is fine, i.e., this implementation works

• However, we would like marked nodes to be removed physically at 
some point too 

Results in node C not being 
removed but still marked!











• In our previous example





Plan für heute

• Organisation
• Nachbesprechung Assignment 12
• Theory
• Intro Assignment 13

• Kahoot
• Exam questions



Kahoot!





• False, remember spurious wake ups





• False, imagine max = 3. Then A,B,C arrive. Now C notifies threads A 
and B but sets count to 0. Thus, only C can leave the barrier while A 
and B are still stuck.



Plan für heute

• Organisation
• Nachbesprechung Assignment 12
• Theory
• Intro Assignment 13
• Kahoot
• Exam questions



Types of exercises that might come in the exam
Disclaimer: This list is not guaranteed to be complete and is only meant to give you an 

idea of what has been asked on previous exams.
Locks
• Usually there are not too many question on this topic. true/false questions of which 

lock has which properties (fairness, starvation free) 
• find bug in lock code (violation of mutual exclusion or deadlock freedom) 
• draw state space diagram and/or read off correctness properties 
• reproduce Peterson/Filter/Bakery lock
• prove correctness of Peterson lock or similar (but not Filter or Bakery) 
Monitors, semaphores, barriers
• semaphore implementation (mostly with monitors)
• (never seen rendezvous with semaphores in an exam)
• barrier implementation (mostly with monitors)
• (only seen a task on implementing a barrier with semaphores once in FS21, 8b) 
• fill out some program using monitors (similar to wait/notify exercises, maybe with 

lock conditions) 
Credits @aellison PProg23

https://exams.vis.ethz.ch/exams/i0svp1fh.pdf
















Yes





True







Feedback

• Falls ihr Feedback möchtet sagt mir bitte Bescheid!
• Schreibt mir eine Mail oder auf Discord



Danke

• Bis nächste Woche!
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