
Parallele Programmierung FS25
Exercise Session 4

Jonas Wetzel

Plan für heute

• Organisation
• Nachbesprechung Exercise 3
• Theory Recap
• Intro Exercise 4
• Exam Questions
• Kahoot

Organisation

• Mein Name ist Jonas Wetzel
• Meine Website (Materialien und Inhalt der Übungen):

n.ethz.ch/~jwetzel
• Meine Email: jwetzel@ethz.ch
• Discord: @jonas.too

mailto:jwetzel@ethz.ch

Organisation

• Mein Name ist Jonas Wetzel
• Meine Website (Materialien und Inhalt der Übungen):

n.ethz.ch/~jwetzel
• Meine Email: jwetzel@ethz.ch
• Discord: @jonas.too
• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9

mailto:jwetzel@ethz.ch
https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9
• Falls ihr Feedback möchtet kommt bitte zu mir

https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

• Wo sind wir jetzt?

Plan für heute

• Organisation

•Nachbesprechung Exercise 3
• Theory Recap
• Intro Exercise 4
• Exam Questions
• Kahoot

Counter

Let’s count number of times a given event occurs

8

public interface Counter {

 public void increment();

 public int value();

}

// background threads

for (int i = 0; i < numIterations; i++) {

 // perform some work

 counter.increment();

}

// progress thread

while (isWorking) {

 System.out.println(counter.value());

}

essentials

9

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

10 iterations each

number of times
increment() is called

value of the
shared Counter

essentials

10

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

number of times
increment() is called

value of the
shared Counter

essentials

11

0

Counter

1

Thread 1

0

Thread 2

0

Thread 3

number of times
increment() is called

value of the
shared Counter

essentials

12

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

essentials

13

10

Counter

10

Thread 1

0

Thread 2

0

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

essentials

14

15

Counter

10

Thread 1

0

Thread 2

5

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

essentials

15

25

Counter

10

Thread 1

10

Thread 2

5

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

essentials

16

30

Counter

10

Thread 1

10

Thread 2

10

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

essentials

17

30

Counter

10

Thread 1

10

Thread 2

10

Thread 3

Print

30

Main
value()

number of times
increment() is called

value of the
shared Counter

read the
Counter value

essentials

18

Task A: SequentialCounter

public class SequentialCounter implements Counter {

 public void increment() {

 ??

 }

 public int value() {

 ??

 }

}

essentials

19

Task A: SequentialCounter

public class SequentialCounter implements Counter {

 private int c = 0;

 public void increment() {

 c++;

 }

 public int value() {

 return c;

 }

}

essentials

20

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

Task A: SequentialCounter

public void

increment() {

 c++;

}

essentials

Task A: SequentialCounter

21

1

Counter

1

Thread 1

Thread 2

0

Thread 3

1
conflicting

access!

How is this
possible?

public void increment()

{

 c++;

}

essentials

Task A: SequentialCounter

22

1

Counter

1

Thread 1

Thread 2

0

Thread 3

1
conflicting

access!

How is this
possible?

public void

increment() {

 c++;

}

public void

increment() {

 c = c + 1;

}

essentials

Task A: SequentialCounter

23

1

Counter

1

Thread 1

Thread 2

0

Thread 3

1
conflicting

access!

How is this
possible?

public void

increment() {

 c++;

}

public void

increment() {

 c = c + 1;

}

1. load c → 0

assume c is initialized to
value 0

essentials

Task A: SequentialCounter

24

1

Counter

1

Thread 1

Thread 2

0

Thread 3

1
conflicting

access!

How is this
possible?

public void

increment() {

 c++;

}

public void

increment() {

 c = c + 1;

}

1. load c → 0

2. load c → 0

assume c is initialized to
value 0

essentials

Task A: SequentialCounter

25

1

Counter

1

Thread 1

Thread 2

0

Thread 3

1
conflicting

access!

How is this
possible?

public void

increment() {

 c++;

}

public void

increment() {

 c = c + 1;

}

2. load c → 0

1. load c → 0
3. c + 1 → 1
4. store c ← 1

assume c is initialized to
value 0

essentials

Task A: SequentialCounter

26

1

Counter

1

Thread 1

Thread 2

0

Thread 3

1
conflicting

access!

How is this
possible?

public void

increment() {

 c++;

}

public void

increment() {

 c = c + 1;

}

1. load c → 0
3. c + 1 → 1
4. store c ← 1

2. load c → 0
5. c + 1 → 1
6. store c ← 1

assume c is initialized to
value 0

essentials

Task A: SequentialCounter

27

1

Counter

1

Thread 1

Thread 2

0

Thread 3

1
conflicting

access!

How is this
possible?

public void

increment() {

 c++;

}

public void

increment() {

 c = c + 1;

}

1. load c → 0
3. c + 1 → 1
4. store c ← 1

2. load c → 0
5. c + 1 → 1
6. store c ← 1

note that
increment is
not atomic!

assume c is initialized to
value 0

essentials

28

Task B: SynchronizedCounter

public class SynchronizedCounter implements Counter {

 public void increment() {

 ??

 }

 public int value() {

 ??

 }

}

essentials

29

Task B: SynchronizedCounter

public class SynchronizedCounter implements Counter {

 private int c = 0;

 public synchronized void increment() {

 c++;

 }

 public synchronized int value() {

 return c;

 }

}

essentials

30

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

Task B: SynchronizedCounter

synchronized void

increment() {

 c++;

}

essentials

31

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

Task B: SynchronizedCounter

synchronized void

increment() {

 c++;

}
thread

1

synchronized void

increment() {

 c++;

}

Thread 2 tries to acquire lock on
counter. As the lock is already

acquired by thread 1 the thread 2
suspends its execution.

essentials

32

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

Task B: SynchronizedCounter

synchronized void

increment() {

 c++;

}
thread

1

synchronized void

increment() {

 c++;

}

Thread 2 tries to acquire lock on
counter. As the lock is already

acquired by thread 1 the thread 2
suspends its execution.

essentials

33

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

Task B: SynchronizedCounter

synchronized void

increment() {

 c++;

}

synchronized void

increment() {

 c++;

}

releases lock upon method exit

essentials

34

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

Task B: SynchronizedCounter

synchronized void

increment() {

 c++;

}

synchronized void

increment() {

 c++;

}

thread
2

essentials

Task D

● Implement a FairThreadCounter that ensures that different
threads increment the Counter in a round-robin fashion. That is,
two threads with ids 1 and 2 would increment the value in the
following order 1, 2, 1, 2, 1, 2, etc. You should implement the
scheduling using the wait and notify methods.

● (Optional) Extend your implementation to work with arbitrary number of
threads (instead of only 2) that increment the counter in round-robin
fashion.

35

essentials

Wait and Notify Recap

36

Object (lock) provides wait and notify methods

(any object is a lock)

wait: Thread must own object’s lock to call wait
 thread releases lock and is added to “waiting list” for that object
 thread waits until notify is called on the object

notify: Thread must own object’s lock to call notify

notify: Wake one (arbitrary) thread from object’s “waiting list”

notifyAll: Wake all threads

essentials

Wait and Notify Recap

37

Spurious wake-ups and notifyAll()
 → wait has to be in a while loop

essentials

Spurious Wake-ups

• A waiting thread is woken up without being explicitly notified
through notify or notifyAll.

• Reasons: various
• JVM Implementation: one thread is “nudged for housekeeping”
• Performance (OS dependent): to avoid unnecessary context

switches, to rebalance CPU load

• Java does not prevent them. It expects you to handle them.

38

essentials

39

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

Thread 1 must increment first!

essentials

40

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lockthread
2

essentials

41

0

Counter

0

Thread 1

Thread 2

0

Thread 3

lock failed

Suspended:
Thread 3

thread
2

0

essentials

42

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lock

check
thread

2

Blocked:
Thread 3

essentials

43

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lock

check

wait

Waiting:
Thread 2

Blocked:
Thread 3

essentials

44

0

Counter

0

Thread 1

Thread 2

0

Thread 3lock

thread
3

0

Waiting:
Thread 2

essentials

45

0

Counter

0

Thread 1

Thread 2

0

Thread 3lock
check

thread
3

0

Waiting:
Thread 2

essentials

46

0

Counter

0

Thread 1

Thread 2

0

Thread 3lock
check
wait

0

Waiting:
Thread 2
Thread 3

essentials

47

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lock

Waiting:
Thread 2
Thread 3

thread
1

essentials

48

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lock

check

Waiting:
Thread 2
Thread 3

thread
1

essentials

49

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

lock

check

increment

Waiting:
Thread 2
Thread 3

thread
1

essentials

50

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

lock

check

increment

notify or notifyAll?

thread
1Waiting:

Thread 2
Thread 3

essentials

51

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

lock

check

increment

notifyAll

unlock

Waiting:
Thread 2
Thread 3

essentials

52

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

lock

check

increment

notifyAll

unlock

Waiting:
Thread 2
Thread 3

Which thread will be woken
up and acquire the lock?

Which thread will be woken up if
we use notify instead of notifyAll?

essentials

How to find the difference between notify vs notifyAll?

53

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html

essentials

54

Task E: AtomicCounter
public class AtomicCounter implements Counter {

 public void increment() {

 ??

 }

 public int value() {

 ??

 }

}

essentials

55

Task E: AtomicCounter
public class AtomicCounter implements Counter {

 private AtomicInteger c = new AtomicInteger(0);

 public void increment() {

 c.incrementAndGet();

 }

 public int value() {

 return c.get();

 }

}

essentials

56

Task E: AtomicCounter
public class AtomicCounter implements Counter {

 private AtomicInteger c = new AtomicInteger(0);

 public void increment() {

 c.incrementAndGet();

 }

 public int value() {

 return c.get();

 }

}

What is the difference?

int

c++;

AtomicInteger

c.incrementAndGet();

essentials

57

Task E: AtomicCounter
public class AtomicCounter implements Counter {

 private AtomicInteger c = new AtomicInteger(0);

 public void increment() {

 c.incrementAndGet();

 }

 public int value() {

 return c.get();

 }

}

What is the difference?

int

c++;

AtomicInteger

c.getAndIncrement();

1. load c →
0
2. c + 1 → 1
3. store c ←
1

not
atomic

atomic

An operation is atomic if no other
thread can see it partly executed.
Atomic as in “appears indivisible”.

However, does not mean it’s
implemented as single instruction.

essentials

Post- vs Pre-Increment

58

details

Post-Increment
int i = 0;

AtomicInteger c = new

AtomicInteger(0);

System.out.println(i++);

System.out.println(c.getAndIncrement

());

int i = 0;

AtomicInteger c = new

AtomicInteger(0);

System.out.println(++i);

System.out.println(c.incrementAndGet

());

Pre-Increment

• See code exercise 3

Plan für heute

• Organisation
• Nachbesprechung Exercise 3

•Theory Recap
• Intro Exercise 4
• Exam Questions
• Kahoot

Pipelining: Main Concepts Recap

Latency

Throughput

Balanced/Unbalanced Pipeline

61

essentials

Pipelining: Main Concepts Recap

Latency
time needed to perform a given computation

(e.g., process a customer)

Throughput

Balanced/Unbalanced Pipeline

62

essentials

Pipelining: Main Concepts Recap

Latency
time needed to perform a given computation

(e.g., process a customer)

Throughput
amount of work that can be done by a system in a given period of time

(e.g., how many customers can be processed in one minute)

Balanced/Unbalanced Pipeline

63

essentials

Pipelining: Main Concepts Recap

Latency
time needed to perform a given computation

(e.g., process a customer)

Throughput
amount of work that can be done by a system in a given period of time

(e.g., how many customers can be processed in one minute)

Balanced/Unbalanced Pipeline
a pipeline is balanced if all stages require the same time

64

essentials

Library

65

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120
minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

At UZH the law students have been tasked with writing a legal essay about the
philosophy of Swiss law. In order to write the essay, each student needs to read four
different books on the subject, denoted as A, B, C and D (in this order).

essentials

Library

66

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120
minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 1: Let’s assume all law students are a bit too competitive and don’t return
any books before they’re done reading all of them. How long will it take for 4 students
until all of them have started writing their essays?

Over at UZH the law students have been tasked with writing a legal essay about the
philosophy of Swiss law. In order to write the essay, each student needs to read four
different books on the subject, denoted as A, B, C and D (in this order).

essentials

Library

67

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120
minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 1: Let’s assume all law students are a bit too competitive and don’t return
any books before they’re done reading all of them. How long will it take for 4 students
until all of them have started writing their essays?

student 1

student 2

student 3

student 4

Total: 4 * 280 min

Latency: 280 min

Throughput: 1 per 280 min

essentials

In
st

an
ce

s

Stages

Library

68

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120
minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have
to return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

Draw diagrams, as seen before

essentials

Library

69

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120
minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have
to return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

student 1

student 2

student 3

student 4

Latency?

essentials

Library

70

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120
minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have
to return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

essentials

Library

71

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120
minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have
to return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

For this pipeline, latency makes sense only if asked
for a particular student, not for the whole pipeline.

essentials

Library

72

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120
minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have
to return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

Throughput?Balanced?

essentials

Library

73

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120
minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have
to return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

Throughput?

1 student

per 160 minutes

Balanced?

With lead in
(fixed number of

students)

essentials

Library

74

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120
minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have
to return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

Throughput?

1 student

per 120 minutes

Balanced?

Without lead in
(indefinite number of

students)

essentials

Library

75

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120
minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

Throughput?

1 student

per 160 minutes

Balanced?

No

The pipeline is not balanced
since the stages have different length

essentials

76

custom

Credits to Gamal Hassan PProg FS24

77

custom

78

custom

79

custom

80

custom

Speedup
Sub-linear: usually
Super-linear:
not possible in
theory

81

essentials

82

custom

83

custom

84

custom

85

custom

86

custom

87

custom

88

custom

89

custom

90

custom

91

custom

92

custom

Summary

Plan für heute

• Organisation
• Nachbesprechung Exercise 3
• Theory Recap

• Intro Exercise 4
• Exam Questions
• Kahoot

Exercise 4

95

essentials

Bob, Mary, John and Alice

Task 1 - Pipelining

96

50 min 90 min 15 min

a) Laundry time using
sequential order

b) Design a strategy with
better laundry time

c) How would the laundry
time improve if they
bought a new dryer?

essentials

Task 2 - Pipelining II

Assume a processor that can issue either
● one multiplication instruction with latency 6 cycles
● one addition instruction with latency 3 cycles

for each cycle. How many cycles are required to execute following loops?

97

for (int i = 0; i < data.length; i += 4) {

 j = i + 1;

 k = i + 2;

 l = i + 3;

 data[i] = data[i] * data[i];

 data[j] = data[j] * data[j];

 data[k] = data[k] * data[k];

 data[l] = data[l] * data[l];

}

for (int i = 0; i < data.length; i += 2) {

 j = i + 1;

 data[i] = data[i] * data[i];

 data[j] = data[j] * data[j];

}

for (int i = 0; i < data.length; i++) {

 data[i] = data[i] * data[i];

}

essentials

Task 3 - Identify Potential Parallelization

Can we parallelize following two loops using parallel for construct?

98

for (int i=1; i<size; i++) { // for loop: i from 1 to (size-1)

 if (data[i-1] > 0) // If the previous value is positive

 data[i] = (-1)*data[i]; // change the sign of this value

} // end for loop

for (int i=0; i<size; i++) { // for loop: i from 0 to (size-1)

 data[i] = Math.sin(data[i]); // calculate sin() of the value

} // end for loop

essentials

Plan für heute

• Organisation
• Nachbesprechung Exercise 3
• Theory Recap
• Intro Exercise 4

•Exam Questions
• Kahoot

100

essentials

Past Exam Task

Exam, FS 2024

101

essentials

Past Exam Task

Exam, FS 2024

102

essentials

Past Exam Task

Exam, FS 2024

Past Exam Task

103

essentials

Rep. Exam, FS 2023

Past Exam Task

104

essentials

Rep. Exam, FS 2023

Past Exam Task

105

essentials

Rep. Exam, FS 2023

Past Exam Task

106

essentials

Rep. Exam, FS 2023

Locks sind reentrant!

Spurious wake-ups! Deswegen ist wait() immer in einer while loop.

Nein, nicht jede stage hat die selbe Zeit.

• Let T:= “duration between the completion of two subsequent
instances". We have that T = 100s (duration of longest stage).
• -> throughput

• For the total duration we have: duration for 15 instances := D =
“Latency for first instance + (15-1) T = 200s + 14 times 100s =
1600s

• 1.) 1 Student /15 Minuten = 4 Studenten/h

• 2.) 1 Student/20Minuten = 3 Studenten/h
• 3.) 1 Student /15 Minuten = 4 Studenten/h

Feedback

• Falls ihr Feedback möchtet sagt mir bitte Bescheid!
• Schreibt mir eine Mail oder auf Discord

Danke

• Bis nächste Woche!

	Default Section
	Slide 1: Parallele Programmierung FS25
	Slide 2: Plan für heute
	Slide 3: Organisation
	Slide 4: Organisation
	Slide 5: Organisation
	Slide 6: Organisation
	Slide 7: Plan für heute

	Post-discussion Ex3
	Slide 8: Counter
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Task A: SequentialCounter
	Slide 19: Task A: SequentialCounter
	Slide 20: Task A: SequentialCounter
	Slide 21: Task A: SequentialCounter
	Slide 22: Task A: SequentialCounter
	Slide 23: Task A: SequentialCounter
	Slide 24: Task A: SequentialCounter
	Slide 25: Task A: SequentialCounter
	Slide 26: Task A: SequentialCounter
	Slide 27: Task A: SequentialCounter
	Slide 28: Task B: SynchronizedCounter
	Slide 29: Task B: SynchronizedCounter
	Slide 30: Task B: SynchronizedCounter
	Slide 31: Task B: SynchronizedCounter
	Slide 32: Task B: SynchronizedCounter
	Slide 33: Task B: SynchronizedCounter
	Slide 34: Task B: SynchronizedCounter
	Slide 35: Task D
	Slide 36: Wait and Notify Recap
	Slide 37: Wait and Notify Recap
	Slide 38: Spurious Wake-ups
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: How to find the difference between notify vs notifyAll?
	Slide 54: Task E: AtomicCounter
	Slide 55: Task E: AtomicCounter
	Slide 56: Task E: AtomicCounter
	Slide 57: Task E: AtomicCounter
	Slide 58: Post- vs Pre-Increment
	Slide 59

	Ex4: Pipelining Recap
	Slide 60: Plan für heute
	Slide 61: Pipelining: Main Concepts Recap
	Slide 62: Pipelining: Main Concepts Recap
	Slide 63: Pipelining: Main Concepts Recap
	Slide 64: Pipelining: Main Concepts Recap
	Slide 65: Library
	Slide 66: Library
	Slide 67: Library
	Slide 68: Library
	Slide 69: Library
	Slide 70: Library
	Slide 71: Library
	Slide 72: Library
	Slide 73: Library
	Slide 74: Library
	Slide 75: Library
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81: Speedup
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93: Summary

	intro ex4
	Slide 94: Plan für heute
	Slide 95: Exercise 4
	Slide 96: Task 1 - Pipelining
	Slide 97: Task 2 - Pipelining II
	Slide 98: Task 3 - Identify Potential Parallelization

	exam questions
	Slide 99: Plan für heute
	Slide 100: Past Exam Task
	Slide 101: Past Exam Task
	Slide 102: Past Exam Task
	Slide 103: Past Exam Task
	Slide 104: Past Exam Task
	Slide 105: Past Exam Task
	Slide 106: Past Exam Task
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126: Feedback
	Slide 127: Danke

