
Parallele Programmierung FS25
Exercise Session 3

Jonas Wetzel

Plan für heute

• Organisation
• Nachbesprechung Exercise 2
• Theory Recap
• Intro Exercise 3
• Exam Questions
• Kahoot

Organisation

• Mein Name ist Jonas Wetzel
• Meine Website (Materialien und Inhalt der Übungen):

n.ethz.ch/~jwetzel
• Meine Email: jwetzel@ethz.ch
• Discord: @jonas.too

mailto:jwetzel@ethz.ch

Organisation

• Mein Name ist Jonas Wetzel
• Meine Website (Materialien und Inhalt der Übungen):

n.ethz.ch/~jwetzel
• Meine Email: jwetzel@ethz.ch
• Discord: @jonas.too
• Feedback zur Session: https://forms.gle/b8nw9v32ChDcN3XR9

mailto:jwetzel@ethz.ch
https://forms.gle/b8nw9v32ChDcN3XR9

Organisation

• Feedback zur Session: https://forms.gle/b8nw9v32ChDcN3XR9
• Falls ihr Feedback möchtet kommt bitte zu mir

https://forms.gle/b8nw9v32ChDcN3XR9

Organisation

• Wo sind wir jetzt?

Plan für heute

• Organisation

• Nachbesprechung Exercise 2
• Theory Recap
• Intro Exercise 3
• Exam Questions
• Kahoot

Common Mistakes Exercise 2

Common Mistakes Exercise 2

Task C: Thread with no Task

10

Task C: Thread with no Task

11

Common Mistakes Exercise 2

Common Mistakes Exercise 2

• code ex2Sol

Benchmark
16 cores available

Benchmark

• For small arrays, increasing threads does not improve
performance and may even degrade it due to thread management
overhead

• For larger arrays, execution time decreases significantly up to a
certain number of threads, beyond which performance gains
diminish

• At very high thread counts, overhead dominates, causing
execution time to increase

Benchmark

• We don’t want to create many threads due to overhead
• Solution is the ExecutorService which handles a fixed number of

threads
• See code example

Why Use Thread Pools?

• Efficient Resource Management: Creating new threads for every
task can be expensive. A thread pool manages a fixed number of
threads that are reused.

• Task Scheduling: Executors handle scheduling and execution of
tasks efficiently.

Task D: PartitionData

Static partitioning vs. other: dynamic, guided, etc.

In real world: use existing libraries. well tested, concise, fast (e.g. parallel
streams for Java)

18

Task E: Sharing Data Across Threads

code SharedData

19

Plan für heute

• Organisation
• Nachbesprechung Exercise 2

• Theory Recap
• Intro Exercise 3
• Exam Questions
• Kahoot

Counter

Let’s count the number of times a given event occurs

21

public interface Counter {

 public void increment();

 public int value();

}

Counter

Let’s count the number of times a given event occurs

22

public interface Counter {

 public void increment();

 public int value();

}

// background threads

for (int i = 0; i < numIterations; i++) {

 // perform some work

 counter.increment();

}

// progress thread

while (isWorking) {

 System.out.println(counter.value());

}

23

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

10 iterations each

number of times
increment() is called

value of the
shared Counter

24

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

number of times
increment() is called

value of the
shared Counter

25

0

Counter

1

Thread 1

0

Thread 2

0

Thread 3

number of times
increment() is called

value of the
shared Counter

26

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

27

10

Counter

10

Thread 1

0

Thread 2

0

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

28

15

Counter

10

Thread 1

0

Thread 2

5

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

29

25

Counter

10

Thread 1

10

Thread 2

5

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

30

30

Counter

10

Thread 1

10

Thread 2

10

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

31

30

Counter

10

Thread 1

10

Thread 2

10

Thread 3

Print

30

Main
value()

number of times
increment() is called

value of the
shared Counter

read the
Counter value

Counter

Why will what we just saw probably not work?

32

essentials

Remember: (Bad) Interleavings

• public class Counter {

• int count = 0;

• public void increment() {

• count++;

• }

• }

33

Assume we have two threads executing increment() n-times
concurrently.

custom

Synchronization

34

➔Every reference type contains a lock inherited from the Object
class

➔Primitive fields can be locked only via their enclosing objects

➔Locking arrays does not lock their elements

➔A lock is automatically acquired when entering and released
when exiting a synchronized block

➔Locks will be covered in more detail later in the course

essentials

Synchronization

35

➔Synchronized method locks the object owning the method

➔Synchronized keyword obtains a lock on the parameter object

➔A thread can obtain multiple locks (by nesting the synchronized blocks)

foo.xMethod() //lock on foo

synchronized (bar) { … } //lock on bar

essentials

Using `synchronized`

• public class Counter {

• int count = 0;

• public synchronized void increment() {

• count++;

• }

• }

36

Now only one thread at a time can enter the increment() method ☺

custom

What exactly is a lock/monitor?

37

Counter C

int count = 0;

attributes

methods

synchronized increment() {

 count++;
}

Counter C = new Counter()

Counter C

Thread 1

Thread 2

Thread 3

custom

Credits to Gamal Hassan PProg FS24

What exactly is a lock/monitor?

38

Counter C

int count = 0;

attributes

methods

synchronized increment() {

 count++;
}

Counter C = new Counter()

Counter C

Thread 1

Thread 2

Thread 3

increment()

custom

What exactly is a lock/monitor?

39

Counter C

int count = 0;

attributes

methods

synchronized increment() {

 count++;
}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

Counter C

count++

custom

What exactly is a lock/monitor?

40

Counter C

int count = 0;

attributes

methods

synchronized increment() {

 count++;
}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

Counter C

count++

increment()

custom

What exactly is a lock/monitor?

41

Counter C

int count = 0;

attributes

methods

synchronized increment() {

 count++;
}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

Counter C

count++

BLOCKED

custom

Remember? Thread State Model

42

details

What exactly is a lock/monitor?

43

Counter C

int count = 0;

attributes

methods

synchronized increment() {

 count++;
}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

Counter C

count++

BLOCKED

increment()

custom

What exactly is a lock/monitor?

44

Counter C

int count = 0;

attributes

methods

synchronized increment() {

 count++;
}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

Counter C

count++

BLOCKED

BLOCKED

custom

What exactly is a lock/monitor?

45

Counter C

int count = 0;

attributes

methods

synchronized increment() {

 count++;
}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

Counter C

DONE!

BLOCKED

BLOCKED

custom

What exactly is a lock/monitor?

46

Counter C

int count = 0;

attributes

methods

synchronized increment() {

 count++;
}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

DONE!

BLOCKED

BLOCKED

Counter C

custom

What exactly is a lock/monitor?

47

Counter C

int count = 0;

attributes

methods

synchronized increment() {

 count++;
}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

DONE!

BLOCKED

count++

Counter C

THIS LOCK IS SPECIFIC TO THE OBJECT!

custom

Counter D

int count = 0;

attributes

methods
synchronized increment() {

 count++;

}

Counter D = new Counter()

Counter D

Locks are specific to Object/Class

48

Counter C

int count = 0;

attributes

methods
synchronized increment() {

 count++;

}

Counter C = new Counter()

Counter C

Thread 1

Thread 2

Thread 3

custom

Counter CLASS

static attributes static methods
static int var = X; static void func()… Counter CLASS

class Counter {}

Counter D

int count = 0;

attributes

methods
void incrementC() {

 synchronize (C) {

 ...

 }

}

Counter D = new Counter()

Counter D

Locks are specific to Object/Class

49

Counter C

int count = 0;

attributes

methods
void incrementD() {

 synchronize (D) {

 ...

 }

}

Counter C = new Counter()

Counter C

Thread 1

Thread 2

Thread 3

custom

Counter D

int count = 0;

attributes

methods
void incrementC() {

 synchronize (C) {

 ...

 }

}

Counter D = new Counter()

Counter D

Locks are specific to Object/Class

50

Counter C

int count = 0;

attributes

methods
void incrementD() {

 synchronize (D) {

 ...

 }

}

Counter C = new Counter()

Counter C

Thread 1

Thread 2

Thread 3

custom

incrementC()

Counter D

int count = 0;

attributes

methods
void incrementC() {

 synchronize (C) {

 ...

 }

}

Counter D = new Counter()

Counter D

Locks are specific to Object/Class

51

Counter C

int count = 0;

attributes

methods
void incrementD() {

 synchronize (D) {

 ...

 }

}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

custom

count++

Counter C

Bad Practices With Synchronization

•Do NOT synchronize on:
• Literals
• Boxed Primitives

52

custom

Good or not good?

53

custom

Java String Pool

54

Java Heap

String Pool

String a = “PPROG24”

String b = “PPROG24”

String c = “pprog24”

String d = new String(“PPROG24”)

“PPROG24”

“pprog24”

“PPROG24”

String e = new String(“PPROG24”) “PPROG24”

custom

Good or not good?

55

custom

Good or not good?

56

custom

Good or not good?

57

Assume this computation
takes *a lot* of time

custom

Good or not good?

58

Try keeping your critical section
as small as possible!

custom

Using locks in Java

• Code example

Reentrant

Java locks are reentrant

A thread can hold a lock more than once
Also have to release multiple times

60

details

Wait and Notify

• What’s that?

61

details

Wait and Notify Recap

62

Object (lock) provides wait and notify methods

(any object is a lock)

wait: Thread must own object’s lock to call wait
 thread releases lock and is added to “waiting list” for that object
 thread waits until notify is called on the object

notify: Thread must own object’s lock to call notify

notify: Wake one (arbitrary) thread from object’s “waiting list”

notifyAll: Wake all threads

essentials

Why do we need this?

63

Producer-Consumer Problem

64

Generating Data

Processing Data

Buffer

custom

The Buffer

65

The Producer

66

The Consumer

67

Where is the problem?

The Consumer

68

Bad Interleaving!

How about now?

69

How about now?

70

Solution? Use wait/notify!

71

Wait/Notify für Producer Consumer Problem

• Code example

Wait and Notify Recap

73

What is the difference? Issues?

essentials

Wait and Notify Recap

74

Spurious wake-ups and notifyAll()
 → wait has to be in a while loop

essentials

Wait and Notify Recap

75

Concurrency vs Parallelism

76

Concurrency
Dealing with multiple things at the same time (ETH experience)
Reasoning about and managing shared resources. Often used interchangeably with parallelism.

Parallelism
Doing multiple things at the same time
Performing computations simultaneously; either actually, if sufficient computations units (CPUs,
cores, ...) are available, or virtually, via some form of alternation. Often used interchangeably with
concurrency. Parallelism can be specified explicitly by manually assigning tasks to threads or
implicitly by using a framework that takes care of distributing tasks to threads.

Source: https://cgl.ethz.ch/teaching/parallelprog23/pages/terminology.html

details

Sequential, Concurrent, Parallel

77

Process 1CPU core 1

Process 2CPU core 2

Not concurrent,
parallel

Concurrent,
parallel

Process 1CPU core 1

P3CPU core 2

Process 2 Process 1 Process 2

Process 4 Process 3 Process 4 P3 Process 4

Process 1 Process 2 Process 1

Process 1 Process 2 timeCPU core 1
Not concurrent,
not parallel

Concurrent,
not parallel Process 2CPU core 1

process context switch (large overhead)

finished

*multi-core and multi-processor systems

*

*

processes
have
separate
memory
space

Sequential, Concurrent, Parallel

78

Thread 1CPU core 1

Thread 2CPU core 2

Not concurrent,
parallel

Concurrent,
parallel

Thread 1CPU core 1

T3CPU core 2

Thread 2 Thread 1 Thread 2

Thread 4 Thread 3 Thread 4 T3 Thread 4

Thread 1 Thread 2 Thread 1

Thread 1 Thread 2 timeCPU core 1
Not concurrent,
not parallel

Concurrent,
not parallel Thread 2CPU core 1

finished

*multi-core and multi-processor systems

*

*

thread context switch (less overhead)

threads of
the same
process
share
memory

Concurrency vs Parallelism

79

Thread A

Thread B

Thread C

Thread A

Thread B

Thread C

Thread A

Concurrent, not parallel

Concurrent, parallel

Not concurrent, not parallel

Time

essentials

Concurrency vs Parallelism

80

McDonalds

McDonalds

Burger
King

Concurrency
No parallelism

Concurrency
Parallelism

essentials

Plan für heute

• Organisation
• Nachbesprechung Exercise 2
• Theory Recap

• Intro Exercise 3
• Exam Questions
• Kahoot

Counter

There are many threads accessing the counter at the same time.
How should we implement it such that there are no conflicts?
You will try different solutions including:

➔Task A: SequentialCounter
➔Task B: SynchronizedCounter
➔Task E (optional): AtomicCounter

82

Task A – Sequential counter

➔Implement a sequential version of the Counter in
SequentialCounter class that does not use any synchronization.

➔In taskASequential we provide a method that runs a single thread
which increments the counter. Inspect the code and understand
how it works.

➔Verify that the SequentialCounter works properly when used
with a single thread (the test testSequentialCounter should pass).

83

Task A – Parallel counter

➔Run the code in taskAParallel which creates several threads that
all try to increment the counter at the same time.

➔Will this work? What will happen?

84

essentials

Task B – Synchronized counter

➔Implement a different thread safe version of the Counter in
SynchronizedCounter. In this version use the standard primitive type int
but synchronize the access to the variable by inserting synchronized
blocks.

➔Run the code in taskB.

85

86

10

Counter

10

Thread 1

0

Thread 2

0

Thread 3

87

11

Counter

11

Thread 1

0

Thread 2

0

Thread 3

lock

increment()

unlock

essentials

88

11

Counter

11

Thread 1

0

Thread 2

0

Thread 3

lock

Lock:
Thread 1

essentials

89

11

Counter

11

Thread 1

0

Thread 2

0

Thread 3

lock failed

Blocked:
Thread 3

Lock:
Thread 1

essentials

90

11

Counter

11

Thread 1

0

Thread 2

0

Thread 3

lock failed

Blocked:
Thread 3
Thread 2

Lock:
Thread 1

essentials

91

11

Counter

11

Thread 1

0

Thread 2

0

Thread 3

lock

Blocked:
Thread 3
Thread 2

Lock:
Thread 1

essentials

92

12

Counter

12

Thread 1

0

Thread 2

0

Thread 3

lock

increment()

unlock

Blocked:
Thread 3
Thread 2

essentials

• See code LockExample

Task C

Whenever the Counter is incremented, keep track which thread
performed the increment (you can print out the thread-id to the
console). Can you see a pattern in how the threads are scheduled?
Discuss what might be the reason for this behaviour.

94

essentials

Task D

➔Implement a FairThreadCounter that ensures that different
threads increment the Counter in a round-robin fashion. In
round-robin scheduling the threads perform the increments in
circular order. That is, two threads with ids 1 and 2 would
increment the value in the following order 1, 2, 1, 2, 1, 2, etc.

➔You should implement the scheduling using the wait and notify
methods.

➔Can you think of implementation that does not use wait and
notify methods?

95

essentials

96

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

Thread 1 must increment first!

essentials

97

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lock

Thread 1 must increment first!

essentials

98

Counter

0

Thread 1

Thread 2

0

Thread 3

lock failed

Blocked:
Thread 3

Thread 1 must increment first!

0

lock

0

essentials

99

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lock

check

Blocked:
Thread 3

Thread 1 must increment first!

essentials

100

0

Counter

0

Thread 1

0

Thread 2

Thread 3

lock

check

wait

Waiting:
Thread 2

Thread 1 must increment first!

Blocked:
Thread 3

0

essentials

101

0

Counter

0

Thread 1

0

Thread 2

Thread 3

Waiting:
Thread 2

lockThread 1 must increment first!

Blocked:
Thread 3

0
Both Thead 1 and Thread 3 could obtain lock.

Let’s assume Thread 1 succeeds.

essentials

102

0

Counter

0

Thread 1

0

Thread 2

Thread 3

Waiting:
Thread 2

lock

check

Thread 1 must increment first!

Blocked:
Thread 3

0

essentials

103

1

Counter

1

Thread 1

0

Thread 2

Thread 3

Waiting:
Thread 2

lock

check

increment

Thread 1 must increment first!

Blocked:
Thread 3

0

essentials

104

1

Counter

1

Thread 1

0

Thread 2

Thread 3

lock

check

increment

notify

Thread 1 must increment first!

Blocked:
Thread 3

0

essentials

105

1

Counter

1

Thread 1

0

Thread 2

Thread 3

lock

check

increment

notifyAll

unlock

Thread 1 must increment first!

Blocked:
Thread 3

0

essentials

Task E – Atomic counter

Implement a thread safe version of the Counter in AtomicCounter. In
this version we will use an implementation of the int primitive value,
called AtomicInteger, that can be safely used from multiple threads.

106

Atomic Variables

107

➔Set of classes providing implementation of atomic variables in Java,
e.g., AtomicInteger, AtomicLong, ...

➔An operation is atomic if no other thread can see it partially executed.
Atomic as in “appears indivisible”.

➔ Implemented using special hardware primitives (instructions) for
concurrency. Will be covered in detail later in the course.

details

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/atomic/AtomicInteger.html

Task F – Atomic vs Synchronized counter

Experimentally compare the AtomicCounter and
SynchronizedCounter implementations by measuring which one is
faster. Observe the differences in the CPU load between the two
versions. Can you explain what is the cause of different performance
characteristics?

- Vary the load per thread

- Vary the number of threads

108

essentials

Task G

Implement a thread that measures execution progress. That is,
create a thread that observes the values of the Counter during the
execution and prints them to the console. Make sure that the
thread is properly terminated once all the work is done
[thread.interrupt()].

109

110

10

Counter

10

Thread 1

0

Thread 2

0

Thread 3

increment()

Printer

essentials

111

10

Counter

10

Thread 1

0

Thread 2

0

Thread 3

Print

10!

Printer value()

essentials

112

15

Counter

10

Thread 1

0

Thread 2

5

Thread 3

increment()

Printer

essentials

113

25

Counter

10

Thread 1

10

Thread 2

5

Thread 3

increment()

Printer

essentials

114

25

Counter

10

Thread 1

10

Thread 2

5

Thread 3

Print

25!

Printer value()

essentials

115

30

Counter

10

Thread 1

10

Thread 2

10

Thread 3

increment()

Printer

essentials

116

30

Counter

10

Thread 1

10

Thread 2

10

Thread 3

Print

30!

Printer value()

essentials

Plan für heute

• Organisation
• Nachbesprechung Exercise 2
• Theory Recap
• Intro Exercise 3

• Exam Questions
• Kahoot

Past Exam Task

118

essentials

Rep. Exam, FS 2023

Past Exam Task

119

essentials

Rep. Exam, FS 2023

Past Exam Task

120

essentials

Rep. Exam, FS 2023

Past Exam Task

121

essentials

Rep. Exam, FS 2023

Locks sind reentrant!

Spurious wake-ups! Deswegen ist wait() immer in einer while loop.

Feedback

• Falls ihr Feedback möchtet sagt mir bitte Bescheid!
• Schreibt mir eine Mail oder auf Discord

Danke

• Bis nächste Woche!

	Slide 1: Parallele Programmierung FS25
	Slide 2: Plan für heute
	Slide 3: Organisation
	Slide 4: Organisation
	Slide 5: Organisation
	Slide 6: Organisation
	Slide 7: Plan für heute
	Slide 8: Common Mistakes Exercise 2
	Slide 9: Common Mistakes Exercise 2
	Slide 10: Task C: Thread with no Task
	Slide 11: Task C: Thread with no Task
	Slide 12: Common Mistakes Exercise 2
	Slide 13: Common Mistakes Exercise 2
	Slide 14: Benchmark
	Slide 15: Benchmark
	Slide 16: Benchmark
	Slide 17: Why Use Thread Pools?
	Slide 18: Task D: PartitionData
	Slide 19: Task E: Sharing Data Across Threads
	Slide 20: Plan für heute
	Slide 21: Counter
	Slide 22: Counter
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Counter
	Slide 33: Remember: (Bad) Interleavings
	Slide 34: Synchronization
	Slide 35: Synchronization
	Slide 36: Using `synchronized`
	Slide 37: What exactly is a lock/monitor?
	Slide 38: What exactly is a lock/monitor?
	Slide 39: What exactly is a lock/monitor?
	Slide 40: What exactly is a lock/monitor?
	Slide 41: What exactly is a lock/monitor?
	Slide 42: Remember? Thread State Model
	Slide 43: What exactly is a lock/monitor?
	Slide 44: What exactly is a lock/monitor?
	Slide 45: What exactly is a lock/monitor?
	Slide 46: What exactly is a lock/monitor?
	Slide 47: What exactly is a lock/monitor?
	Slide 48: Locks are specific to Object/Class
	Slide 49: Locks are specific to Object/Class
	Slide 50: Locks are specific to Object/Class
	Slide 51: Locks are specific to Object/Class
	Slide 52: Bad Practices With Synchronization
	Slide 53: Good or not good?
	Slide 54: Java String Pool
	Slide 55: Good or not good?
	Slide 56: Good or not good?
	Slide 57: Good or not good?
	Slide 58: Good or not good?
	Slide 59: Using locks in Java
	Slide 60: Reentrant
	Slide 61: Wait and Notify
	Slide 62: Wait and Notify Recap
	Slide 63: Why do we need this?
	Slide 64: Producer-Consumer Problem
	Slide 65: The Buffer
	Slide 66: The Producer
	Slide 67: The Consumer
	Slide 68: The Consumer
	Slide 69: How about now?
	Slide 70: How about now?
	Slide 71: Solution? Use wait/notify!
	Slide 72: Wait/Notify für Producer Consumer Problem
	Slide 73: Wait and Notify Recap
	Slide 74: Wait and Notify Recap
	Slide 75: Wait and Notify Recap
	Slide 76: Concurrency vs Parallelism
	Slide 77: Sequential, Concurrent, Parallel
	Slide 78: Sequential, Concurrent, Parallel
	Slide 79: Concurrency vs Parallelism
	Slide 80: Concurrency vs Parallelism
	Slide 81: Plan für heute
	Slide 82: Counter
	Slide 83: Task A – Sequential counter
	Slide 84: Task A – Parallel counter
	Slide 85: Task B – Synchronized counter
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94: Task C
	Slide 95: Task D
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106: Task E – Atomic counter
	Slide 107: Atomic Variables
	Slide 108: Task F – Atomic vs Synchronized counter
	Slide 109: Task G
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117: Plan für heute
	Slide 118: Past Exam Task
	Slide 119: Past Exam Task
	Slide 120: Past Exam Task
	Slide 121: Past Exam Task
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131: Feedback
	Slide 132: Danke

