
Parallele Programmierung FS25
Exercise Session 2

Jonas Wetzel

Plan für heute

• Organisation
• Theory Recap
• Einstieg in Exercise 2
• Demo
• Kahoot
• Exam Questions

Organisation

• Mein Name ist Jonas Wetzel
• Meine Website (Materialien und Inhalt der Übungen):

n.ethz.ch/~jwetzel
• Meine Email: jwetzel@ethz.ch
• Discord: @jonas.too

mailto:jwetzel@ethz.ch

Organisation

• Wo sind wir jetzt?

Motivation

Wieso brauchen wir paralleles
Programmieren?
• Stellen wir uns vor, wir haben einen Discord Bot programmiert
• Nimmt commands wie !pprog, !info an
• Verarbeitet den Command und antwortet

Wieso brauchen wir paralleles
Programmieren?
• Stellen wir uns vor, wir haben einen Discord Bot programmiert
• Nimmt commands wie !pprog, !info an
• Verarbeitet den Command und antwortet

• Problem: Beim testen des Bots funktioniert alles einwandfrei mit
geringer Latency. Nachdem der Bot aber veröffentlicht wird dauert
es sehr lange bis der Bot auf Commands reagiert. Wieso?

Produce Consumer Problem

Credits to Gamal Hassan PProg 24

Solution? More Threads!

9

Sending Commands

Processing Commands

Command Queue

Ideally empty!

Credits to Gamal Hassan PProg 24

Theory Recap

Terminology

Overview:
https://cgl.ethz.ch/teaching/parallelprog25/pages/terminology.html

11

https://cgl.ethz.ch/teaching/parallelprog25/pages/terminology.html

Thread Definition

An independent (i.e., capable of running in parallel) unit of computation
that executes code.

Each thread is like a running sequential program,
but a thread can create other threads
that are then part of the same program.
Those threads can create more threads etc.

12

essentials

Thread Definition Advanced

Concept of threads exists on various levels:
• Hardware (CPU)
• Operating systems
• Programming languages
• Java: Thread class

13

essentials

Thread Properties (in our course)

• Threads can create other threads
• Shared memory (changes to variables by threads are visible to other

Threads)
• Threads (from same class) execute same program but with different

arguments
• Communication between threads: Writing fields of shared objects

14

essentials

15

custom

16

custom

Alternativ

Runnable incrementTask = new
Runnable() {
 @Override
 public void run() {
 for (int i = 0; i < 10000; i++) {
 counter++;
 }
 }
};

Runnable incrementTask = () -> {
 for (int i = 0; i < 10000; i++) {
 counter++;
 }
};

Why is it better?

• In Java, a class can extend only one class. By implementing
Runnable, your class remains free to extend another class if
needed.

• See code example

19

custom

Life cycle of a Thread

20

New

RunningRunnable

Terminated

run() terminates

start()

active state

Waiting for CPU Getting CPU
Blocked

“not runnable“

Waiting

Timed waiting

Waiting for notification

Notification acquired

Thread State Model

NEW: The thread has been created but not yet started.
RUNNABLE: The thread is ready to run as soon as it gets CPU time.
RUNNING: The tread is running.
BLOCKED: The thread is waiting to acquire a monitor lock (for example, trying to enter
a synchronized block/method).
WAITING: The thread is waiting indefinitely for another thread to perform a particular
action (e.g., calling Object.wait() without a timeout).
TIMED_WAITING: The thread is waiting for another thread’s action for up to a specified
period (e.g., Thread.sleep(1000) or wait(1000)).
TERMINATED: The thread has completed its execution.

21

22

Was sehen Prozesse und was sehen Threads

Big Picture

23

custom

(Bad) Interleavings, what can go wrong?

• public class Counter {

• int count = 0;

• public void increment() {

• count++;

• }

• }

24

Assume we have two threads executing increment() n-times
concurrently.

custom

Bad Interleaving

• Siehe code example

Bad Interleaving

• Was ist passiert?

(Bad) Interleavings, what can go wrong?

• public class Counter {

• int count = 0;

• public void increment() {

• count = count + 1;

• }

• }

27

Assume we have two threads executing increment() n-times
concurrently.

custom

Bad Interleaving

• Count++ ist äquivalent zu count = count + 1
• Read, increment and write back -> separate Handlungen
• Passieren nicht in einem “einzigen” Schritt

Bad Interleaving

• Zum Beispiel:
• Thread 1 reads counter (say, counter = 42).
• Thread 2 also reads counter (still 42).
• Thread 1 writes 43.
• Thread 2 writes 43 (overwriting Thread 1’s update to 43).

• As a result, the counter might end up with a value less than the
total expected (in this example, less than 20,000).

• Das nennen wir ein Bad Interleaving!

Bad Interleaving

• As a result, the counter might end up with a value less than the
total expected (in this example, less than 20,000).

• Das nennen wir ein Bad Interleaving!

• Es gibt aber verschiedene Wege um das Problem zu fixen
• (synchronized, atomic integer), sehen wir noch

Einstieg in Exercise 2

Preparations

1. Import assignment2.zip in Eclipse

2. Run the projects unit-tests in Eclipse

3. Understand output of unit-tests
• Did the test fail or succeed?

• Why did the test fail?

4. Start coding and keep checking if tests pass

32

Eclipse: import project

33

Eclipse: import project

34

Eclipse: import project

35

Eclipse: add to git

36

Team -> Share Project ...

Eclipse: add to git

37

Important: Select same directory as for assignment 1
 If you don’t have a repo yet, contact your TA

Eclipse: running JUnit tests (1)

38

Eclipse: running JUnit tests (2)

39

Your solution
(ideally)

Template

Coding Remarks

Code Style

• Try to make your code as readable as possible

• Include high-level comments that explain why you are doing
something (much better than a line-by-line commentary of your
code)

41

essentials

Code Style / Errors

Keep attention what Eclipse reports:

42

essentials

43

Java Doc (https://docs.oracle.com/en/java/javase/21/docs/api/index.html)

We will use Java SE

Modules

https://docs.oracle.com/en/java/javase/17/docs/api/index.html

44

Java Doc (https://docs.oracle.com/en/java/javase/21/docs/api/index.html)

Packages

https://docs.oracle.com/en/java/javase/21/docs/api/index.html

45

Java Doc (https://docs.oracle.com/en/java/javase/21/docs/api/index.html)

Classes

https://docs.oracle.com/en/java/javase/11/docs/api/index.html

46

Java Doc (https://docs.oracle.com/en/java/javase/21/docs/api/index.html)

Method
Signature

Semantic description
what the method does

Parameter description

Possible occurring
errors

https://docs.oracle.com/en/java/javase/21/docs/api/index.html

Exercise Preview

Task A

To start with, print to the console "Hello Thread!" from a new
thread. How do you check that the statement was indeed printed
from a thread that is different to the main thread of your
application? Furthermore, ensure that your program (i.e., the
execution of main thread) finishes only after the thread execution
finishes.

48

essentials

Task A: How to create and start a new thread?

49

option 1: Extend class Thread

option 2: Implement Runnable

essentials

Demo see code examples

50

Task B

51

essentials

Task B

Run the method computePrimeFactors in a single thread other than
the main thread. Measure the execution time of sequential
execution (on the main thread) and execution using a single thread.
Is there any noticeable difference?

52

essentials

Task C

Design and run an experiment that would measure the overhead of
creating and executing a thread.

53

essentials

Task C

54

option 1: Measures real time elapsed including time when the thread is not running.

option 2: Measures thread cpu time excluding time when the thread is not running.

essentials

Task C

• Measured execution time not always the same
→ Average over multiple runs (the more the better)
→ Calculate variance

55

essentials

Task D

Before you parallelize the loop in Task E, design how the work
should be split between the threads by implementing method
PartitionData. Each thread should process roughly equal amount of
elements. Briefly describe you solution and discuss alternative ways
to split the work.

56

essentials

Task D: Split the work between the threads

57

PartitionData(int length, int numPartitions) { … }

Input

length (20)

a) PartitionData(20,1)

b) PartitionData(20,2)

c) PartitionData(20,3)

?

?

?

essentials

Task D: Split the work between the threads

58

PartitionData(int length, int numPartitions) { … }

Input

length (20)

a) PartitionData(20,1)

b) PartitionData(20,2)

c) PartitionData(20,3)

d) PartitionData(20,3)

both c) and d) are correct solutions for this exercise

essentials

Task D

59

Several ways with different performance depending on task and data

If input is random: Splitting the input into half works well
If input is sorted: 1. half finishes faster than 2. half
→ maybe split on odd/even indices

details

Task D

• What about (length>0 and numPartitions>0) and length<numPartitions?
• ??
• ??

• And (length<=0 or numPartitions<=0)?
• ??
• ??

60

PartitionData(int length, int numPartitions) { … }

essentials

Task D

• What about (length>0 and numPartitions>0) and length<numPartitions?
• Throw an exception?
• Return m = min(m,n) splits?

• And (length<=0 or numPartitions<=0)?
• Throw an exception?
• Create a default return value (e.g. new ArraySplit[0])?

• In any case, write your assumptions in JavaDoc

61

PartitionData(int length, int numPartitions) { … }

essentials

Task E

Parallelize the loop execution in computePrimeFactors using a
configurable number of threads.

62

essentials

Task F

Think of how would a plot that shows the execution speed-up of your
implementation, for n = 1, 2, 4, 8, 16, 32, 64, 128 threads and the
input array size of 100, 1000, 10000, 100000 look like.

63

essentials

Task G

Measure the execution time of your parallel implementation for n =
1, 2, 4, 8, 16, 32, 64, 128 threads and the input array size of
input.length = 100, 1000, 10000, 100000. Discuss the differences in
the two plots from task F and G.

64

essentials

Speedup

Sub-linear: usually, im besten Fall linear

Super-linear: not possible in theory, but
• Modern hardware properties (local/remote memory)
• Bug (this course assumes this)
• Wird als Anomalie betrachtet (zum Beispiel plötzlich bessere

cache utilization)

65

essentials

Speedup
Sub-linear: usually
Super-linear: not possible in theory

Wieso?
• Amdahls Law -> Sequentieller Anteil eines Programmes schränkt den

Speedup ein, egal wie viele Cores wir haben
• Thread creation, scheduling, and synchronization add extra work that

doesn’t exist in a sequential run.
• Context switching and coordination between threads also slow down

execution.
• When multiple threads access shared resources (e.g., memory,

caches, I/O), contention and delays occur.

66

essentials

Speedup
Sub-linear: usually
Super-linear: not possible in theory

Superlinear speedup (where the speedup is greater than the
number of processors) would mean that parallel execution is more
than just dividing the work—it would imply that each additional
processor gives you an extra benefit beyond the direct division of
labor.

67

essentials

Speedup
Sub-linear: usually
Super-linear:
not possible in
theory

68

essentials

Past Exam Task

69

essentials

Rep. Exam, FS 2023

Past Exam Task

70

essentials

Rep. Exam, FS 2023

https://quizizz.com/join?gc=38400744

Feedback

• Falls ihr Feedback möchtet sagt mir bitte Bescheid

Danke

• Bis nächste Woche!

	Slide 1: Parallele Programmierung FS25
	Slide 2: Plan für heute
	Slide 3: Organisation
	Slide 4: Organisation
	Slide 5: Motivation
	Slide 6: Wieso brauchen wir paralleles Programmieren?
	Slide 7: Wieso brauchen wir paralleles Programmieren?
	Slide 8: Produce Consumer Problem
	Slide 9: Solution? More Threads!
	Slide 10: Theory Recap
	Slide 11: Terminology
	Slide 12: Thread Definition
	Slide 13: Thread Definition Advanced
	Slide 14: Thread Properties (in our course)
	Slide 15
	Slide 16
	Slide 17: Alternativ
	Slide 18: Why is it better?
	Slide 19
	Slide 20: Life cycle of a Thread
	Slide 21: Thread State Model
	Slide 22
	Slide 23: Big Picture
	Slide 24: (Bad) Interleavings, what can go wrong?
	Slide 25: Bad Interleaving
	Slide 26: Bad Interleaving
	Slide 27: (Bad) Interleavings, what can go wrong?
	Slide 28: Bad Interleaving
	Slide 29: Bad Interleaving
	Slide 30: Bad Interleaving
	Slide 31: Einstieg in Exercise 2
	Slide 32: Preparations
	Slide 33: Eclipse: import project
	Slide 34: Eclipse: import project
	Slide 35: Eclipse: import project
	Slide 36: Eclipse: add to git
	Slide 37: Eclipse: add to git
	Slide 38: Eclipse: running JUnit tests (1)
	Slide 39: Eclipse: running JUnit tests (2)
	Slide 40: Coding Remarks
	Slide 41: Code Style
	Slide 42: Code Style / Errors
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Exercise Preview
	Slide 48: Task A
	Slide 49: Task A: How to create and start a new thread?
	Slide 50: Demo see code examples
	Slide 51: Task B
	Slide 52: Task B
	Slide 53: Task C
	Slide 54: Task C
	Slide 55: Task C
	Slide 56: Task D
	Slide 57: Task D: Split the work between the threads
	Slide 58: Task D: Split the work between the threads
	Slide 59: Task D
	Slide 60: Task D
	Slide 61: Task D
	Slide 62: Task E
	Slide 63: Task F
	Slide 64: Task G
	Slide 65: Speedup
	Slide 66: Speedup
	Slide 67: Speedup
	Slide 68: Speedup
	Slide 69: Past Exam Task
	Slide 70: Past Exam Task
	Slide 71
	Slide 72: Feedback
	Slide 73: Danke

