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• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9
• Falls ihr Feedback möchtet kommt bitte zu mir
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Organisation

• TA Award

• Danke!



Organisation

• Wo sind wir jetzt?

• Ende der Vorlesung! 

Sequential Consistency and Linearizability, Consensus
Transactional Memory, MPI
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Assignment 13

• Is about SC and linearizability 



Thanks to @Erxuan Li, PProg25
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SC and Linearizability



Program correctness in a sequential world

Objects encapsulate some representation of state

• We don’t reason about the representation directly, but about its visibility 
from outside (via public methods) (e.g. stack.top()==3)

• State must be consistent, i.e., according to the public class invariant 
(e.g., forall x. stack.push(x).pop()==x)

• Each method satisfies its post-condition, given its pre-condition
• Hoare Tripel aus EProg
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Same reasoning doesn’t apply to concurrent 
objects!
• notion of an object’s state becomes confusing
• In single-threaded programs, an object must assume a 

meaningful state only between method calls
• For concurrent objects, however, overlapping method calls may 

be in progress at every instant, so the object may never be 
between method calls



Program correctness in a concurrent world
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Example: Queue

• What does it mean for a concurrent 
object to be correct? 

• each method accesses and updates 
fields while holding an exclusive lock 

• method calls take effect sequentially



Example: Queue



Alternative concurrent queue implementation

• queue is correct only if it is 
shared by a single enqueuer and 
a single dequeuer

• It has almost the same internal 
representation as the lock-based 
queue

• only difference is the absence of 
a lock



How to reason about concurrent objects that 
have no locks?
• objects whose methods hold exclusive locks are less desirable 

than ones with finer-grained locking or no locks
• We therefore need a way to specify the behavior of concurrent 

objects, and to reason about their implementations, without 
relying on method-level locking

• lock-based queue example illustrates a useful principle: it is 
easier to reason about concurrent objects if we can somehow 
map their concurrent executions to sequential ones, and limit our 
reasoning to these sequential executions



Quiescent Consistency



Quiescent consistency

• Method calls should appear to happen in a one-at-a-time, sequential order
• Method calls separated by a period of quiescence should appear to take 

effect in their real-time order

21



Quiescent consistency

requires non-overlapping operations to appear to take effect in their real-time 
order, but overlapping operations might be reordered

22



Quiescent consistency

requires non-overlapping operations to appear to take effect in their real-time 
order, but overlapping operations might be reordered

23

Can change the order of 
these operations

But not between walls



Sequential Consistency



Motivation

• two threads concurrently write −3 and 7 to a shared register r
• Later, one thread reads r and returns the value −7
• This behavior is clearly not acceptable!
• We expect to find either 7 or −3 in the register, not a mixture of both! 



Motivation

• two threads concurrently write −3 and 7 to a shared register r

• Later, one thread reads r and returns the value −7

• This behavior is clearly not acceptable

• We expect to find either 7 or −3 in the register, not a mixture of both! 

• Method calls should appear to happen in a one-at-a-time, 
sequential order!



Motivation

• single thread writes 7 and then −3 to a shared register r. Later, it 
reads r and returns 7

• For some applications, this behavior might not be acceptable 
because the value the thread read is not the last value it wrote



Motivation

•  We want Method calls to appear to take effect in program order!



Combining both we get SC

• Method calls should appear to happen in a one-at-a-time, 
sequential order 

• Method calls should appear to take effect in program order



Combining both we get SC

• Method calls should appear to happen in a one-at-a-time, 
sequential order 

• Method calls should appear to take effect in program order

• That is, in any concurrent execution, there is a way to order the 
method calls sequentially so that they (1) are consistent with 
program order, and (2) meet the object’s sequential 
specification 



Sequential consistency

A multiprocessing system has sequential consistency if:

"...the results of any execution is the same as if the operations of all the 
processors were executed in some sequential order, and the operations of 
each individual processor appear in this sequence in the order specified by its 
program." 

- Leslie Lamport (inventor of sequential consistency, GOAT Turing Award 
Winner, concurrent master mind)
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Sequential consistency requirements

1. All instructions are executed in order.

2. Every write operation becomes instantaneously visible throughout the 
system.

32
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Sequential consistency requirements

1. All instructions are executed in order.

2. Every write operation becomes instantaneously visible throughout the 
system. (all variables volatile! Shows us that standard java is not sequentially 
consistent)

33
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Sequential consistency and the real world

• In the real world, hardware architects do not adhere to this by 
default

• We need to explicitly announce that we want this property (i.e. 
volatile keyword)



Sequential consistency and the real world

• We need to explicitly announce that we want this property (i.e. 
volatile keyword)

• This lock is only correct if we have SC



SC is not compositable

36

H|p is sequentially consistent
H|q is sequentially consistent
H is not sequentially consistent

In general: sequential consistency is not compositable



Linearizability



Motivation

• This is SC
• Goes against our intuition, q.enq(x) finished before q.enq(y)!



How do we fix this

• replace the requirement that method calls appear to happen in 
program order with the following stronger restriction:

• Each method call should appear to take effect instantaneously at 
some moment between its invocation and response



Idea

• Now we have:

• Method calls should appear to happen in a one-at-a-time, 
sequential order 

• Each method call should appear to take effect instantaneously at 
some moment between its invocation and response



Is this 

linearizable?

q.enq(x)

q.enq(y)

q.deq() -> x

time

q.deq() -> y

Yes!

Example with FIFO Queue (1) 

41
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Is this 

linearizable?

q.enq(x) q.deq() -> y

q.enq(y)

Example (2) 

42time
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Is this 

linearizable?

q.enq(x) q.deq() -> y

time

q.enq(y)

No!

Example (2) 

43
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Thanks to @Erxuan Li, PProg25



Consensus



spcl.inf.ethz.ch

@spcl_eth
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Recap: Consensus Protocols

I propose 
“23”.

I propose 
“42”.

A few moments later…
(a finite number of steps)

We 
agreed 
on“23”.

We 
agreed 
on “23”

Which other 
scenarios are 
allowed?
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Consistent Result

I propose 
“23”.

I propose 
“42”.

We 
agreed 
on“23”.

We 
agreed 
on “42”

This is illegal!

Consensus result needs to be 
consistent: the same on all threads.



spcl.inf.ethz.ch

@spcl_eth
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Valid Result

I propose 
“23”.

I propose 
“42”.

We 
agreed 

on“420”.
We 

agreed 
on “420”

This is illegal!

Consensus result needs to be valid: 
proposed by some thread.



spcl.inf.ethz.ch
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Wait-Free

I propose 
“23”.

I propose 
“42”.

I cannot finish 
because I am 

waiting for 
the other 
thread.

This is illegal!

Consensus needs to be wait-free: 
All threads finish after a finite 
number of steps, independent of 
other threads.

I will not 
schedule you 

now!



Valid, Consistent, Wait-free

• This will be asked on the exam 100%
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Consensus Number

• The consensus number of C is the largest n for which C solves n-
thread consensus

• Atomic Registers have consensus number 1, we’ll show this later
• TAS has consensus number 2
• CAS has consensus number ∞ (Can be shown by construction)



Why is Consensus Number important?

• It gives us the consensus hierarchy
• Is backed by mathematical proof 
• allows us to say that implementing 

a lock free FIFO queue is 
impossible using atomic registers, 
because queue has CN 2 and AR 
have CN 1!



Implementing one thread consensus using AR

• Atomic Register:

int decide(int proposed)
 return proposed;
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▪ Assume you have a machine with atomic registers and an atomic test-and-set operation with the 
following semantics (X is initialized to 1):

int TAS() {

    res = X;

    if (res == 1) {

        X = 0;

    }

    return res;

}

▪ Implement a two-process consensus protocol using TAS() and atomic registers.

54

Implementing two thread consensus with TAS
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@spcl_eth

▪ Code for both threads

read own_value;

read other_value;

if (TAS() == 0) {

    return own_value;

} else

    return other_value;

55

Implementing two thread consensus - Solution



Implementing n thread consensus with TAS

56



Implementing n thread consensus with TAS

57



N thread consensus with CAS
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▪ Instead of proposing an integer, two threads now propose either 0 or 1

▪ Equivalent to “normal” consensus for two threads

▪ How can we prove this?

▪ If we can implement one, we directly get the other

59

Simplification: Binary Consensus

binary_decide(bit b) {
  return int_decide(b)
}

int_decide(int d) {
  prop[id] = d; //prop is shared
  other = (id + 1)%2;
  int win = bin_decide(id);
  return prop[win];
}

We can implement binary 
consensus using normal 
consensus.

We can implement binary 
consensus using normal consensus 
(id in {0,1} and unique).



spcl.inf.ethz.ch
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State Diagrams of Two-thread Consensus Protocols

Start state, both threads (A and B) 
have not yet executed the first 
instruction of the consensus 

protocol.

Each state has at most two successors:  
Either A or B execute an instruction.

Cycles among states cannot exist in a 
wait-free algorithm: The state “looks” 

the same each time we visit, so we 
are trapped forever in the loop and 

not wait-free.
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Anatomy of a State (in two-thread consensus)

Shared Variables

Thread local 
variables of A Thread local 

variables of B

Program 
counter of A

Program 
counter of B
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Anatomy of a State

Shared Variables
r1=3

Thread local 
variables of A

x=2

Thread local 
variables of B

y=0

Program 
counter of A

S3

Program 
counter of B

S1
Shared Variables

r1=3

Thread local 
variables of A

x=1

Thread local 
variables of B

y=0

Program 
counter of A

S5

Program 
counter of B

S1

The states are different, since A has 
different local variables and program 
counter values.

Yet from B’s perspective they look the 
same! (Until A writes x into a shared 
variable!)
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Critical States

0|1?

There is always at least one bivalent 
state (the start state).

0|1 0|1

1 1 0 1

0|1 11

Output states are always 
univalent.

From this state we only 
reach states with output 1, 

so it is also univalent.

This state is bivalent but all 
his successors are univalent. 
We call such states critical.



Consensus States

• If we are solving binary consensus, there are 3 different types of 
states:

• univalent: State, where the output is settled on either 0 or 1
• bivalent: both outputs 0 and 1 are still possible
• critical: bivalent & the following state-transition ends in two 

univalent states

64
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Quiz: Label the States

1 1 0 1

Output states are always 
univalent.

Output states are always 
univalent.

Output states are always 
univalent.

This state is bivalent, as we 
can reach 0 and 1 output 

states.

It is also critical, since it is 
bivalent and all its successors 

are univalent.

This state is bivalent, as we 
can reach 0 and 1 output 

states.
The start state is always 

bivalent!

This state is bivalent, as we 
can reach 0 and 1 output 

states.
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Critical State Existence Proof

Lemma: Every consensus protocol has a 
critical state.

Proof: From (bivalent) start state, let the threads only 
move to other bivalent states.

• If it runs forever the protocol is not wait free. 

• If it reaches a position where no moves are possible 
this state is critical.



spcl.inf.ethz.ch
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Critical State Existence Proof

Lemma: Every consensus protocol has a 
critical state.

Proof: From (bivalent) start state, let the threads only 
move to other bivalent states.

• If it runs forever the protocol is not wait free. 

• If it reaches a position where no moves are possible 
this state is critical.

If it is wait-free we need to finish in 
finite time (finish means we return a 
number) => tree will be of finite 
length 



Proof that Atomic Registers have Consensus Number 1

• Want to show this by checking all possible ways we could try to 
implement binary consensus using just atomic registers

• Then we show a contradiction for each case, which means that it’s 
impossible to create any higher consensus than for one single 
thread (which is trivial)
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Proof that Atomic Registers have Consensus Number 1

• If binary consensus is not possible for two threads using atomic 
registers, then it’s also not possible for normal consensus (we’ve 
seen that they are equivalent)

• Also, not possible for more than two threads

69



Let’s start

• We know that our wait free consensus protocol must reach a 
critical state at some point

• So, let’s start there
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Impossibility Proof Setup – Critical State

0|1?

0 1

Assume we are in the critical 
state (which must exist).

Assume that if A moves next, 
we end up with 0, if B moves 

next, we end up with 1. 
(w.l.o.g., can switch names)

B moves 
first

A moves 
first

So, what actions can a thread 
perform in his “move”?

Either read or write a shared 
register! – Let’s see why.
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Impossibility Proof Setup – Critical State

0|1?

0 1

Assume we are in the critical 
state (which must exist).

Assume that if A moves next, 
we end up with 0, if B moves 

next, we end up with 1. 
(w.l.o.g., can switch names)

B moves 
first

A moves 
first

So, what actions can a thread 
perform in his “move”?

Either read or write a shared 
register! – Let’s see why.

You can think of the transition as 
which thread performs the CAS or TAS 
first, and thereby decides the number



We want to know what operations A can do

• A can only write or read a shared variable
• Why? Let’s assume A just reads and writes local variables
• Then the outward state won’t change from the perspective of B!
• Let’s see this played out

73
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Impossibility Proof Setup – Possible actions of a thread

0|1?

Weird 
state

1

So what actions can a thread 
perform in his “move”?

What happens if A just reads 
from and writes to local vars?

critical

A: x=y+z 
(x,y,z: local)

0

Output must 
be 0

Output must 
be 1

Now the 
scheduler 

pauses A, and 
B runs solo

From B’s perspective 
these two states look 

the same! 
B cannot know that 
one of them must 

output 0! So, we get a 
contradiction!

Conclusion: First instruction 
after critical state must be a 
read or write of a shared 
variable!
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Impossibility Proof Setup – Possible actions of a thread

0|1?

0 1

A moves 
first

B moves 
first

We know reading/writing 
local variables cannot lead 

out of a critical state – what 
remains?

A can read a 
shared variable

A can write a 
shared variable

B can read the 
same variable

B can read a 
different variable

B can write the 
same variable

B can write a 
different variable

Many cases…
let’s make tables 
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Many Cases to check

First Action

A: r1.read() A: r2.read() A: r1.write() A: r2.write()

Second 
Action

B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()

Is binary 
consensus 

possible for any 
of those?

Can we simplify 
somehow?

Let’s say A always moves first,
otherwise, switch names.

Second Action

A: r1.read() A: r2.read() A: r1.write() A: r2.write()

First
 Action

B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()
Similarly, we can call the 
register A reads/writes r1 
in both cases.

First Action

A: r1.read() A: r1.write()

Second 
Action

B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()

Manageable… Let’s look at the cases where A reads



Which cases do we need to check?

• Note that First and Second 
Action don’t really say 
anything about what 
happens first and what 
happens second as we 
abstracted this away in the 
previous step 

77

First Action

A: r1.read() A: 
r1.write()

Second 
Action

B: r1.read()

B: r2.read()

B: 
r1.write()

B: 
r2.write()



Which cases do we need to check?

• Let’s start with the case 
where A does r1.read() and 
B does X (read or write).

78

First Action

A: 
r1.read()

A: 
r1.write()

Second 
Action

B: 
r1.read()

B: 
r2.read()

B: 
r1.write()

B: 
r2.write()
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Impossibility Proof Case I: A reads

0|1?

Output is decided (0) 
due to critical state.

A reads B does X Output is decided (1) 
due to critical state.

B does X

From B’s perspective 
these two states look 

exactly the same! 
However, B needs to 

output different 
values!
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What did we just prove?

First Action

A: r1.read() A: r1.write()

Second 
Action

B: r1.read() No, Case I

B: r2.read() No, Case I

B: r1.write() No, Case I

B: r2.write() No, Case I

Is binary 
consensus 

possible for any 
of those?



Which cases do we need to check?

• Let’s start with the case where A 
does r1.read() and B does X. 

• Next, lets look at when A does 
r1.write() and B reads either register.
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First Action

A: r1.read() A: r1.write()

Second 
Action

B: r1.read() contradiction

B: r2.read() contradiction

B: r1.write() contradiction

B: r2.write() contradiction
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Impossibility Proof Case I’: B reads

0|1?

0 1

Output is decided (1) 
due to critical state.B readsA writes r1

Output is decided (0) 
due to critical state.

A writes r1

1

From A’s perspective 
these two states look 
the same! However, 

A needs to 
(eventually) output 

different values!
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What did we just prove?

First Action

A: r1.read() A: r1.write()

Second 
Action

B: r1.read() No, Case I No, Case I’

B: r2.read() No, Case I No, Case I’

B: r1.write() No, Case I

B: r2.write() No, Case I

Is binary 
consensus 

possible for any 
of those?



Which cases do we need to check?

• Let’s start with the case where A 
does r1.read() and B does X.

• Next, lets look at when A does 
r1.write() and B reads either 
register.

• Now, lets look at the case when A 
does r1.write() and B does r2.write().
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First Action

A: 
r1.read()

A: 
r1.write()

Second 
Action

B: 
r1.read()

contradiction contradiction

B: 
r2.read()

contradiction contradiction

B: 
r1.write()

contradiction

B: 
r2.write()

contradiction
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Impossibility Proof Case II: A and B write to different registers

0|1?

0 1

Output is decided (0) 
due to critical state.

A writes r1 B writes r2 Output is decided (1) 
due to critical state.

B writes r2

The same state!

 However, it should be outputting 0 
/ 1 depending on where it was 

reached from!

A writes r1

Output 0

Output 1
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What did we just prove?

First Action

A: r1.read() A: r1.write()

Second 
Action

B: r1.read() No, Case I No, Case I’

B: r2.read() No, Case I No, Case I’

B: r1.write() No, Case I ?

B: r2.write() No, Case I No, Case II

Is binary 
consensus 

possible for any 
of those?



Which cases do we need to check?

• Let’s start with the case where A 
does r1.read() and B does X.

• Next, lets look at when A does 
r1.write() and B reads either 
register.

• Now, lets look at the case when A 
does r1.write() and B does 
r2.write().

• Finally, let’s check A does r1.write() 
and B does r1.write() too.
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First Action

A: 
r1.read()

A: 
r1.write()

Second 
Action

B: 
r1.read()

contradiction contradiction

B: 
r2.read()

contradiction contradiction

B: 
r1.write()

contradiction

B: 
r2.write()

contradiction contradiction
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Impossibility Proof Case III: A and B write to the same register

0|1?

0 1

Output is decided (0) 
due to critical state.

A writes r1 B writes r1 Output is decided (1) 
due to critical state.

B writes r1

From B’s perspective 
these two states look 
the same! However, 
B needs to output 
different values!



Which cases do we need to check?

• Let’s start with the case where A 
does r1.read() and B does X.

• Next, lets look at when A does 
r1.write() and B reads either 
register.

• Now, lets look at the case when A 
does r1.write() and B does 
r2.write().

• Finally, let’s check A does r1.write() 
and B does r1.write() too.
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First Action

A: 
r1.read()

A: 
r1.write()

Second 
Action

B: 
r1.read()

contradiction contradiction

B: 
r2.read()

contradiction contradiction

B: 
r1.write()

contradiction contradiction

B: 
r2.write()

contradiction contradiction



What did we show?

• We proved that there is no possible way to build a consensus 
protocol using just atomic registers by enumerating all possible 
ways we could try to implement such a protocol



spcl.inf.ethz.ch

@spcl_eth

91

That’s all

First Action

A: r1.read() A: r1.write()

Second 
Action

B: r1.read() No, Case I No, Case I’

B: r2.read() No, Case I No, Case I’

B: r1.write() No, Case I No, Case III

B: r2.write() No, Case I No, Case II

Is binary 
consensus 

possible for any 
of those?

No

1985, 2.5k citations



Questions?
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Transactional Memory

• goal of transactional memory is to remove the burden of 
synchronization away from the programmer and place it in the 
system (be that hardware or software)

• Ideally, programmer only has to say



Transactional Memory

• Has nice properties:
• simpler, less error-prone code
• higher-level semantics (what vs. how)
• composable (unlike locks)
• analogy to garbage collection
• optimistic by design (does not require mutual exclusion)

• Downsides:
• semantics are not clear (e.g., nesting)
• getting a good performance can be challenging 
• how we should deal with I/O in transactions (i.e., how would one rollback 

these changes?) is not clear.



Transactional Memory - ACID

• Transactions follow ACID principle
• Atomic – changes by transaction are made visible atomically, threads 

either see the state before a transaction or after a transaction finished 
successfully. They don’t observe intermediate states.

• Consistent – objects will never be in an inconsistent state, i.e., between 
method calls, transactions always move from one consistent state to 
another consistent state

• Isolated – while a transaction is running, effects from other transactions 
are not observed. Transaction takes “snapshot” and works on it

• Durable – (mostly used for databases that we don’t lose data when a 
power loss occurs)



Transactional Memory

• How do we build it?



Transactional Memory

• How do we build it?
• create a “snapshot” of the current state and make sure that 

transaction only affects a local copy of this state, which can then 
be either committed or aborted

• If a transaction which has yet to commit has read a value (at the 
start of its operation) that was changed by a transaction that has 
committed, a conflict (non repeatable read) arises, and we need 
to abort the transaction and retry

• i.e., check if the state of the system changed in the meantime, if 
yes, we need to retry



Transactional Memory

• Consider the following example, where the initial state is a=0
• assume that transaction B commits the changes it has made 

before A does
• Now, in a serialized view, the execution with a==0 is invalid!



Transactional Memory

• Consider the following 
example, where the 
initial state is a=0

• assume that 
transaction B commits 
the changes it has 
made before A does

• Now, in a serialized 
view, the execution 
with a==0 is invalid!



Transactional Memory

• can implement TM either in hard- or software
• HTM is fast, but has bounded resources that often cannot handle 

big transactions
• STM allows greater flexibility, but achieving good performance 

might be very challenging



Transactional Memory - Nesting

• We need to make some design choices
• Transactions should be composable
• What happens if we have transactions within transactions? This is 

called nesting
• Two possible approaches:



Transactional Memory - Nesting

• What happens if we have transactions within transactions? This is 
called nesting

• Two possible approaches:
• Flat/Flattened Nesting: Inner and outer transactions are treated as one. If 

an inner transaction aborts, all abort. Changes from the inner are visible 
only if the outer commits.

• Closed Nesting: Inner aborts don't affect the outer. If an inner commits, 
changes are visible to the outer but not to others until the outer commits.



Transactional Memory - ScalaSTM

• Uses a clock-based system, i.e., every transaction has a time 
when it was started and when it was committed

• Each transaction has a local read-set and a local write-set, 
holding all locally read and written objects

• Allows us to check if our data became “outdated”, e.g., some 
other thread committed, and we need to retry



Transactional Memory - ScalaSTM

• In this example, the T snapshot became outdated, so we need to 
abort and retry



Transactional Memory - ScalaSTM

• In this example, the T snapshot was the most recent version of all 
variables used, so we can commit



MPI

• Many of the problems of parallel/concurrent programming come 
from sharing state. What if we simply avoid this?

• Message Passing has isolated mutable state, each thread/task 
has its private, mutable state, and separate tasks only cooperate 
via explicit message passing



MPI

• messages can be divided into synchronous and asynchronous
• Synchronous messages mean that the sender of the message 

blocks/waits until the message is received
• Asynchronous messages do not block, but are placed into a buffer 

(“postbox”) for the receiver to get at some point



• Example Go Code 
which uses channels



So, what is MPI?

• MPI is a standard application/programming interface (API), 
meaning it is a portable, flexible library not bound to a particular 
language. 

• It is the most used interface for distributed parallel computing, 
which is nearly the entirety of high performance computing



So, what is MPI?

• Works SPMD: Single Program Multiple Data (Multiple Instances)
• We compile only one program, which gets executed by multiple 

different instances
• Every MPI program can be written using just six core functions:

•     MPI_Init – Initializes the MPI environment (this must be the first function 
called).

•     MPI_Comm_size – Determines the number of processes in a communicator.
•     MPI_Comm_rank – Returns the rank (ID) of the calling process within the 

communicator.
•     MPI_Send – Sends a message to another process.
•     MPI_Recv – Receives a message from another process.
•     MPI_Finalize – Cleans up the MPI environment (this must be the last function 

called).



MPI

• Einfaches Beispiel, 
zwei Threads 
schicken sich eine 
Nachricht



MPI Collectives

• Up until now, we saw only point-to-point communication 
• MPI also supports communications among groups of processors
• Reduce: to reduce a result from different processes to one (called 

root)
• Broadcast: Broadcasts a message from the root process to all 

other processes in the group
• Allreduce: Like reduce, but hands result to all processes involved
• Gather: Each process sends the contents of its send buffer to the 

root process



Plan für heute

• Organisation
• Nachbesprechung Assignment 13
• Theory

• Exam questions
• Intro Assignment 14
• Kahoot
• A&W DP Tricks



What’s important for the exam?

• Properties of consensus protocol: valid, consistent, wait-free
• Knowing what bivalent, univalent and critical states are
• Being able to reason about why there can’t be cycles in a wait free 

program
• identifying whether given code is a correct consensus protocol
• making a statement about the consensus number of an object
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• Consistency is violated
• For two threads calling the method with two different values, the 

method will return different values





• Not wait-free!
• suspension of one thread can cause the other thread to spin indefinitely (the 

first thread must wait for the second). Thus, a thread calling the method 
would not be guaranteed to finish in a finite number of steps





• Not valid!
• No thread could propose 0 then it’s wrong to return 0





• Atomic Register – 1
• TAS – 2
• CAS – Infinity



• Atomic Register:

int decide(int proposed)
 return proposed;



• TAS:

boolean decided = false;
int[] value = new int[2];
int decide(int proposed, int id)
    value[id] = proposed;
    if (TAS(decided)){
        return value[1-id];
 }
    return value[id];



• CAS:

int decided = NaN;
int decide(int proposed)
    CAS(decided, NaN, proposed);
    return decided;







wait-free: consensus returns in finite time for each thread.
consistent: all threads decide the same value (i.e., reach 

consensus)
valid: the decision value is some thread's input







• No. Wait-free implies lock-free which means that no locks can be 
used



Exam allgemein



Exam allgemein

• Man kann PProg sehr gut lernen und jeder von euch kann eine 
super Note erreichen

• Löst die alten exams auf community solutions
• Falls ihr Verständnisprobleme habt, lest im Buch (link auf meiner 

website) nach, da ist es oft nochmal besser erklärt
• Ihr müsst nicht alle Slides nochmal anschauen, wenn ihr in der 

Vorlesung wart, ich denke Exams sind viel wichtiger
• Theory Assignments sind gut zum Üben, die Coding Probleme sind 

auch wichtig! Oft gibt es so Code Skelett Aufgaben (meine 
Prüfung)



Code Skelett Aufgaben



Types of exercises that might come in the exam

Disclaimer: This list is not guaranteed to be complete and is only meant to give you an idea what has been 
asked on previous exams.

Locks
• Usually there are not too many question on this topic. true/false questions of which lock has which 

properties (fairness, starvation free) 
• find bug in lock code (violation of mutual exclusion or deadlock freedom) 
• draw state space diagram and/or read off correctness properties 
• reproduce Peterson/Filter/Bakery lock
• prove correctness of Peterson lock or similar (but not Filter or Bakery) 
Monitors, semaphores, barriers
• semaphore implementation (mostly with monitors)
• (never seen rendezvous with semaphores in an exam)
• barrier implementation (mostly with monitors)
• (only seen a task on implementing a barrier with semaphores once in FS21, 8b) 
• fill out some program using monitors (similar to wait/notify exercises, maybe with lock conditions) 

Credits @aellison PProg23

https://exams.vis.ethz.ch/exams/i0svp1fh.pdf


Types of exercises that might come in the exam

• Proving that an object x has consensus number ≥y(or ∞). Then you 
must provide an algorithm solving y-thread consensus using any 
number of instances of x (or for the ∞ case, provide an algorithm 
solving n-thread consensus for arbitrary n)

• Proving that an object x has consensus number at most z. This 
would involve proving that it is impossible to implement (z+1)-
thread consensus with x

• E.g., if we know x is implemented using atomic registers then it 
can’t solve consensus for more than one thread



Types of exercises that might come in the exam

• I don’t expect much about MPI and Transactional Memory as it 
was only covered shortly (no guarantee!)

• Maybe some Mixer questions about it at the end (check the old 
exams)



Plan für heute

• Organisation
• Nachbesprechung Assignment 13
• Theory
• Exam questions

• Intro Assignment 14 (yes, there is another one )
• Kahoot
• A&W DP Tricks



Assignment 14

• Is about Consensus
• “Below we show incorrect implementations of a consensus protocol in pseudocode. Which 

property does each snippet violate when used with two threads?”

• Show that lock free FIFO queue has consensus number 2

• Show that lock free FIFO queue with peek() has consensus number infinity

• Show how to implement two thread consensus using binary consensus

• I would recommend solving it, these are exam relevant questions



Plan für heute

• Organisation
• Nachbesprechung Assignment 13
• Theory
• Exam questions
• Intro Assignment 14

• Kahoot
• A&W DP Tricks



Kahoot!

• Ich werde alle Kahoots noch auf meiner Website hochladen, 
schaut da gerne nach, auch für die Lernphase



Consensus Protocol for two threads using 
lock free queue





• False, remember spurious wake ups





• False, imagine max = 3. Then A,B,C arrive. Now C notifies threads A 
and B but sets count to 0. Thus, only C can leave the barrier while A 
and B are still stuck.

















Yes





True







Plan für heute

• Organisation
• Nachbesprechung Assignment 13
• Theory
• Exam questions
• Kahoot

• Extra: A&W DP Tricks



Danke

• Es war mir eine grosse Freude euch unterrichten zu dürfen
• Nächstes Semester bin ich im Austausch, aber ich hoffe man 

sieht sich im FS wieder (nicht in PProg), sprecht mich gerne an, 
wenn ihr mich irgendwo sieht

• Ich drücke euch die Daumen, für die Lernphase, alles wird gut
• Nehmt euch auch ein bisschen Auszeit, die Lernphase ist doppelt 

so lang wie im Herbst!



Schöne Ferien!



Airport Security Task

• Falls ihr den rekursiven Ansatz für diese Aufgaben noch nicht 
gesehen habt, würde ich ihn euch gerne nochmal zeigen

• Hat mir damals extrem geholfen und kann eure Note direkt 
verbessern
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