
Parallele Programmierung FS25
Exercise Session 14

Jonas Wetzel

Parallele Programmierung FS25
Exercise Session 14

The final edition
Jonas Wetzel

Plan für heute

• Organisation
• Nachbesprechung Assignment 13
• Theory
• Exam questions
• Intro Assignment 14
• Kahoot
• Extra: A&W DP Trick

Organisation

• Mein Name ist Jonas Wetzel
• Meine Website (Materialien und Inhalt der Übungen):

n.ethz.ch/~jwetzel
• Meine Email: jwetzel@ethz.ch
• Discord: @jonas.too
• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9

mailto:jwetzel@ethz.ch
https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9
• Falls ihr Feedback möchtet kommt bitte zu mir

https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

• TA Award

• Danke!

Organisation

• Wo sind wir jetzt?

• Ende der Vorlesung!

Sequential Consistency and Linearizability, Consensus
Transactional Memory, MPI

Plan für heute

• Organisation

• Nachbesprechung Assignment 13
• Theory
• Exam questions
• Intro Assignment 14
• Kahoot
• A&W DP Tricks

Assignment 13

• Is about SC and linearizability

Thanks to @Erxuan Li, PProg25

Plan für heute

• Organisation
• Nachbesprechung Assignment 13

• Theory
• Exam questions
• Intro Assignment 14
• Kahoot
• A&W DP Trick

SC and Linearizability

Program correctness in a sequential world

Objects encapsulate some representation of state

• We don’t reason about the representation directly, but about its visibility
from outside (via public methods) (e.g. stack.top()==3)

• State must be consistent, i.e., according to the public class invariant
(e.g., forall x. stack.push(x).pop()==x)

• Each method satisfies its post-condition, given its pre-condition
• Hoare Tripel aus EProg

13

Essenti
al

Same reasoning doesn’t apply to concurrent
objects!
• notion of an object’s state becomes confusing
• In single-threaded programs, an object must assume a

meaningful state only between method calls
• For concurrent objects, however, overlapping method calls may

be in progress at every instant, so the object may never be
between method calls

Program correctness in a concurrent world

15

Essenti
al

Example: Queue

• What does it mean for a concurrent
object to be correct?

• each method accesses and updates
fields while holding an exclusive lock

• method calls take effect sequentially

Example: Queue

Alternative concurrent queue implementation

• queue is correct only if it is
shared by a single enqueuer and
a single dequeuer

• It has almost the same internal
representation as the lock-based
queue

• only difference is the absence of
a lock

How to reason about concurrent objects that
have no locks?
• objects whose methods hold exclusive locks are less desirable

than ones with finer-grained locking or no locks
• We therefore need a way to specify the behavior of concurrent

objects, and to reason about their implementations, without
relying on method-level locking

• lock-based queue example illustrates a useful principle: it is
easier to reason about concurrent objects if we can somehow
map their concurrent executions to sequential ones, and limit our
reasoning to these sequential executions

Quiescent Consistency

Quiescent consistency

• Method calls should appear to happen in a one-at-a-time, sequential order
• Method calls separated by a period of quiescence should appear to take

effect in their real-time order

21

Quiescent consistency

requires non-overlapping operations to appear to take effect in their real-time
order, but overlapping operations might be reordered

22

Quiescent consistency

requires non-overlapping operations to appear to take effect in their real-time
order, but overlapping operations might be reordered

23

Can change the order of
these operations

But not between walls

Sequential Consistency

Motivation

• two threads concurrently write −3 and 7 to a shared register r
• Later, one thread reads r and returns the value −7
• This behavior is clearly not acceptable!
• We expect to find either 7 or −3 in the register, not a mixture of both!

Motivation

• two threads concurrently write −3 and 7 to a shared register r

• Later, one thread reads r and returns the value −7

• This behavior is clearly not acceptable

• We expect to find either 7 or −3 in the register, not a mixture of both!

• Method calls should appear to happen in a one-at-a-time,
sequential order!

Motivation

• single thread writes 7 and then −3 to a shared register r. Later, it
reads r and returns 7

• For some applications, this behavior might not be acceptable
because the value the thread read is not the last value it wrote

Motivation

• We want Method calls to appear to take effect in program order!

Combining both we get SC

• Method calls should appear to happen in a one-at-a-time,
sequential order

• Method calls should appear to take effect in program order

Combining both we get SC

• Method calls should appear to happen in a one-at-a-time,
sequential order

• Method calls should appear to take effect in program order

• That is, in any concurrent execution, there is a way to order the
method calls sequentially so that they (1) are consistent with
program order, and (2) meet the object’s sequential
specification

Sequential consistency

A multiprocessing system has sequential consistency if:

"...the results of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its
program."

- Leslie Lamport (inventor of sequential consistency, GOAT Turing Award
Winner, concurrent master mind)

31

Sequential consistency requirements

1. All instructions are executed in order.

2. Every write operation becomes instantaneously visible throughout the
system.

32

Essenti
al

Sequential consistency requirements

1. All instructions are executed in order.

2. Every write operation becomes instantaneously visible throughout the
system. (all variables volatile! Shows us that standard java is not sequentially
consistent)

33

Essenti
al

Sequential consistency and the real world

• In the real world, hardware architects do not adhere to this by
default

• We need to explicitly announce that we want this property (i.e.
volatile keyword)

Sequential consistency and the real world

• We need to explicitly announce that we want this property (i.e.
volatile keyword)

• This lock is only correct if we have SC

SC is not compositable

36

H|p is sequentially consistent
H|q is sequentially consistent
H is not sequentially consistent

In general: sequential consistency is not compositable

Linearizability

Motivation

• This is SC
• Goes against our intuition, q.enq(x) finished before q.enq(y)!

How do we fix this

• replace the requirement that method calls appear to happen in
program order with the following stronger restriction:

• Each method call should appear to take effect instantaneously at
some moment between its invocation and response

Idea

• Now we have:

• Method calls should appear to happen in a one-at-a-time,
sequential order

• Each method call should appear to take effect instantaneously at
some moment between its invocation and response

Is this

linearizable?

q.enq(x)

q.enq(y)

q.deq() -> x

time

q.deq() -> y

Yes!

Example with FIFO Queue (1)

41

Essenti
al

Is this

linearizable?

q.enq(x) q.deq() -> y

q.enq(y)

Example (2)

42time

Essenti
al

Is this

linearizable?

q.enq(x) q.deq() -> y

time

q.enq(y)

No!

Example (2)

43

Essenti
al

Thanks to @Erxuan Li, PProg25

Consensus

spcl.inf.ethz.ch

@spcl_eth

46

Recap: Consensus Protocols

I propose
“23”.

I propose
“42”.

A few moments later…
(a finite number of steps)

We
agreed
on“23”.

We
agreed
on “23”

Which other
scenarios are
allowed?

spcl.inf.ethz.ch

@spcl_eth

47

Consistent Result

I propose
“23”.

I propose
“42”.

We
agreed
on“23”.

We
agreed
on “42”

This is illegal!

Consensus result needs to be
consistent: the same on all threads.

spcl.inf.ethz.ch

@spcl_eth

48

Valid Result

I propose
“23”.

I propose
“42”.

We
agreed

on“420”.
We

agreed
on “420”

This is illegal!

Consensus result needs to be valid:
proposed by some thread.

spcl.inf.ethz.ch

@spcl_eth

49

Wait-Free

I propose
“23”.

I propose
“42”.

I cannot finish
because I am

waiting for
the other
thread.

This is illegal!

Consensus needs to be wait-free:
All threads finish after a finite
number of steps, independent of
other threads.

I will not
schedule you

now!

Valid, Consistent, Wait-free

• This will be asked on the exam 100%

50

Consensus Number

• The consensus number of C is the largest n for which C solves n-
thread consensus

• Atomic Registers have consensus number 1, we’ll show this later
• TAS has consensus number 2
• CAS has consensus number ∞ (Can be shown by construction)

Why is Consensus Number important?

• It gives us the consensus hierarchy
• Is backed by mathematical proof
• allows us to say that implementing

a lock free FIFO queue is
impossible using atomic registers,
because queue has CN 2 and AR
have CN 1!

Implementing one thread consensus using AR

• Atomic Register:

int decide(int proposed)
 return proposed;

spcl.inf.ethz.ch

@spcl_eth

▪ Assume you have a machine with atomic registers and an atomic test-and-set operation with the
following semantics (X is initialized to 1):

int TAS() {

 res = X;

 if (res == 1) {

 X = 0;

 }

 return res;

}

▪ Implement a two-process consensus protocol using TAS() and atomic registers.

54

Implementing two thread consensus with TAS

spcl.inf.ethz.ch

@spcl_eth

▪ Code for both threads

read own_value;

read other_value;

if (TAS() == 0) {

 return own_value;

} else

 return other_value;

55

Implementing two thread consensus - Solution

Implementing n thread consensus with TAS

56

Implementing n thread consensus with TAS

57

N thread consensus with CAS

spcl.inf.ethz.ch

@spcl_eth

▪ Instead of proposing an integer, two threads now propose either 0 or 1

▪ Equivalent to “normal” consensus for two threads

▪ How can we prove this?

▪ If we can implement one, we directly get the other

59

Simplification: Binary Consensus

binary_decide(bit b) {
 return int_decide(b)
}

int_decide(int d) {
 prop[id] = d; //prop is shared
 other = (id + 1)%2;
 int win = bin_decide(id);
 return prop[win];
}

We can implement binary
consensus using normal
consensus.

We can implement binary
consensus using normal consensus
(id in {0,1} and unique).

spcl.inf.ethz.ch

@spcl_eth

60

State Diagrams of Two-thread Consensus Protocols

Start state, both threads (A and B)
have not yet executed the first
instruction of the consensus

protocol.

Each state has at most two successors:
Either A or B execute an instruction.

Cycles among states cannot exist in a
wait-free algorithm: The state “looks”

the same each time we visit, so we
are trapped forever in the loop and

not wait-free.

spcl.inf.ethz.ch

@spcl_eth

61

Anatomy of a State (in two-thread consensus)

Shared Variables

Thread local
variables of A Thread local

variables of B

Program
counter of A

Program
counter of B

spcl.inf.ethz.ch

@spcl_eth

62

Anatomy of a State

Shared Variables
r1=3

Thread local
variables of A

x=2

Thread local
variables of B

y=0

Program
counter of A

S3

Program
counter of B

S1
Shared Variables

r1=3

Thread local
variables of A

x=1

Thread local
variables of B

y=0

Program
counter of A

S5

Program
counter of B

S1

The states are different, since A has
different local variables and program
counter values.

Yet from B’s perspective they look the
same! (Until A writes x into a shared
variable!)

spcl.inf.ethz.ch

@spcl_eth

63

Critical States

0|1?

There is always at least one bivalent
state (the start state).

0|1 0|1

1 1 0 1

0|1 11

Output states are always
univalent.

From this state we only
reach states with output 1,

so it is also univalent.

This state is bivalent but all
his successors are univalent.
We call such states critical.

Consensus States

• If we are solving binary consensus, there are 3 different types of
states:

• univalent: State, where the output is settled on either 0 or 1
• bivalent: both outputs 0 and 1 are still possible
• critical: bivalent & the following state-transition ends in two

univalent states

64

spcl.inf.ethz.ch

@spcl_eth

65

Quiz: Label the States

1 1 0 1

Output states are always
univalent.

Output states are always
univalent.

Output states are always
univalent.

This state is bivalent, as we
can reach 0 and 1 output

states.

It is also critical, since it is
bivalent and all its successors

are univalent.

This state is bivalent, as we
can reach 0 and 1 output

states.
The start state is always

bivalent!

This state is bivalent, as we
can reach 0 and 1 output

states.

spcl.inf.ethz.ch

@spcl_eth

66

Critical State Existence Proof

Lemma: Every consensus protocol has a
critical state.

Proof: From (bivalent) start state, let the threads only
move to other bivalent states.

• If it runs forever the protocol is not wait free.

• If it reaches a position where no moves are possible
this state is critical.

spcl.inf.ethz.ch

@spcl_eth

67

Critical State Existence Proof

Lemma: Every consensus protocol has a
critical state.

Proof: From (bivalent) start state, let the threads only
move to other bivalent states.

• If it runs forever the protocol is not wait free.

• If it reaches a position where no moves are possible
this state is critical.

If it is wait-free we need to finish in
finite time (finish means we return a
number) => tree will be of finite
length

Proof that Atomic Registers have Consensus Number 1

• Want to show this by checking all possible ways we could try to
implement binary consensus using just atomic registers

• Then we show a contradiction for each case, which means that it’s
impossible to create any higher consensus than for one single
thread (which is trivial)

68

Proof that Atomic Registers have Consensus Number 1

• If binary consensus is not possible for two threads using atomic
registers, then it’s also not possible for normal consensus (we’ve
seen that they are equivalent)

• Also, not possible for more than two threads

69

Let’s start

• We know that our wait free consensus protocol must reach a
critical state at some point

• So, let’s start there

spcl.inf.ethz.ch

@spcl_eth

71

Impossibility Proof Setup – Critical State

0|1?

0 1

Assume we are in the critical
state (which must exist).

Assume that if A moves next,
we end up with 0, if B moves

next, we end up with 1.
(w.l.o.g., can switch names)

B moves
first

A moves
first

So, what actions can a thread
perform in his “move”?

Either read or write a shared
register! – Let’s see why.

spcl.inf.ethz.ch

@spcl_eth

72

Impossibility Proof Setup – Critical State

0|1?

0 1

Assume we are in the critical
state (which must exist).

Assume that if A moves next,
we end up with 0, if B moves

next, we end up with 1.
(w.l.o.g., can switch names)

B moves
first

A moves
first

So, what actions can a thread
perform in his “move”?

Either read or write a shared
register! – Let’s see why.

You can think of the transition as
which thread performs the CAS or TAS
first, and thereby decides the number

We want to know what operations A can do

• A can only write or read a shared variable
• Why? Let’s assume A just reads and writes local variables
• Then the outward state won’t change from the perspective of B!
• Let’s see this played out

73

spcl.inf.ethz.ch

@spcl_eth

74

Impossibility Proof Setup – Possible actions of a thread

0|1?

Weird
state

1

So what actions can a thread
perform in his “move”?

What happens if A just reads
from and writes to local vars?

critical

A: x=y+z
(x,y,z: local)

0

Output must
be 0

Output must
be 1

Now the
scheduler

pauses A, and
B runs solo

From B’s perspective
these two states look

the same!
B cannot know that
one of them must

output 0! So, we get a
contradiction!

Conclusion: First instruction
after critical state must be a
read or write of a shared
variable!

spcl.inf.ethz.ch

@spcl_eth

75

Impossibility Proof Setup – Possible actions of a thread

0|1?

0 1

A moves
first

B moves
first

We know reading/writing
local variables cannot lead

out of a critical state – what
remains?

A can read a
shared variable

A can write a
shared variable

B can read the
same variable

B can read a
different variable

B can write the
same variable

B can write a
different variable

Many cases…
let’s make tables

spcl.inf.ethz.ch

@spcl_eth

76

Many Cases to check

First Action

A: r1.read() A: r2.read() A: r1.write() A: r2.write()

Second
Action

B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()

Is binary
consensus

possible for any
of those?

Can we simplify
somehow?

Let’s say A always moves first,
otherwise, switch names.

Second Action

A: r1.read() A: r2.read() A: r1.write() A: r2.write()

First
 Action

B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()
Similarly, we can call the
register A reads/writes r1
in both cases.

First Action

A: r1.read() A: r1.write()

Second
Action

B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()

Manageable… Let’s look at the cases where A reads

Which cases do we need to check?

• Note that First and Second
Action don’t really say
anything about what
happens first and what
happens second as we
abstracted this away in the
previous step

77

First Action

A: r1.read() A:
r1.write()

Second
Action

B: r1.read()

B: r2.read()

B:
r1.write()

B:
r2.write()

Which cases do we need to check?

• Let’s start with the case
where A does r1.read() and
B does X (read or write).

78

First Action

A:
r1.read()

A:
r1.write()

Second
Action

B:
r1.read()

B:
r2.read()

B:
r1.write()

B:
r2.write()

spcl.inf.ethz.ch

@spcl_eth

79

Impossibility Proof Case I: A reads

0|1?

Output is decided (0)
due to critical state.

A reads B does X Output is decided (1)
due to critical state.

B does X

From B’s perspective
these two states look

exactly the same!
However, B needs to

output different
values!

spcl.inf.ethz.ch

@spcl_eth

80

What did we just prove?

First Action

A: r1.read() A: r1.write()

Second
Action

B: r1.read() No, Case I

B: r2.read() No, Case I

B: r1.write() No, Case I

B: r2.write() No, Case I

Is binary
consensus

possible for any
of those?

Which cases do we need to check?

• Let’s start with the case where A
does r1.read() and B does X.

• Next, lets look at when A does
r1.write() and B reads either register.

81

First Action

A: r1.read() A: r1.write()

Second
Action

B: r1.read() contradiction

B: r2.read() contradiction

B: r1.write() contradiction

B: r2.write() contradiction

spcl.inf.ethz.ch

@spcl_eth

82

Impossibility Proof Case I’: B reads

0|1?

0 1

Output is decided (1)
due to critical state.B readsA writes r1

Output is decided (0)
due to critical state.

A writes r1

1

From A’s perspective
these two states look
the same! However,

A needs to
(eventually) output

different values!

spcl.inf.ethz.ch

@spcl_eth

83

What did we just prove?

First Action

A: r1.read() A: r1.write()

Second
Action

B: r1.read() No, Case I No, Case I’

B: r2.read() No, Case I No, Case I’

B: r1.write() No, Case I

B: r2.write() No, Case I

Is binary
consensus

possible for any
of those?

Which cases do we need to check?

• Let’s start with the case where A
does r1.read() and B does X.

• Next, lets look at when A does
r1.write() and B reads either
register.

• Now, lets look at the case when A
does r1.write() and B does r2.write().

84

First Action

A:
r1.read()

A:
r1.write()

Second
Action

B:
r1.read()

contradiction contradiction

B:
r2.read()

contradiction contradiction

B:
r1.write()

contradiction

B:
r2.write()

contradiction

spcl.inf.ethz.ch

@spcl_eth

85

Impossibility Proof Case II: A and B write to different registers

0|1?

0 1

Output is decided (0)
due to critical state.

A writes r1 B writes r2 Output is decided (1)
due to critical state.

B writes r2

The same state!

 However, it should be outputting 0
/ 1 depending on where it was

reached from!

A writes r1

Output 0

Output 1

spcl.inf.ethz.ch

@spcl_eth

86

What did we just prove?

First Action

A: r1.read() A: r1.write()

Second
Action

B: r1.read() No, Case I No, Case I’

B: r2.read() No, Case I No, Case I’

B: r1.write() No, Case I ?

B: r2.write() No, Case I No, Case II

Is binary
consensus

possible for any
of those?

Which cases do we need to check?

• Let’s start with the case where A
does r1.read() and B does X.

• Next, lets look at when A does
r1.write() and B reads either
register.

• Now, lets look at the case when A
does r1.write() and B does
r2.write().

• Finally, let’s check A does r1.write()
and B does r1.write() too.

87

First Action

A:
r1.read()

A:
r1.write()

Second
Action

B:
r1.read()

contradiction contradiction

B:
r2.read()

contradiction contradiction

B:
r1.write()

contradiction

B:
r2.write()

contradiction contradiction

spcl.inf.ethz.ch

@spcl_eth

88

Impossibility Proof Case III: A and B write to the same register

0|1?

0 1

Output is decided (0)
due to critical state.

A writes r1 B writes r1 Output is decided (1)
due to critical state.

B writes r1

From B’s perspective
these two states look
the same! However,
B needs to output
different values!

Which cases do we need to check?

• Let’s start with the case where A
does r1.read() and B does X.

• Next, lets look at when A does
r1.write() and B reads either
register.

• Now, lets look at the case when A
does r1.write() and B does
r2.write().

• Finally, let’s check A does r1.write()
and B does r1.write() too.

89

First Action

A:
r1.read()

A:
r1.write()

Second
Action

B:
r1.read()

contradiction contradiction

B:
r2.read()

contradiction contradiction

B:
r1.write()

contradiction contradiction

B:
r2.write()

contradiction contradiction

What did we show?

• We proved that there is no possible way to build a consensus
protocol using just atomic registers by enumerating all possible
ways we could try to implement such a protocol

spcl.inf.ethz.ch

@spcl_eth

91

That’s all

First Action

A: r1.read() A: r1.write()

Second
Action

B: r1.read() No, Case I No, Case I’

B: r2.read() No, Case I No, Case I’

B: r1.write() No, Case I No, Case III

B: r2.write() No, Case I No, Case II

Is binary
consensus

possible for any
of those?

No

1985, 2.5k citations

Questions?

92

Transactional Memory

• goal of transactional memory is to remove the burden of
synchronization away from the programmer and place it in the
system (be that hardware or software)

• Ideally, programmer only has to say

Transactional Memory

• Has nice properties:
• simpler, less error-prone code
• higher-level semantics (what vs. how)
• composable (unlike locks)
• analogy to garbage collection
• optimistic by design (does not require mutual exclusion)

• Downsides:
• semantics are not clear (e.g., nesting)
• getting a good performance can be challenging
• how we should deal with I/O in transactions (i.e., how would one rollback

these changes?) is not clear.

Transactional Memory - ACID

• Transactions follow ACID principle
• Atomic – changes by transaction are made visible atomically, threads

either see the state before a transaction or after a transaction finished
successfully. They don’t observe intermediate states.

• Consistent – objects will never be in an inconsistent state, i.e., between
method calls, transactions always move from one consistent state to
another consistent state

• Isolated – while a transaction is running, effects from other transactions
are not observed. Transaction takes “snapshot” and works on it

• Durable – (mostly used for databases that we don’t lose data when a
power loss occurs)

Transactional Memory

• How do we build it?

Transactional Memory

• How do we build it?
• create a “snapshot” of the current state and make sure that

transaction only affects a local copy of this state, which can then
be either committed or aborted

• If a transaction which has yet to commit has read a value (at the
start of its operation) that was changed by a transaction that has
committed, a conflict (non repeatable read) arises, and we need
to abort the transaction and retry

• i.e., check if the state of the system changed in the meantime, if
yes, we need to retry

Transactional Memory

• Consider the following example, where the initial state is a=0
• assume that transaction B commits the changes it has made

before A does
• Now, in a serialized view, the execution with a==0 is invalid!

Transactional Memory

• Consider the following
example, where the
initial state is a=0

• assume that
transaction B commits
the changes it has
made before A does

• Now, in a serialized
view, the execution
with a==0 is invalid!

Transactional Memory

• can implement TM either in hard- or software
• HTM is fast, but has bounded resources that often cannot handle

big transactions
• STM allows greater flexibility, but achieving good performance

might be very challenging

Transactional Memory - Nesting

• We need to make some design choices
• Transactions should be composable
• What happens if we have transactions within transactions? This is

called nesting
• Two possible approaches:

Transactional Memory - Nesting

• What happens if we have transactions within transactions? This is
called nesting

• Two possible approaches:
• Flat/Flattened Nesting: Inner and outer transactions are treated as one. If

an inner transaction aborts, all abort. Changes from the inner are visible
only if the outer commits.

• Closed Nesting: Inner aborts don't affect the outer. If an inner commits,
changes are visible to the outer but not to others until the outer commits.

Transactional Memory - ScalaSTM

• Uses a clock-based system, i.e., every transaction has a time
when it was started and when it was committed

• Each transaction has a local read-set and a local write-set,
holding all locally read and written objects

• Allows us to check if our data became “outdated”, e.g., some
other thread committed, and we need to retry

Transactional Memory - ScalaSTM

• In this example, the T snapshot became outdated, so we need to
abort and retry

Transactional Memory - ScalaSTM

• In this example, the T snapshot was the most recent version of all
variables used, so we can commit

MPI

• Many of the problems of parallel/concurrent programming come
from sharing state. What if we simply avoid this?

• Message Passing has isolated mutable state, each thread/task
has its private, mutable state, and separate tasks only cooperate
via explicit message passing

MPI

• messages can be divided into synchronous and asynchronous
• Synchronous messages mean that the sender of the message

blocks/waits until the message is received
• Asynchronous messages do not block, but are placed into a buffer

(“postbox”) for the receiver to get at some point

• Example Go Code
which uses channels

So, what is MPI?

• MPI is a standard application/programming interface (API),
meaning it is a portable, flexible library not bound to a particular
language.

• It is the most used interface for distributed parallel computing,
which is nearly the entirety of high performance computing

So, what is MPI?

• Works SPMD: Single Program Multiple Data (Multiple Instances)
• We compile only one program, which gets executed by multiple

different instances
• Every MPI program can be written using just six core functions:

• MPI_Init – Initializes the MPI environment (this must be the first function
called).

• MPI_Comm_size – Determines the number of processes in a communicator.
• MPI_Comm_rank – Returns the rank (ID) of the calling process within the

communicator.
• MPI_Send – Sends a message to another process.
• MPI_Recv – Receives a message from another process.
• MPI_Finalize – Cleans up the MPI environment (this must be the last function

called).

MPI

• Einfaches Beispiel,
zwei Threads
schicken sich eine
Nachricht

MPI Collectives

• Up until now, we saw only point-to-point communication
• MPI also supports communications among groups of processors
• Reduce: to reduce a result from different processes to one (called

root)
• Broadcast: Broadcasts a message from the root process to all

other processes in the group
• Allreduce: Like reduce, but hands result to all processes involved
• Gather: Each process sends the contents of its send buffer to the

root process

Plan für heute

• Organisation
• Nachbesprechung Assignment 13
• Theory

• Exam questions
• Intro Assignment 14
• Kahoot
• A&W DP Tricks

What’s important for the exam?

• Properties of consensus protocol: valid, consistent, wait-free
• Knowing what bivalent, univalent and critical states are
• Being able to reason about why there can’t be cycles in a wait free

program
• identifying whether given code is a correct consensus protocol
• making a statement about the consensus number of an object

114

• Consistency is violated
• For two threads calling the method with two different values, the

method will return different values

• Not wait-free!
• suspension of one thread can cause the other thread to spin indefinitely (the

first thread must wait for the second). Thus, a thread calling the method
would not be guaranteed to finish in a finite number of steps

• Not valid!
• No thread could propose 0 then it’s wrong to return 0

• Atomic Register – 1
• TAS – 2
• CAS – Infinity

• Atomic Register:

int decide(int proposed)
 return proposed;

• TAS:

boolean decided = false;
int[] value = new int[2];
int decide(int proposed, int id)
 value[id] = proposed;
 if (TAS(decided)){
 return value[1-id];
 }
 return value[id];

• CAS:

int decided = NaN;
int decide(int proposed)
 CAS(decided, NaN, proposed);
 return decided;

wait-free: consensus returns in finite time for each thread.
consistent: all threads decide the same value (i.e., reach

consensus)
valid: the decision value is some thread's input

• No. Wait-free implies lock-free which means that no locks can be
used

Exam allgemein

Exam allgemein

• Man kann PProg sehr gut lernen und jeder von euch kann eine
super Note erreichen

• Löst die alten exams auf community solutions
• Falls ihr Verständnisprobleme habt, lest im Buch (link auf meiner

website) nach, da ist es oft nochmal besser erklärt
• Ihr müsst nicht alle Slides nochmal anschauen, wenn ihr in der

Vorlesung wart, ich denke Exams sind viel wichtiger
• Theory Assignments sind gut zum Üben, die Coding Probleme sind

auch wichtig! Oft gibt es so Code Skelett Aufgaben (meine
Prüfung)

Code Skelett Aufgaben

Types of exercises that might come in the exam

Disclaimer: This list is not guaranteed to be complete and is only meant to give you an idea what has been
asked on previous exams.

Locks
• Usually there are not too many question on this topic. true/false questions of which lock has which

properties (fairness, starvation free)
• find bug in lock code (violation of mutual exclusion or deadlock freedom)
• draw state space diagram and/or read off correctness properties
• reproduce Peterson/Filter/Bakery lock
• prove correctness of Peterson lock or similar (but not Filter or Bakery)
Monitors, semaphores, barriers
• semaphore implementation (mostly with monitors)
• (never seen rendezvous with semaphores in an exam)
• barrier implementation (mostly with monitors)
• (only seen a task on implementing a barrier with semaphores once in FS21, 8b)
• fill out some program using monitors (similar to wait/notify exercises, maybe with lock conditions)

Credits @aellison PProg23

https://exams.vis.ethz.ch/exams/i0svp1fh.pdf

Types of exercises that might come in the exam

• Proving that an object x has consensus number ≥y(or ∞). Then you
must provide an algorithm solving y-thread consensus using any
number of instances of x (or for the ∞ case, provide an algorithm
solving n-thread consensus for arbitrary n)

• Proving that an object x has consensus number at most z. This
would involve proving that it is impossible to implement (z+1)-
thread consensus with x

• E.g., if we know x is implemented using atomic registers then it
can’t solve consensus for more than one thread

Types of exercises that might come in the exam

• I don’t expect much about MPI and Transactional Memory as it
was only covered shortly (no guarantee!)

• Maybe some Mixer questions about it at the end (check the old
exams)

Plan für heute

• Organisation
• Nachbesprechung Assignment 13
• Theory
• Exam questions

• Intro Assignment 14 (yes, there is another one)
• Kahoot
• A&W DP Tricks

Assignment 14

• Is about Consensus
• “Below we show incorrect implementations of a consensus protocol in pseudocode. Which

property does each snippet violate when used with two threads?”

• Show that lock free FIFO queue has consensus number 2

• Show that lock free FIFO queue with peek() has consensus number infinity

• Show how to implement two thread consensus using binary consensus

• I would recommend solving it, these are exam relevant questions

Plan für heute

• Organisation
• Nachbesprechung Assignment 13
• Theory
• Exam questions
• Intro Assignment 14

• Kahoot
• A&W DP Tricks

Kahoot!

• Ich werde alle Kahoots noch auf meiner Website hochladen,
schaut da gerne nach, auch für die Lernphase

Consensus Protocol for two threads using
lock free queue

• False, remember spurious wake ups

• False, imagine max = 3. Then A,B,C arrive. Now C notifies threads A
and B but sets count to 0. Thus, only C can leave the barrier while A
and B are still stuck.

Yes

True

Plan für heute

• Organisation
• Nachbesprechung Assignment 13
• Theory
• Exam questions
• Kahoot

• Extra: A&W DP Tricks

Danke

• Es war mir eine grosse Freude euch unterrichten zu dürfen
• Nächstes Semester bin ich im Austausch, aber ich hoffe man

sieht sich im FS wieder (nicht in PProg), sprecht mich gerne an,
wenn ihr mich irgendwo sieht

• Ich drücke euch die Daumen, für die Lernphase, alles wird gut
• Nehmt euch auch ein bisschen Auszeit, die Lernphase ist doppelt

so lang wie im Herbst!

Schöne Ferien!

Airport Security Task

• Falls ihr den rekursiven Ansatz für diese Aufgaben noch nicht
gesehen habt, würde ich ihn euch gerne nochmal zeigen

• Hat mir damals extrem geholfen und kann eure Note direkt
verbessern

	Default Section
	Slide 1: Parallele Programmierung FS25
	Slide 2: Parallele Programmierung FS25
	Slide 3: Plan für heute
	Slide 4: Organisation
	Slide 5: Organisation
	Slide 6: Organisation
	Slide 7: Organisation
	Slide 8: Plan für heute
	Slide 9: Assignment 13
	Slide 10
	Slide 11: Plan für heute

	SC + LIN
	Slide 12: SC and Linearizability
	Slide 13
	Slide 14: Same reasoning doesn’t apply to concurrent objects!
	Slide 15
	Slide 16: Example: Queue
	Slide 17: Example: Queue
	Slide 18: Alternative concurrent queue implementation
	Slide 19: How to reason about concurrent objects that have no locks?
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Motivation
	Slide 26: Motivation
	Slide 27: Motivation
	Slide 28: Motivation
	Slide 29: Combining both we get SC
	Slide 30: Combining both we get SC
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Sequential consistency and the real world
	Slide 35: Sequential consistency and the real world
	Slide 36
	Slide 37
	Slide 38: Motivation
	Slide 39: How do we fix this
	Slide 40: Idea
	Slide 41
	Slide 42
	Slide 43
	Slide 44

	Consensus
	Slide 45
	Slide 46: Recap: Consensus Protocols
	Slide 47: Consistent Result
	Slide 48: Valid Result
	Slide 49: Wait-Free
	Slide 50: Valid, Consistent, Wait-free
	Slide 51: Consensus Number
	Slide 52: Why is Consensus Number important?
	Slide 53: Implementing one thread consensus using AR
	Slide 54: Implementing two thread consensus with TAS
	Slide 55: Implementing two thread consensus - Solution
	Slide 56: Implementing n thread consensus with TAS
	Slide 57: Implementing n thread consensus with TAS
	Slide 58: N thread consensus with CAS
	Slide 59: Simplification: Binary Consensus
	Slide 60: State Diagrams of Two-thread Consensus Protocols
	Slide 61: Anatomy of a State (in two-thread consensus)
	Slide 62: Anatomy of a State
	Slide 63: Critical States
	Slide 64: Consensus States
	Slide 65: Quiz: Label the States
	Slide 66: Critical State Existence Proof
	Slide 67: Critical State Existence Proof
	Slide 68: Proof that Atomic Registers have Consensus Number 1
	Slide 69: Proof that Atomic Registers have Consensus Number 1
	Slide 70: Let’s start
	Slide 71: Impossibility Proof Setup – Critical State
	Slide 72: Impossibility Proof Setup – Critical State
	Slide 73: We want to know what operations A can do
	Slide 74: Impossibility Proof Setup – Possible actions of a thread
	Slide 75: Impossibility Proof Setup – Possible actions of a thread
	Slide 76: Many Cases to check
	Slide 77: Which cases do we need to check?
	Slide 78: Which cases do we need to check?
	Slide 79: Impossibility Proof Case I: A reads
	Slide 80: What did we just prove?
	Slide 81: Which cases do we need to check?
	Slide 82: Impossibility Proof Case I’: B reads
	Slide 83: What did we just prove?
	Slide 84: Which cases do we need to check?
	Slide 85: Impossibility Proof Case II: A and B write to different registers
	Slide 86: What did we just prove?
	Slide 87: Which cases do we need to check?
	Slide 88: Impossibility Proof Case III: A and B write to the same register
	Slide 89: Which cases do we need to check?
	Slide 90: What did we show?
	Slide 91: That’s all
	Slide 92: Questions?

	Transactional Memory
	Slide 93: Transactional Memory
	Slide 94: Transactional Memory
	Slide 95: Transactional Memory - ACID
	Slide 96: Transactional Memory
	Slide 97: Transactional Memory
	Slide 98: Transactional Memory
	Slide 99: Transactional Memory
	Slide 100: Transactional Memory
	Slide 101: Transactional Memory - Nesting
	Slide 102: Transactional Memory - Nesting
	Slide 103: Transactional Memory - ScalaSTM
	Slide 104: Transactional Memory - ScalaSTM
	Slide 105: Transactional Memory - ScalaSTM

	mpi
	Slide 106: MPI
	Slide 107: MPI
	Slide 108
	Slide 109: So, what is MPI?
	Slide 110: So, what is MPI?
	Slide 111: MPI
	Slide 112: MPI Collectives

	exam questions
	Slide 113: Plan für heute
	Slide 114: What’s important for the exam?
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132: Exam allgemein
	Slide 133: Exam allgemein
	Slide 134: Code Skelett Aufgaben
	Slide 135: Types of exercises that might come in the exam
	Slide 136: Types of exercises that might come in the exam
	Slide 137: Types of exercises that might come in the exam

	assignment 14
	Slide 138: Plan für heute
	Slide 139: Assignment 14

	Rest
	Slide 140: Plan für heute
	Slide 141: Kahoot!
	Slide 142: Consensus Protocol for two threads using lock free queue
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159: Plan für heute
	Slide 160: Danke
	Slide 161: Schöne Ferien!
	Slide 163: Airport Security Task

