Parallele Programmierung FS25

Exercise Session 14
Jonas Wetzel

Parallele Programmierung FS25

Exercise Session 14
The final edition
Jonas Wetzel

Plan fur heute

* Organisation

* Nachbesprechung Assignment 13
* Theory

* Exam questions

* Intro Assignment 14

* Kahoot

* Extra: A&W DP Trick

Organisation

e Mein Name ist Jonas Wetzel

* Meine Website (Materialien und Inhalt der Ubungen):
n.ethz.ch/~jwetzel

 Meine Email: jwetzel@ethz.ch

* Discord: @jonas.too
* Feedback zur Session: https://forms.gle/qiDngkfSP2NUQGvc9Y

mailto:jwetzel@ethz.ch
https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

* Feedback zur Session: https://forms.gle/qiDngkfSP2NUQGvc9

e Falls ihr Feedback mochtet kommt bitte zu mir

https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

* TA Award

e Danke!

Organisation

* Wo sind wir jetzt?

Sequential Consistency and Linearizability, Consensus
Transactional Memory, MPI

\

* Ende der Vorlesung! (&

Plan fur heute

* Organisation

* Nachbesprechung Assighment 13
* Theory

* Exam questions

* Intro Assignment 14

* Kahoot

* AW DP Tricks

Assignment 13

* |s about SC and linearizability

Sequential Consistency

For each of the following histories, indicate if they are sequentially consis Linearizability
objects r and s are registers (initially zero), q is a FIFO (initially empty).

Which of the following histories are linearizable? Infer the object type from the supp

A: -—|r.write(l) |-~—————"""""""""""""""""—— X - T
B: lr.read () :0] - registers are initially zero, stacks/queues initially empty.
c: -—-— |r.read():1|————
A: s.push (1)
A: g.enq(b) A: void
B: q.enq(3) B: s.push(2)
A VO%d B: wvoid
B: void B
A: g.deqgl() : s.pop ()
B: g.deqg() A: s.pop()
A: 3 B: 1
B: 3 A: 2
A: ——|s.write(l) [-———————————mm o A: ——|s.write (1) |———————————————
2: ______ |r.read():0|———; _____ ;_()__IT ______ B: — |lr.read () :1|—|r.read():0| ———
T T T T T T T T T T T T T T T T T T r.rea sl
A —|s.write(1) |——F"——F""""——————— Foamivalanca

B: — |r.read () :1|-——|r.read() :0|———

Recap Histories

Histories can be categorized by some fundamental properties:

Sequential: 15t action invocation; no interleavings

Complete: no pending invocations

Equivalence to some other History: for all threads A: HA= G|A
Legal: for all objects r: H|r is sequential and correct

Well formed: for all threads A: H|A is sequential

Quiescent Consistent: correct with reordering of “overlapping” calls
Sequentially Consistent: correct with reordering regarding threads
Linearizable: choosing linearization points to make execution correct

Thanks to @Erxuan Li, PProg25

Note: the above definitions are not formal

Plan fur heute

* Organisation

* Nachbesprechung Assignment 13
* Theory

* Exam questions

* Intro Assignment 14

* Kahoot

* A&W DP Trick

SC and Linearizability

Essenti
Program correctness In a sequential world al

Objects encapsulate some representation of state

- We don’t reason about the representation directly, but about its visibility
from outside (via public methods) (e.g. stack.top()==3)

State must be consistent, i.e., according to the public class invariant
(e.qg., forall x. stack.push(x).pop()==x)

Each method satisfies its post-condition, given its pre-condition
Hoare Tripel aus EProg

13

Same reasoning doesn’t apply to concurrent
objects!

* notion of an object’s state becomes confusing

* In single-threaded programs, an object must assume a
meaningful state only between method calls

* For concurrent objects, however, overlapping method calls may
be in progress at every instant, so the object may never be
between method calls

Essenti
Program correctness in a concurrent world al

Sequentisl | Coneurrene

Each method described Need to describe all possible
independently. interactions between methods.
(what if enq and deq overlap? ...)

Object’s state is defined between Because methods can overlap, the
method calls. object may never be between
method calls...

Adding new method does not affect Need to think about all possible
older methods. interactions with the new method.

15

1 class LockBasedQueue<T> {
2 int head, tail;
3 T[] items;
Example: Queue i Lo ok
°) public LockBasedQueue(int capacity) {
6 head = 0; tail = 0;
7 lock = new ReentrantlLock();
8 items = (T[])new Object[capacity];
. 9 }
¢ What does It mean for d Concurrent 10 public void enq(T x) throws FullException {
. 11 lock.lock();
object to be correct? 2 try |
13 if (tail - head == items.length)
« each method accesses and updates 1} o new fullbecentionds
. . . o tail++;
fields while holding an exclusive lock 5 | st ¢
18 lock.unlock();
* method calls take effect sequentially 2 .’
21 public T deq() throws EmptyException {
22 lock.lock();
23 try {
24 if (tail == head)
25 throw new EmptyException();
26 T x = items[head % items.length];
27 head++;
28 return Xx;
29 } finally {
30 lock.unlock();
31 }
32 }

33}

1 class LockBasedQueue<T> {
2 int head, tail;
. 3 T[] items;
Example: Queue i Lo ok
° 5 public LockBasedQueue(int capacity) {
6 head = 0; tail = 0;
7 lock = new ReentrantlLock();
8 items = (T[])new Object[capacity];

9 }
10 public void enq(T x) throws FullException {
11 lock.lock();
g.enq(a) 12 try {
13 if (tail - head == items.length)
lock() enqg(a) unlock() 14 throw new FullException();
A -4 ' ﬂ el > 15 items[tail % items.length] = x;
: | 16 tail++;
q.enq(b) 17 } finally {
lock() enq(b) unlock() ! ; 18 Tock.unlock() ;
= : ¥ . ek SLRCTELEELELEETEEPEEPRPERPLS > 19 }
; | ! 1 20}
: . g.deq(b) : 21 public T deq() throws EmptyException {
! 5 : : 22 Tock.lock();
lock() unlock() , ! lock() :) deq(b) Hnlock() . 23 try {
c e —t— — e 24 if (tail == head)
o E ! : | i ! 25 throw new EmptyException();
. ! ! ! | : ! 26 T x = items[head % items.length];
Lock B E | | 3 i | 27 head++;
Holder —.......| b - - - - - - - - - - - — e > 28 return x;
Timeline C B A C 29 } finally {
deq(empty) enq(b) eng(a) deq(b) 30 Tock.unlock();
31 }
32 }

Alternative concurrent gueue implementation

* queue is correctonlyifitis

shared by a single enqueuer and

a single dequeuer

* |t has almost the same internal
representation as the lock-based

queue

* only difference is the absence of

a lock

O 00 N WM

class WaitFreeQueue<T> {
volatile int head = 0, tail = O;
T[] items;
public WaitFreeQueue(int capacity) {
items = (T[])new Object[capacity];
head = 0; tail = 0;
}
public void enq(T x) throws FullException {
if (tail - head == items.length)
throw new FullException();
items[tail % items.length] = x;
tail++;
}
public T deq() throws EmptyException {
if (tail - head == 0)
throw new EmptyException();
T x = items[head % items.length];
head++;
return x;

}
}

How to reason about concurrent objects that
have no locks?

* objects whose methods hold exclusive locks are less desirable
than ones with finer-grained locking or no locks

* We therefore need a way to specify the behavior of concurrent
objects, and to reason about their implementations, without
relying on method-level locking

* lock-based queue example illustrates a useful principle: itis
easier to reason about concurrent objects if we can somehow
map their concurrent executions to sequential ones, and limit our
reasoning to these sequential executions

Quiescent Consistency

Quiescent consistency

Method calls should appear to happen in a one-at-a-time, sequential order
Method calls separated by a period of quiescence should appear to take
effect in their real-time order

21

Quiescent consistency

requires non-overlapping operations to appear to take effect in their real-time
order, but overlapping operations might be reordered

g.enq(X) q.deq() 2 X
L — — @
... quiescence...
size() 2 n
B --ce--- -.L --

22

Quiescent consistency

requires non-overlapping operations to appear to take effect in their real-time
order, but overlapping operations might be reordered

Can change the order of
these operations

g.enq(X)

But not between walls

g.deq() =2 X

23

Sequential Consistency

Motivation

r.write(7)
Thread A -------- R — >
r.write(—3) rread(—7)
Thread B ------------- — - - - — >

* two threads concurrently write -3 and 7 to a shared registerr

* L ater, one thread reads r and returns the value -7

* This behavior is clearly not acceptable!

* We expect to find either 7 or -3 in the register, not a mixture of both!

Motivation

r.write(7)
Thread A -------- .
r.write(—3) r.read(—7)
Thread B ------------- e— - — e e oo oo -

two threads concurrently write -3 and 7 to a shared registerr

Later, one thread reads r and returns the value -7

This behavior is clearly not acceptable

* We expectto find either 7 or -3 in the register, not a mixture of both!

* Method calls should appear to happen in a one-at-a-time,
sequential order!

Motivation

r.write(7) r.write(—3) r.read(7)

Figure 3.5 Why method calls should appear to take effect in program order. This behavior is
not acceptable because the value the thread read is not the last value it wrote.

* single thread writes 7 and then -3 to a shared register . Later, it
reads r and returns 7

* For some applications, this behavior might not be acceptable
because the value the thread read is not the last value it wrote

Motivation

r.write(7) r.write(—3) r.read(7)

Figure 3.5 Why method calls should appear to take effect in program order. This behavior is
not acceptable because the value the thread read is not the last value it wrote.

* We want Method calls to appear to take effect in program order!

Combining both we get SC

* Method calls should appear to happen in a one-at-a-time,
sequential order

* Method calls should appear to take effect in program order

Combining both we get SC

* Method calls should appear to happen in a one-at-a-time,
sequential order

* Method calls should appear to take effect in program order

* Thatis, in any concurrent execution, there is a way to order the
method calls sequentially so that they (1) are consistent with
program order, and (2) meet the object’s sequential
specification

Sequential consistency

A multiprocessing system has sequential consistency if:

"...the results of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its
program."

Leslie Lamport (inventor of sequential consistency, GOAT Turing Award
Winner, concurrent master mind)

31

. . . Essenti
Sequentlal con5|stency reqwrements al

1. Allinstructions are executed in order.

2. Every write operation becomes instantaneously visible throughout the
system.

g.enq(x) g.deq() =2y
A ------------------ M ----------------------------- —M -----------------------
g.enq(y)
B -- -hﬁ' ---------------------------

32

. _ . Essenti
Sequentlal con5|stency reqwrements al

1. Allinstructions are executed in order.

2. Every write operation becomes instantaneously visible throughout the
system. (all variables volatile! Shows us that standard java is not sequentially
consistent)

g.enq(x) g.deq() =2y
A —————————————————— M ----------------------------- —M -----------------------
g.enq(y)
B -- -hﬁ' ---------------------------

33

Sequential consistency and the real world

* In the real world, hardware architects do not adhere to this by
default

* We need to explicitly announce that we want this property (i.e.
volatile keyword)

Sequential consistency and the real world

* We need to explicitly announce that we want this property (i.e.
volatile keyword)

* This lock is only correct if we have SC

Reminder: Consequence for Peterson Lock (Flag Principle)

flag[id] = true;
victim = id;
while (flag[l-id] && victim == id);

flag[O].write(true) victim.write(0) flag[1].read()> ? victim.read() =2 ?
A -e @ ---------- ® ®----- ® @ ------------ ® @ --------
flag[1].write(true) victim.write(1) flag[0].read() = ? victim.read() 2 ?

SC is not compositable

p. enq(X) K enq(x) P deq() =2y

g-enqly) p.enqly) g.deq() 2x

H|p is sequentially consistent
H|qg is sequentially consistent
H is not sequentially consistent

In general: sequential consistency is not compositable

36

Linearizability

Motivation

g.enq(x) q.deq(y)
———————————————— p— - - - —
g.enq(y)
_________________________________ e

* Thisis SC
* Goes against our intuition, gq.enq(x) finished before g.enq(y)!

How do we fix this

* replace the requirement that method calls appear to happen in
program order with the following stronger restriction:

* Each method call should appear to take effect instantaneously at
some moment between its invocation and response

ldea

* Now we have:

* Method calls should appear to happen in a one-at-a-time,
sequential order

* Each method call should appear to take effect instantaneously at
some moment between its invocation and response

Essenti

Example with FIFO Queue (1) al

Is this Yes!
linearizable?

41

Essenti

Example (2) al

Is this
linearizable?

«»

«»

C ime Y

Essenti

Example (2) al

Is this No!
linearizable?

43

Quiescent Consistent

(composable) (not composable)

YN P&

Linearizable
(composable)

* Sequential Consistent

Thanks to @Erxuan Li, PProg25

cConsensus

v ovien ETHzUrich
Recap: Consensus Protocols

| propose | propose
1123”' 1142”'

1 A few moments later...

T (a finite number of steps) -

We EEE Which other
agreed = = scenarios are
on“23”. " allowed?

We
agreed
on “23”

46

v ov o ETHzUrich
Consistent Result

| propose | propose
”23”. 1142”.

!

TIIT Consensus result needs to be

This is illegal!

We EEE consistent: the same on all threads.
agreed = =
1NNy
on“23”.
We
agreed
on “42”

47

spcl.inf.ethz.ch

Valid Result

| propose
1123”.

We
agreed
on“420".

!

| propose
1142”.

We
agreed
on “420”

This is illegal!

Consensus result needs to be valid:
proposed by some thread.

L 4 @spcl_eth

ETH:zurich

48

spcl.inf.ethz.ch

ETH:zurich

Wait-Free

| propose
1123”.

| cannot finish
because | am
waiting for

the other
thread.

| propose
1142”.

4

| will not
schedule you
now!

L 4 @spcl_eth

This is illegal!

Consensus needs to be wait-free:

All threads finish after a finite
number of steps, independent of
other threads.

Valid, Consistent, Wait-free

 This will be asked on the exam 100%

50

Consensus Number

* The consensus number of C is the largest n for which C solves n-
thread consensus

* Atomic Registers have consensus number 1, we’ll show this later
* TAS has consensus number 2
* CAS has consensus number o (Can be shown by construction)

Why is Consensus Number important?

* |t gives us the consensus hierarchy
* |s backed by mathematical proof

The Consensus Hierarchy

* allows us to say that implementing
a lock free FIFO queue is N
Impossible using atomic registers,
because queue has CN 2 and AR
have CN 1!

o0 CompareAndSet, ...

2 getAndSet, getAndIincrement, ...

FIFO Queue
LIFO Stack

Multiple Assignment

Implementing one thread consensus using AR

* Atomic Register:

Int decide(int proposed)
return proposed,;

spcl.inf.ethz.ch 0o o
v oo ETHZUrich

Implementing two thread consensus with TAS

= Assume you have a machine with atomic registers and an atomic test-and-set operation with the
following semantics (X is initialized to 1):

int TAS() {
res = X;
if (res==1) {
X=0;
}

return res;

}

= |mplement a two-process consensus protocol using TAS() and atomic registers.

spcl.inf.ethz.ch 0o o
v oo ETHZUrich

Implementing two thread consensus - Solution

= Code for both threads
read own_value;
read other_value;
if (TAS() ==0) {
return own_value;
} else
return other_value;

Implementing n thread consensus with TAS

TAS Consensus

AtomicBoolean bool = False;

AtomicInt myint = 0;

if(! .getAndSet(True)) {
.set(my_proposed_number);

return my_proposed_number;

return .get();

56

Implementing n thread consensus with TAS

TAS Consensus

AtomicBoolean bool = False;
AtomicInt myint
if(! .getAndSY

returp

return

57

N thread consensus with CAS

CAS consensus

class CASConsensus {
private final int FIRST = -1;
private AtomicInteger pr new AtomicInteger(FIRST);
private AtomicIntegerArray proposed;

public Object decide(Object value) {
int i = .get();
.set(i, value);
if (r.compareAndSet(FIRST, i))
return .get(i);
else

return .get(r.get());

spcl.inf.ethz.ch

ETH:zurich

Simplification: Binary Consensus

= Instead of proposing an integer, two threads now propose either 0 or 1

I”

= Equivalent to “norma
= How can we prove this?

consensus for two threads

= |f we can implement one, we directly get the other

binary_decide(bit b) {
return int_decide(b)

}

We can implement binary
consensus using normal
consensus.

int_decide(int d) {
prop[id] =d
other = (id + 1)%2;
int win = bin_decide(id);
return prop[win];

}

We can implement binary
consensus using normal consensus
(id in {0,1} and unique).

L 4 @spcl_eth

spcl.inf.ethz.ch 0o o
v oo ETHZUrich

State Diagrams of Two-thread Consensus Protocols

Cycles among states cannot exist in a
wait-free algorithm: The state “looks”
the same each time we visit, so we
are trapped forever in the loop and
not wait-free.

Start state, both threads (A and B)
have not yet executed the first
instruction of the consensus
protocol.

Each state has at most two successors:
Either A or B execute an instruction.

o BT O
e

ek T "\vaﬁqj_‘_‘?jﬂ‘,r RN g P : spcl.inf.ethz.ch m ¥Tadl h
. \: = e - Y @spcl_eth ZurIC

Anatomy of a State (in two-thread consensus)

Shared Variables

Thread local

variables of A Thread local

variables of B

Program
- counter of B
Program

counter of A

spcl.inf.ethz.ch 0o o
;' @sp:'l_eth E'HZUI’IC/’)

Anatomy of a State

The states are different, since A has
Shared Variables different local variables and program
rl=3 counter values.

Thread local

variables of A Thread local
variables of B

y=0 Program

counter of B

Program
; S1

counter of A

Shared Variables
r1=3

Thread local

variables of A Thread local
variables of B

Yet from B’s perspective they look the y=0
same! (Until A writes x into a shared
variable!) Program

Program
counter of B
S1

counter of A

spcl.inf.ethz.ch 0o o
v oo ETHZUrich

Critical States

There is always at least one bivalent
state (the start state).

This state is bivalent but all
his successors are :
0 0 We call such states critical.

From this state we only
reach states with output 1,
so it is also univalent. 1
Output states are always o o
univalent.

Consensus States

* If we are solving binary consensus, there are 3 different types of
states:

* univalent: State, where the output is settled on either O or 1
* bivalent: both outputs 0 and 1 are still possible

e critical: bivalent & the following state-transition ends in two
univalent states

64

spcl.inf.ethz.ch 0o o
v oo ETHZUrich

Quiz: Label the States

It is also critical, since it is
bivalent and all its successors
are univalent.

This state is bivalent, as we
can reach 0 and 1 output
states.

bivalent!

Output states are al Output statesa Output states are always
univalent. univaler univalent.

spcl.inf.ethz.ch 0o o
v oo ETHZUrich

Critical State Existence Proof

Lemma: Every consensus protocol has a
critical state.

Proof: From (bivalent) start state, let the threads only
move to other bivalent states.

e If it runs forever the protocol is not wait free.

e If it reaches a position where no moves are possible
this state is critical.

66

spcl.inf.ethz.ch 0o o
v oo ETHZUrich

Critical State Existence Proof

Lemma: Every consensus protocol has a

critical state. If it is wait-free we need to finish in

finite time (finish means we return a

Proof: From (bivalent) start state, let the threads only number) => tree will be of finite
move to other bivalent states. Iength

* If it runs forever the protocol is not wait free.

e If it reaches a position where no moves are possible
this state is critical.

Proof that Atomic Registers have Consensus Number 1

* Want to show this by checking all possible ways we could try to
Implement binary consensus using just atomic registers

* Then we show a contradiction for each case, which means that it’s
Impossible to create any higher consensus than for one single
thread (which is trivial)

68

Proof that Atomic Registers have Consensus Number 1

* |If binary consensus is not possible for two threads using atomic
registers, then it’s also not possible for normal consensus (we’ve
seen that they are equivalent)

* Also, not possible for more than two threads

69

Let’s start

* We know that our wait free consensus protocol must reach a
critical state at some point

e So, let’s start there

Impossibility Proof Setup — Critical State

So, what actions can a thread
perform in his “move”? , .
Assume we are in the critical
Either read or write a shared state (Whlc,h TS @50
. , Assume that if A moves next,
register! — Let’s see why. , ,
we end up with 0, if B moves
next, we end up with 1.
(w.l.0.g., can switch names)

spcl.inf.ethz.ch
L 4 @spcl_eth

ETH:zurich

spcl.inf.ethz.ch 0o o
v oo ETHZUrich

Impossibility Proof Setup — Critical State

So, what actions can a thread
perform in his “move”?

Either read or write a shared
register! — Let’s see why.

Assume we are in the critical

state (which must exist). @
Assume that if A moves next,
we end up with 0, if B moves

next, we end up with 1.
(w.l.0.g., can switch names)

You can think of the transition as
which thread performs the CAS or TAS
first, and thereby decides the number

We want to know what operations A can do

* A can only write or read a shared variable
* Why? Let’s assume A just reads and writes local variables

* Then the outward state won’t change from the perspective of B!
* Let’s see this played out

73

spcl.inf.ethz.ch 0o o
v oo ETHZUrich

Impossibility Proof Setup — Possible actions of a thread

critical

So what actions can a thread

A: X=y+2 perform in his “move”?
(x,y,z: local)
What happens if A just reads

CGEEEED GGEEED GEEND GGEEED GEEED GEEEED $GEEEED 2z GEE -_—_ﬂ

From B’s perspective from and writes to local vars?
Now the these two states look I
scheduler I the same! I
pauses A, and B cannot know that
B runs solo I one of them must | Conclusion: First instruction
I output 0! So, we get a I after critical state must be a
contradiction! read or write of a shared
I | | variable!
- - - = = = - T T T T~ ST
I - - ~\
—
Output must

Output must

be O be 1

spcl.inf.ethz.ch 0o o
v oo ETHZUrich

Impossibility Proof Setup — Possible actions of a thread

We know reading/writing B can read the
local variables cannot lead @ same variable Many cases...
out of a critical state — what let’s make tables
remains? B canread a
different variable
A can read a
shared variable B can write the

same variable
A can write a
shared variable

B can write a
different variable

spcl.inf.ethz.ch

Many Cases to check

First Action 1
A:rl.read() | A: rl.write() | A: rl.write() | A: r2.write()
B: rl.read()
Sec?nd B: r2.read()
Action
B: rl.write()
B: r2.write() o
Second Action
A:rl.read() | A:r2.read() | A: rl.write() | A: r2.write()
B: rl.read()
First B: r2.read()
Action here-Areads
B: rl.write()
B: r2.write() ®

ETH:zurich

L 4 @spcl_eth

Is binary
consensus
possible for any
of those?

Can we simplify
somehow?

Let’s say A always moves first,
otherwise, switch names.

Similarly, we can call the
register A reads/writes rl
in both cases.

Which cases do we need to check?

* Note that First and Second
Action don’t really say
anything about what
happens first and what
happens second as we
abstracted this away in the
previous step

Second
Action

First Action
A:rl.read() | A:
r1.write()

B: r1.read()

B: r2.read()

B:

r1.write()

B:

r2.write()

77

Which cases do we need to check?

* Let’s start with the case
where A does r1.read() and
B does X (read or write).

First Action

A: A:
r1.read() r1.write()

Second
Action

B:
r1.read()

B:
r2.read()

B:
r1.write()

B:
r2.write()

78

spcl.inf.ethz.ch 0o o
v oo ETHZUrich

Impossibility Proof Case I: A reads

Output is decided (0) A reads B does X Output is decided (1)
due to critical state. due to critical state.

O

From B’s perspective
these two states look
exactly the same!
However, B needs to
output different
values!

spcl.inf.ethz.ch 0o o
v oo ETHZUrich

What did we just prove?

First Action

A:rl.read() | A: rl.write()

B: rl.read() clcjnzlgr?xs
Second :
Action B: r2.read() ’P possible for any
B: rl.write() ® of those?
B: r2.write()

Which cases do we need to check?

e Let’s start with the case where A
does r1.read() and B does X. [/

* Next, lets look at when A does
r1.write() and B reads either register.

First Action

A:rl.read() | A: r1.write()

Second
Action

B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()

31

spcl.inf.ethz.ch 0o o
v oo ETHZUrich

Impossibility Proof Case I’: B reads

@ Output is decided (1)

A writes rl B reads
Output is decided (0)

due to critical state. O

due to critical state.

A writes rl

From A’s perspective
these two states look
the same! However,
A needs to
(eventually) output
different values!

spcl.inf.ethz.ch

What did we just prove?

First Action

Second
Action

:rl.read()

: r2.read()

: rl.write()

O (0|0 | WO

: r2.write()

A:rl.read() | A: rl.write()

L 4 @spcl_eth

Is binary
consensus
possible for any
of those?

ETH:zurich

Which cases do we need to check?

e Let’s start with the case where A
does r1.read() and B does X. [~

* Next, lets look at when A does
r1.write() and B reads either
register. [/

* Now, lets look at the case when A
does r1.write() and B does r2.write().

First Action

Second
Action

B:
r1.read()

B:
r2.read()

B:
r1.write()

B:
r2.write()

spcl.inf.ethz.ch 0o o
v oo ETHZUrich

Impossibility Proof Case ll: A and B write to different registers

A writes rl B writes r2

Output is decided (0)
due to critical state.

Output is decided (1)
ldue to critical state.

”
-

PR AR =>Qutput 1
Output 0 il

The same state!

However, it should be outputting 0
/ 1 depending on where it was
reached from!

spcl.inf.ethz.ch

What did we just prove?

First Action

Second
Action

:rl.read()

: r2.read()

: rl.write()

o | O ||

: r2.write()

A:rl.read() | A: rl.write()

L 4 @spcl_eth

Is binary
consensus
possible for any
of those?

ETH:zurich

Which cases do we need to check?

e Let’s start with the case where A
does r1.read() and B does X. [~

* Next, lets look at when A does
r1.write() and B reads either
register. [/

* Now, lets look at the case when A
does r1.write() and B does
r2.write(). b2

* Finally, let’s check A does r1.write()
and B does r1.write() too.

First Action

Second
Action

B:
r1.read()

B:
r2.read()

B:
r1.write()

B:
r2.write()

spcl.inf.ethz.ch 0o o
v oo ETHZUrich

Impossibility Proof Case lll: A and B write to the same register

Output is decided (0) Awrites rl Bwritesrl gutput is decided (1)
due to critical state. due to critical state.

D

B writes rl l

From B’s perspective

these two states look

the same! However,
B needs to output
different values!

Which cases do we need to check?

e Let’s start with the case where A
does r1.read() and B does X. [~

* Next, lets look at when A does
r1.write() and B reads either
register. [/

* Now, lets look at the case when A
does r1.write() and B does
r2.write(). b2

* Finally, let’s check A does r1.write()
and B does r1.write() too. [~

First Action

Second
Action

B:
r1.read()

B:
r2.read()

B:
r1.write()

B:
r2.write()

What did we show?

* We proved that there is no possible way to build a consensus
protocol using just atomic registers by enumerating all possible
ways we could try to implement such a protocol

spcl.inf.ethz.ch 0o o
v oo ETHZUrich

That’s all

First Action

A:rl.read() | A: rl.write()

B: rl.read() clcjnt::r?s,rZS
?Aecfc(i);: B: r2.read() possible for any

B: rl.write() oI EesE

B: r2.write() .

Impossibility of Distributed Consensus with One Faulty
1985, 2.5k citations Process

MICHAEL J. FISCHER

Yale University, New Haven, Connecticut

NANCY A. LYNCH

Massachusetts Institute of Technology, Cambridge, Massachuseits
AND

MICHAEL S. PATERSON

University of Warwick, Coventry, England

Abstract. The consensus problem involves an asynchronous system of processes, some of which may he

Questions?

92

Transactional Memory

* goal of transactional memory is to remove the burden of
synchronization away from the programmer and place it in the
system (be that hardware or software)

* |deally, programmer only has to say

atomic {

a.withdraw(amount);
b.deposit(amount);

}

Transactional Memory

* Has nice properties:
* simpler, less error-prone code
higher-level semantics (what vs. how)
composable (unlike locks)
analogy to garbage collection
optimistic by design (does not require mutual exclusion)

* Downsides:
* semantics are not clear (e.g., nesting)
* getting a good performance can be challenging

* how we should deal with I/0O in transactions (i.e., how would one rollback
these changes?) is not clear.

Transactional Memory - ACID

* Transactions follow ACID principle

* Atomic — changes by transaction are made visible atomically, threads
either see the state before a transaction or after a transaction finished
successfully. They don’t observe intermediate states.

* Consistent — objects will never be in an inconsistent state, i.e., between
method calls, transactions always move from one consistent state to
another consistent state

* |solated — while a transaction is running, effects from other transactions
are not observed. Transaction takes “snapshot” and works on it

* Durable - (mostly used for databases that we don’t lose data when a
power loss occurs)

Transactional Memory

* How do we build it?

Transactional Memory

* How do we build it?

e create a “snapshot” of the current state and make sure that
transaction only affects a local copy of this state, which can then
be either committed or aborted

* |If a transaction which has yet to commit has read a value (at the
start of its operation) that was changed by a transaction that has
committed, a conflict (hon repeatable read) arises, and we need
to abort the transaction and retry

* i.e., check if the state of the system changed in the meantime, if
yes, we need to retry

Transactional Memory

* Consider the following example, where the initial state is a=0

* assume that transaction B commits the changes it has made
before Adoes

* Now, in a serialized view, the execution with a==0is invalid!

// Transaction A

atomic { // Transaction B
atomic {

X = a; // read a

if (x == 0){ _
// do something a = 10; // write a
} else {
// do something else
}
}

Transactional Memory

* Consider the following Serialized view
example, where the Initially: a = 0
Initial state is a=0 atomic {

e assume that =c

. . }
transaction B commits
the changes it has e
made before A does = 8 1/ reat
if (x == ©

* Now, in a serialized O

view, the execution y
}

with a==0 is invalid!

TXg

TX,

Serial order of transactions.

Should have read a == 10
Executions that read a == 0 are
invalid!

Transactional Memory

* can implement TM either in hard- or software

* HTM is fast, but has bounded resources that often cannot handle
big transactions

* STM allows greater flexibility, but achieving good performance
might be very challenging

Transactional Memory - Nesting

* We need to make some design choices
* Transactions should be composable

* What happens if we have transactions within transactions? This is
called nesting

* Two possible approaches:

Transactional Memory - Nesting

* What happens if we have transactions within transactions? This is
called nesting

* Two possible approaches:

* Flat/Flattened Nesting: Inner and outer transactions are treated as one. If
an inner transaction aborts, all abort. Changes from the inner are visible
only if the outer commits.

* Closed Nesting: Inner aborts don't affect the outer. If an inner commits,
changes are visible to the outer but not to others until the outer commits.

Transactional Memory - ScalaSTM

* Uses a clock-based system, i.e., every transaction has a time
when it was started and when it was committed

 Each transaction has a local read-set and a local write-set,
holding all locally read and written objects

* Allows us to check if our data became “outdated”, e.g., some
other thread committed, and we need to retry

Transactional Memory - ScalaSTM

* In this example, the T snapshot became outdated, so we need to
abort and retry

Transaction life time

7

birthdate of T

Transactional Memory - ScalaSTM

* |In this example, the T snapshot was the most recent version of all
variables used, so we can commit

Successful commit

ol read setof T \

birthdate of T @@ T commits

X.date Y.date Z.date

T writes X
(local copy!)

T writes Y
(local copy!)

f Vo4 writesetof T

MPI

* Many of the problems of parallel/concurrent programming come
from sharing state. What if we simply avoid this?

* Message Passing has isolated mutable state, each thread/task
has its private, mutable state, and separate tasks only cooperate
via explicit message passing

MPI

* messages can be divided into synchronous and asynchronous

* Synchronous messages mean that the sender of the message
blocks/waits until the message is received

* Asynchronous messages do not block, but are placed into a buffer
(“postbox”) for the receiver to get at some point

func main() {
msgs := make(chan string)
done := make(chan bool)

* Example Go Code ﬁzg:ezofﬂﬁi;"do”e);

which uses channels msgs <- "bye"
ok := <-done
fmt.Println("Done:", ok);

}

func hello(msgs chan string, done chan bool) {
for {
msg := <-msgs
fmt.Println("Got:", msg)
if msg == "bye" {
break

}

done <- true;

S0, what is MPI?

* MPl is a standard application/programming interface (API),
meaning it is a portable, flexible library not bound to a particular
language.

* [tis the most used interface for distributed parallel computing,
which is nearly the entirety of high performance computing

S0, what is MPI?

* Works SPMD: Single Program Multiple Data (Multiple Instances)

* We compile only one program, which gets executed by multiple
different instances

* Every MPI program can be written using just six core functions:

* MPILInit-Initializes the MPI environment (this must be the first function
called).

MPI_Comm_size - Determines the number of processes in a communicator.

MPI_Comm_rank — Returns the rank (ID) of the calling process within the
communicator.

MPI_Send - Sends a message to another process.
MPI_Recv — Receives a message from another process.

MPI_Finalize — Cleans up the MPI environment (this must be the last function
called).

import mpi.*;

public class HelloWorld {
public static void main(String[] args) throws MPIException {

// Initialize the MPI execution environment
MPI.Init(args);

// Get the rank (ID) of the current process
int rank MPI.COMM_WORLD.Rank();

// Get the total number of processes

int size = MPI.COMM_WORLD.Size();

* Einfaches Beispiel, S ——
zwel Threads

System.out.println("Hello from process + rank + " of " + size);

// Example of point-to-point communication:

schicken sich eine if (size > 2) {

if (rank == 0) {

N h I ht // Prepare a message to send
aC rIC String message "Greetings from process 0";

// Send the message to process 1
MPI.COMM_WORLD.Send(new Object[]{message}, 0, 1, MPI.OBJECT, 1, 99);

System.out.println("Process 0 sent message: '" + message + "'");

} else if (rank == 1) {
// Prepare a buffer to receive the message
Object[] buffer new Object[1];
// Receive the message from process 0
MPI.COMM_WORLD.Recv(buffer, @, 1, MPI.OBJECT, 0, 99);
String received = (String) buffer[0];
System.out.println("Process 1 received message: '" + received + "'");
}
} else {
if (rank == 0) {
System.out.println("Need at least 2 processes to demonstrate send/
receive");

// Finalize the MPI environment
MPI.Finalize();

MPI| Collectives

* Up until now, we saw only point-to-point communication
* MPIl also supports communications among groups of processors

* Reduce: to reduce a result from different processes to one (called
root)

* Broadcast: Broadcasts a message from the root process to all
other processes in the group

* Allreduce: Like reduce, but hands result to all processes involved

* Gather: Each process sends the contents of its send buffer to the
root process

Plan fur heute

* Organisation

* Nachbesprechung Assignment 13
* Theory

* Exam questions

* Intro Assignment 14

* Kahoot

* A&W DP Tricks

What’s important for the exam?

* Properties of consensus protocol: valid, consistent, wait-free
* Knowing what bivalent, univalent and critical states are

* Being able to reason about why there can’t be cycles in a wait free
program

* identifying whether given code is a correct consensus protocol
* making a statement about the consensus number of an object

114

7. (a) Unten sehen Sie fehlerhafte Versuche wait-
free consensus Protokolle fiir zwei Threads
zu implementieren. Erkliren Sie fiir jede Im-
plementierung weshalb diese fehlerhaft ist,
indem Sie aufzeigen welche der Eigenschaf-
ten von wait-free consensus die Implemen-
tierung nicht erfiillt (sollte eine Implementie-
rung mehrere Eigenschaften nicht erfiillen so
wihlen Sie eine davon aus).

Below you see incorrect attempts to im-
plement a wait-free consensus protocol
for two threads. For each of them briefly
explain why it is incorrect by explain-
ing which property of wait-free consen-
sus the implementation does not fulfill (if
it violates multiple properties pick one).

1 int decide(int val) {
2 return val;

3 }

(6)

7. (a) Unten sehen Sie fehlerhafte Versuche wait- Below you see incorrect attempts to im- (6)

free consensus Protokolle fiir zwei Threads plement a wait-free consensus protocol
zu implementieren. Erkliren Sie fiir jede Im- for two threads. For each of them briefly
plementierung weshalb diese fehlerhaft ist, explain why it is incorrect by explain-
indem Sie aufzeigen welche der Eigenschaf- ing which property of wait-free consen-
ten von wait-free consensus die Implemen- sus the implementation does not fulfill (if
tierung nicht erfiillt (sollte eine Implementie- it violates multiple properties pick one).

rung mehrere Eigenschaften nicht erfiillen so
wihlen Sie eine davon aus).

1 int decide(int wval) {
2 return val;

3 }

* Consistency is violated

* For two threads calling the method with two different values, the
method will return different values

int decided = 0; //shared variable
int proposed[2]; //shared variable

[

4 int decide(int val, int thread_id /* either 0 or 1*/) {
decided += 1;

proposed [thread_id] = val;

while (decided < 2) {}

decided = 0

return proposed[1];

i |

= S N =

10 F

1 int decided = 0; //shared variable
2 int proposed[2]; //shared variable
3

4 int decide(int val, int thread_id /* either 0 or 1*/) {
5 decided += 1;

6 proposed[thread_id] = val;

7 while (decided < 2) {}

8 decided = 0

9 return proposed[1];

10 ¥

* Not wait-free!

* suspension of one thread can cause the other thread to spin indefinitely (the
first thread must wait for the second). Thus, a thread calling the method
would not be guaranteed to finish in a finite number of steps

1 int decide(int wval) {
2 return 0;

3 }

1 int decide(int wval) {
2 return 0O;

3 }

* Not valid!
* No thread could propose 0 then it’s wrong to return O

(b) Geben Sie jeweils ein Beispiel fiir ein Objekt Give an example of an object (one each) (7)

mit der Konsensuszahl 1, 2 und unendlich. which has consensus number 1, 2, and
Begriinden Sie warum das angegebene Ob- infinity. Argue why the given object has
jekt mindestens diese Konsensuszahl haben at least that consensus number.

muss.

(b) Geben Sie jeweils ein Beispiel fiir ein Objekt Give an example of an object (one each) (7)

mit der Konsensuszahl 1, 2 und unendlich. which has consensus number 1, 2, and
Begriinden Sie warum das angegebene Ob- infinity. Argue why the given object has
jekt mindestens diese Konsensuszahl haben at least that consensus number.

muss.

* Atomic Register -1
e TAS-2
* CAS - Infinity

(b) Geben Sie jeweils ein Beispiel fiir ein Objekt Give an example of an object (one each) (7)

mit der Konsensuszahl 1, 2 und unendlich. which has consensus number 1, 2, and
Begriinden Sie warum das angegebene Ob- infinity. Argue why the given object has
jekt mindestens diese Konsensuszahl haben at least that consensus number.

muss.

* Atomic Register:

int decide(int proposed)
return proposed,;

(b) Geben Sie jeweils ein Beispiel fiir ein Objekt Give an example of an object (one each) (7)

mit der Konsensuszahl 1, 2 und unendlich. which has consensus number 1, 2, and
Begriinden Sie warum das angegebene Ob- infinity. Argue why the given object has
jekt mindestens diese Konsensuszahl haben at least that consensus number.

muss.
* TAS:

boolean decided = false;
Int[] value = new int[2];
int decide(int proposed, int id)
value[id] = proposed;
if (TAS(decided)){
return value[1-id];

}

return value[id];

(b) Geben Sie jeweils ein Beispiel fiir ein Objekt
mit der Konsensuszahl 1, 2 und unendlich.
Begriinden Sie warum das angegebene Ob-
jekt mindestens diese Konsensuszahl haben
Muss.

e CAS:

Int decided = NaN;

Int decide(int proposed)
CAS(decided, NaN, proposed);
return decided;

Give an example of an object (one each)
which has consensus number 1, 2, and
infinity. Argue why the given object has
at least that consensus number.

(7)

(a) Nennen und erkléren Sie die drei definieren- Name and explain the three defining (3)
den Eigenschaften eines wait-free Konsensus properties of wait-free consensus.
Protokolls.

(a) Nennen und erkléren Sie die drei definieren- Name and explain the three defining (3)
den Eigenschaften eines wait-free Konsensus properties of wait-free consensus.
Protokolls.

(a) Nennen und erkléren Sie die drei definieren-

den Eigenschaften eines wait-free Konsensus
Protokolls.

Name and explain the three defining (3)
properties of wait-free consensus.

wait-free: consensus returns in finite time for each thread.

consistent: all threads decide the same value (i.e., reach
consensus)

valid: the decision value is some thread's input

(b) Kann wait-free binary consensus fiir zwei Can binary wait-free consensus for two (2)
Threads mithilfe von Locks implementiert threads be implemented with locks? Ex-
werden? Begriinden Sie Ihre Antwort. plain your answer.

(b) Kann wait-free binary consensus fiir zwei Can binary wait-free consensus for two (2)
Threads mithilfe von Locks implementiert threads be implemented with locks? Ex-
werden? Begriinden Sie Ihre Antwort. plain your answer.

(b) Kann wait-free binary consensus fiir zwei Can binary wait-free consensus for two (2)
Threads mithilfe von Locks implementiert threads be implemented with locks? Ex-
werden? Begriinden Sie Ihre Antwort. plain your answer.

* No. Wait-free implies lock-free which means that no locks can be
used

Exam allgemein

Exam allgemein

* Man kann PProg sehr gut lernen und jeder von euch kann eine
super Note erreichen

* Lost die alten exams auf community solutions

* Falls ihr Verstandnisprobleme habt, lest im Buch (link auf meiner
website) nach, da ist es oft nochmal besser erklart

* [hr musst nicht alle Slides nochmal anschauen, wenn ihr in der
Vorlesung wart, ich denke Exams sind viel wichtiger

 Theory Assignments sind gut zum Uben, die Coding Probleme sind
auch wichtig! Oft gibt es so Code Skelett Aufgaben (meine
Prufung)

Code Skelett Aufgaben

this.exit = exit;
this.ticket_number = entry.get_ticket();
int zone_index = this.entry.get_index();
this.n_cars_on_roundabout = n_cars_on_roundabout;
// this.zones enthidlt alle Zonen, welche das Auto
// passieren will, geordnet.
/* this.zones contains all the zones the car wants
* to cross, in order. */
while (zone_index != this.exit.get_index()) {
this.zones.add(zones[zone_index]);
zone_index = (zone_index + 1) % zomes.length;

@0verride
public void run() {

while (true) {
synchronized (...................) { // 1 pt
if (this.ticket_number > this.entry.get_next_car_in_line()) {
// Vorrang fiir Autos, die friiher bei derselben Einfahrt ankamen.
/* Give priority to cars that arrived at the
* same entry earlier. */

... // 1 pt

// Bevor das Auto in den Kreisverkehr einfdhrt,

// darf hochstens ein Auto im Kreisverkehr sein.

/* Before entering the roundabout,

* ensure that at most one is already in the roundabout. */
while (true) {
.. // 4 pt

Zone current_zone = this.zones.get(0);

Types of exercises that might come in the exam

Disclaimer: This list is not guaranteed to be complete and is only meant to give you an idea what has been
asked on previous exams.

Locks

* Usually there are not too many question on this topic. true/false questions of which lock has which
properties (fairness, starvation free)

* find bugin lock code (violation of mutual exclusion or deadlock freedom)
* draw state space diagram and/or read off correctness properties

* reproduce Peterson/Filter/Bakery lock

* prove correctness of Peterson lock or similar (but not Filter or Bakery)
Monitors, semaphores, barriers

* semaphore implementation (mostly with monitors)

* (never seen rendezvous with semaphores in an exam)

* barrier implementation (mostly with monitors)

(only seen a task on implementing a barrier with semaphores once in FS21, 8b)

fillout some program using monitors (similar to wait/notify exercises, maybe with lock conditions)

Credits @acellison PProg23

https://exams.vis.ethz.ch/exams/i0svp1fh.pdf

Types of exercises that might come in the exam

* Proving that an object x has consensus number =y(or). Then you
must provide an algorithm solving y-thread consensus using any
number of instances of x (or for the o case, provide an algorithm
solving n-thread consensus for arbitrary n)

* Proving that an object x has consensus number at most z. This
would involve proving that it is impossible to implement (z+1)-
thread consensus with x

* E.g., if we know x is implemented using atomic registers then it
can’t solve consensus for more than one thread

Types of exercises that might come in the exam

* | don’t expect much about MPIl and Transactional Memory as it
was only covered shortly (no guarantee!)

* Maybe some Mixer questions about it at the end (check the old
exams)

Plan fur heute

* Organisation

* Nachbesprechung Assignment 13
* Theory

* Exam questions

* Intro Assignment 14 (yes, there is another one &)

e Kahoot
e A&QW DP Tricks

Assignment 14

e |s about Consensus

“Below we show incorrect implementations of a consensus protocol in pseudocode. Which
property does each snippet violate when used with two threads?”

Show that lock free FIFO queue has consensus number 2

Show that lock free FIFO queue with peek() has consensus number infinity

Show how to implement two thread consensus using binary consensus

| would recommend solving it, these are exam relevant questions

Plan fur heute

* Organisation

* Nachbesprechung Assignment 13
* Theory

* Exam questions

* Intro Assignment 14

e Kahoot
e A&QW DP Tricks

Kahoot!

* lIch werde alle Kahoots noch auf meiner Website hochladen,
schaut da gerne nach, auch fur die Lernphase

Consensus Protocol for two threads using

lock free queue

1 public class QueueConsensus<T> extends ConsensusProtocol<T>
2 private static final int WIN = 0; // first thread

3 private static final int LOSE = 1; // second thread
4 Queue queue;

5 // initialize queue with two items

6 public QueueConsensus() {

7 queue = new Queue();

8 queue.enq(WIN) ;

9 queue.enq(LOSE);

10 }

11 /! figure out which thread was first

12 public T decide(T Value) {

13 propose(value);

14 int status = queue.deq();
15 int i = ThreadID.get();
16 if (status == WIN)

17 return proposed[i];

18 else

19 return proposed[1-i];
20 }

21 |}

Figure 5.1 2-thread consensus using a FIFO queue.

The following is a correct implementation of a reus-
able barrier in Java.

public MyBarrier

final int |

public synchronized void

The following is a correct implementation of a reus-
able barrier in Java.

public MyBarrier

final int |

'k ‘_ L

* False, remember spurious wake ups

Now the implementation is correct. (change: if ->
while)

public cl MyBarrier
1nt | 1
final int

public synchronized void a

Now the implementation is correct. (change: if ->
while)

public cl MyBarrier
1INt
final int

public synchronized void awa

+count < max

* False, imagine max = 3. Then A,B,C arrive. Now C notifies threads A
and B but sets count to 0. Thus, only C can leave the barrier while A
and B are still stuck.

11.

Barriers and Synchronization (9 points)

(a) Wir mochten eine einfache Barriere (muss
nicht wiederverwendbar sein) implementie-
ren. Die Barriere soll N threads synchronisie-
ren. Markieren Sie welche der folgenden Aus-
sagen auf die jeweiligen implementierungen
zutreffen. Sollten Sie den Code fiir ineffizient
halten, nennen sie kurz den Grund.

We want to implement a simple barrier
(does not have to be reusable) that al-
lows to synchronize the execution of N
threads. Mark whether each of the fol-
lowing statements is true for each imple-
mentation. If you consider this code to
be inefficient, shortly state why.

i1 class Barrier {
2 AtomicInteger i = new AtomicInteger(0);
3 final int threads = N;
4 public void await() throws InterruptedException {
5 int cur_threads = i.incrementAndGet();
6 if (cur_threads < threads) {
7 while (i.get() < threads) {}
8 }
9 }
10 }

(O Der gezeigte Code hat die gewiinschte Se- Code has the desired semantics.

mantik.

Barriers and Synchronization (9 points)

11. (a) Wir mochten eine einfache Barriere (muss ~ We want to implement a simple barrier (4)
nicht wiederverwendbar sein) implementie- (does not have to be reusable) that al-
ren. Die Barriere soll N threads synchronisie- lows to synchronize the execution of N
ren. Markieren Sie welche der folgenden Aus- threads. Mark whether each of the fol-
sagen auf die jeweiligen implementierungen lowing statements is true for each imple-
zutreffen. Sollten Sie den Code fiir ineffizient — mentation. If you consider this code to

halten, nennen sie kurz den Grund. be inefficient, shortly state why.
I 1 class Barrier {
2 AtomicInteger i = new AtomicInteger(0);
3 final int threads = N;
4 public void await() throws InterruptedException {
5 int cur_threads = i.incrementAndGet();
6 if (cur_threads < threads) {
7 while (i.get() < threads) {}
8 }
9 }
10 }

(O Der gezeigte Code hat die gewiinschte Se- Code has the desired semantics.
mantik.

True, there is no data race since incrementAndGet increases i atomically.

Barriers and Synchronization (9 points)

11. (a) Wir mochten eine einfache Barriere (muss ~ We want to implement a simple barrier (4)
nicht wiederverwendbar sein) implementie- (does not have to be reusable) that al-
ren. Die Barriere soll N threads synchronisie- lows to synchronize the execution of N
ren. Markieren Sie welche der folgenden Aus- threads. Mark whether each of the fol-
sagen auf die jeweiligen implementierungen lowing statements is true for each imple-
zutreffen. Sollten Sie den Code fiir ineffizient =~ mentation. If you consider this code to

halten, nennen sie kurz den Grund. be inefficient, shortly state why.
1. 1 class Barrier {
2 AtomicInteger i = new AtomicInteger(0);
3 final int threads = N;
4 public void await() throws InterruptedException {
5 int cur_threads = i.incrementAndGet();
6 if (cur_threads < threads) {
7 while (i.get() < threads) {}
8 }
9 }
10 }

(O Der Code beendet sich immer. Code will always complete.

Barriers and Synchronization (9 points)

11. (a) Wir mochten eine einfache Barriere (muss ~ We want to implement a simple barrier (4)
nicht wiederverwendbar sein) implementie- (does not have to be reusable) that al-
ren. Die Barriere soll N threads synchronisie- lows to synchronize the execution of N
ren. Markieren Sie welche der folgenden Aus- threads. Mark whether each of the fol-
sagen auf die jeweiligen implementierungen lowing statements is true for each imple-
zutreffen. Sollten Sie den Code fiir ineffizient — mentation. If you consider this code to

halten, nennen sie kurz den Grund. be inefficient, shortly state why.

i1 class Barrier {
2 AtomicInteger i = new AtomicInteger(0);
3 final int threads = N;
1 public void await() throws InterruptedException {
5 int cur_threads = i.incrementAndGet();
6 if (cur_threads < threads) {
7 while (i.get() < threads) {}
8 }
9 }
10 }

() Der Code beendet sich immer. Code will always complete.

True, it is a correct barrier implementation.

11.

Barriers and Synchronization (9 points)

(a) Wir mochten eine einfache Barriere (muss
nicht wiederverwendbar sein) implementie-
ren. Die Barriere soll N threads synchronisie-
ren. Markieren Sie welche der folgenden Aus-
sagen auf die jeweiligen implementierungen
zutreffen. Sollten Sie den Code fiir ineffizient
halten, nennen sie kurz den Grund.

We want to implement a simple barrier (4)
(does not have to be reusable) that al-

lows to synchronize the execution of N
threads. Mark whether each of the fol-
lowing statements is true for each imple-
mentation. If you consider this code to

be inefficient, shortly state why.

i1 class Barrier {
2 AtomicInteger i = new AtomicInteger(0);
3 final int threads = N;
4 public void await() throws InterruptedException {
5 int cur_threads = i.incrementAndGet();
6 if (cur_threads < threads) {
7 while (i.get() < threads) {}
8 }
9 }

(O Der Code verendet die Rechenressourcen Code might not use compute re-
unter Umsténden ineffizient. Warum? sources efficiently. Why?

Barriers and Synchronization (9 points)

11. (a) Wir mochten eine einfache Barriere (muss ~ We want to implement a simple barrier (4)
nicht wiederverwendbar sein) implementie- (does not have to be reusable) that al-
ren. Die Barriere soll N threads synchronisie- lows to synchronize the execution of N
ren. Markieren Sie welche der folgenden Aus- threads. Mark whether each of the fol-
sagen auf die jeweiligen implementierungen lowing statements is true for each imple-
zutreffen. Sollten Sie den Code fiir ineffizient mentation. If you consider this code to

halten, nennen sie kurz den Grund. be inefficient, shortly state why.

i class Barrier {
2 AtomicInteger i = new AtomicInteger(0);
3 final int threads = N;
4 public void await() throws InterruptedException {
5 int cur_threads = i.incrementAndGet();
6 if (cur_threads < threads) {
7 while (i.get() < threads) {}
8 }
9 }
10 }

(O Der Code verendet die Rechenressourcen Code might not use compute re-
unter Umsténden ineffizient. Warum? sources efficiently. Why?

True, the waiting threads are busy waiting.

11.

1 class Barrier {

2 int 1 = 0;

3 final int threads = N;

1 public synchronized void await() throws InterruptedException {
5 ++1 ;

6 while (i < threads) { wait(); }

7 notify();

8 ¥

o }

(O Der gezeigte Code hat die gewiinschte Se- Code has the desired semantics.
mantik.

11.

1 class Barrier {

2 int 1 = 0;

3 final int threads = N;

1 public synchronized void await() throws InterruptedException {
5 ++1 ;

6 while (i < threads) { wait(); }

7 notify();

8 ¥

o }

(O Der gezeigte Code hat die gewiinschte Se- Code has the desired semantics.
mantik.

Yes

. 1 class Barrier {

2 int 1 = 0;

3 final int threads = N;

1 public synchronized void await() throws InterruptedException {
5 ++1 ;

6 while (i < threads) { wait(); }

7 notify();

8 }

o 1}

(O Der Code beendet sich immer. Code will always complete.

. 1 class Barrier {

2 int 1 = 0;
3 final int threads = N;
1 public synchronized void await() throws InterruptedException {
5 ++1 ;
6 while (i < threads) { wait(); }
7 notify();
8 }
o 1}
(O Der Code beendet sich immer. Code will always complete.

True

11.

o }

class Barrier {
int 1 = 0;
final int threads = N;
public synchronized void await() throws InterruptedException {
++1 ;

while (i < threads) { wait(); }
notify();

Der Code verendet die Rechenressourcen Code might not use compute re-

unter

Umstéanden ineffizient. Warum? sources efficiently. Why?

. 1 class Barrier {

2 int 1 = 0;

3 final int threads = N;

1 public synchronized void await() throws InterruptedException {
5 ++1 ;

6 while (i < threads) { wait(); }

7 notify();

8 }

o 1}

(O Der Code verendet die Rechenressourcen Code might not use compute re-
unter Umsténden ineffizient. Warum? sources efficiently. Why?

False, the code makes use of wait/notify and thus does not waste compute resources.

Plan fur heute

* Organisation

* Nachbesprechung Assignment 13
* Theory

* Exam questions

* Kahoot

e Extra: A&W DP Tricks

Achievemant unlockead

D a n ke - Concurrent Mastermindg

* Es war mir eine grosse Freude euch unterrichten zu durfen

* Nachstes Semester bin ich im Austausch, aber ich hoffe man
sieht sich im FS wieder (nicht in PProg), sprecht mich gerne an,
wenn ihr mich irgendwo sieht

* Ich drucke euch die Daumen, fur die Lernphase, alles wird gut

* Nehmt euch auch ein bisschen Auszeit, die Lernphase ist doppelt
so lang wie im Herbst!

Schone Ferien!

Airport Security Task

* Falls ihr den rekursiven Ansatz fur diese Aufgaben noch nicht
gesehen habt, wurde ich ihn euch gerne nochmal zeigen

* Hat mir damals extrem geholfen und kann eure Note direkt
verbessern

	Default Section
	Slide 1: Parallele Programmierung FS25
	Slide 2: Parallele Programmierung FS25
	Slide 3: Plan für heute
	Slide 4: Organisation
	Slide 5: Organisation
	Slide 6: Organisation
	Slide 7: Organisation
	Slide 8: Plan für heute
	Slide 9: Assignment 13
	Slide 10
	Slide 11: Plan für heute

	SC + LIN
	Slide 12: SC and Linearizability
	Slide 13
	Slide 14: Same reasoning doesn’t apply to concurrent objects!
	Slide 15
	Slide 16: Example: Queue
	Slide 17: Example: Queue
	Slide 18: Alternative concurrent queue implementation
	Slide 19: How to reason about concurrent objects that have no locks?
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Motivation
	Slide 26: Motivation
	Slide 27: Motivation
	Slide 28: Motivation
	Slide 29: Combining both we get SC
	Slide 30: Combining both we get SC
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Sequential consistency and the real world
	Slide 35: Sequential consistency and the real world
	Slide 36
	Slide 37
	Slide 38: Motivation
	Slide 39: How do we fix this
	Slide 40: Idea
	Slide 41
	Slide 42
	Slide 43
	Slide 44

	Consensus
	Slide 45
	Slide 46: Recap: Consensus Protocols
	Slide 47: Consistent Result
	Slide 48: Valid Result
	Slide 49: Wait-Free
	Slide 50: Valid, Consistent, Wait-free
	Slide 51: Consensus Number
	Slide 52: Why is Consensus Number important?
	Slide 53: Implementing one thread consensus using AR
	Slide 54: Implementing two thread consensus with TAS
	Slide 55: Implementing two thread consensus - Solution
	Slide 56: Implementing n thread consensus with TAS
	Slide 57: Implementing n thread consensus with TAS
	Slide 58: N thread consensus with CAS
	Slide 59: Simplification: Binary Consensus
	Slide 60: State Diagrams of Two-thread Consensus Protocols
	Slide 61: Anatomy of a State (in two-thread consensus)
	Slide 62: Anatomy of a State
	Slide 63: Critical States
	Slide 64: Consensus States
	Slide 65: Quiz: Label the States
	Slide 66: Critical State Existence Proof
	Slide 67: Critical State Existence Proof
	Slide 68: Proof that Atomic Registers have Consensus Number 1
	Slide 69: Proof that Atomic Registers have Consensus Number 1
	Slide 70: Let’s start
	Slide 71: Impossibility Proof Setup – Critical State
	Slide 72: Impossibility Proof Setup – Critical State
	Slide 73: We want to know what operations A can do
	Slide 74: Impossibility Proof Setup – Possible actions of a thread
	Slide 75: Impossibility Proof Setup – Possible actions of a thread
	Slide 76: Many Cases to check
	Slide 77: Which cases do we need to check?
	Slide 78: Which cases do we need to check?
	Slide 79: Impossibility Proof Case I: A reads
	Slide 80: What did we just prove?
	Slide 81: Which cases do we need to check?
	Slide 82: Impossibility Proof Case I’: B reads
	Slide 83: What did we just prove?
	Slide 84: Which cases do we need to check?
	Slide 85: Impossibility Proof Case II: A and B write to different registers
	Slide 86: What did we just prove?
	Slide 87: Which cases do we need to check?
	Slide 88: Impossibility Proof Case III: A and B write to the same register
	Slide 89: Which cases do we need to check?
	Slide 90: What did we show?
	Slide 91: That’s all
	Slide 92: Questions?

	Transactional Memory
	Slide 93: Transactional Memory
	Slide 94: Transactional Memory
	Slide 95: Transactional Memory - ACID
	Slide 96: Transactional Memory
	Slide 97: Transactional Memory
	Slide 98: Transactional Memory
	Slide 99: Transactional Memory
	Slide 100: Transactional Memory
	Slide 101: Transactional Memory - Nesting
	Slide 102: Transactional Memory - Nesting
	Slide 103: Transactional Memory - ScalaSTM
	Slide 104: Transactional Memory - ScalaSTM
	Slide 105: Transactional Memory - ScalaSTM

	mpi
	Slide 106: MPI
	Slide 107: MPI
	Slide 108
	Slide 109: So, what is MPI?
	Slide 110: So, what is MPI?
	Slide 111: MPI
	Slide 112: MPI Collectives

	exam questions
	Slide 113: Plan für heute
	Slide 114: What’s important for the exam?
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132: Exam allgemein
	Slide 133: Exam allgemein
	Slide 134: Code Skelett Aufgaben
	Slide 135: Types of exercises that might come in the exam
	Slide 136: Types of exercises that might come in the exam
	Slide 137: Types of exercises that might come in the exam

	assignment 14
	Slide 138: Plan für heute
	Slide 139: Assignment 14

	Rest
	Slide 140: Plan für heute
	Slide 141: Kahoot!
	Slide 142: Consensus Protocol for two threads using lock free queue
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159: Plan für heute
	Slide 160: Danke
	Slide 161: Schöne Ferien!
	Slide 163: Airport Security Task

