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• Discord: @jonas.too

mailto:jwetzel@ethz.ch


Organisation

• Mein Name ist Jonas Wetzel
• Meine Website (Materialien und Inhalt der Übungen): 

n.ethz.ch/~jwetzel
• Meine Email: jwetzel@ethz.ch
• Discord: @jonas.too
• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9

mailto:jwetzel@ethz.ch
https://forms.gle/qiDnqkfSP2NUQGvc9


Organisation

• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9
• Falls ihr Feedback möchtet kommt bitte zu mir

https://forms.gle/qiDnqkfSP2NUQGvc9


Organisation

• Wo sind wir jetzt?
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Counter

Let’s count number of times a given event occurs

8

public interface Counter {

  public void increment();

  public int value();

}

// background threads

for (int i = 0; i < numIterations; i++) {

  // perform some work

  counter.increment();

}

// progress thread

while (isWorking) {

  System.out.println(counter.value());

}

essentials
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30
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Main
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value of the 
shared Counter

read the 
Counter value

essentials



18

Task A: SequentialCounter

public class SequentialCounter implements Counter {

   

    public void increment() {

       ??

    }

    public int value() {

       ??

    }

}

essentials
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Task A: SequentialCounter

public class SequentialCounter implements Counter {

    private int c = 0;

    public void increment() {

        c++;

    }

    public int value() {

        return c;

    }

}

essentials
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0
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Thread 1
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Task A: SequentialCounter

public void 

increment() {

    c++;

}
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Task A: SequentialCounter
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1

Counter

1

Thread 1
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0

Thread 3

1
conflicting 

access!

How is this 
possible?

public void increment() 

{

    c++;

}

essentials
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assume c is initialized to 
value 0

essentials



Task A: SequentialCounter
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public void 

increment() {
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Task A: SequentialCounter

27

1

Counter

1

Thread 1
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0
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1
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access!

How is this 
possible?

public void 

increment() {

    c++;

}

public void 

increment() {

    c = c + 1;

}

1. load c → 0 
3. c + 1 → 1 
4. store c ← 1 

2. load c → 0 
5. c + 1 → 1 
6. store c ← 1 

note that 
increment is 
not atomic!

assume c is initialized to 
value 0
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Task B: SynchronizedCounter

public class SynchronizedCounter implements Counter {

   

    public void increment() {

       ??

    }

    public int value() {

       ??

    }

}

essentials
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Task B: SynchronizedCounter

public class SynchronizedCounter implements Counter {

    private int c = 0;

    public synchronized void increment() {

        c++;

    }

    public synchronized int value() {

        return c;

    }

}

essentials
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Task D

● Implement a FairThreadCounter that ensures that different 
threads increment the Counter in a round-robin fashion. That is, 
two threads with ids 1 and 2 would increment the value in the 
following order 1, 2, 1, 2, 1, 2, etc. You should implement the 
scheduling using the wait and notify methods. 

● (Optional) Extend your implementation to work with arbitrary number of 
threads (instead of only 2) that increment the counter in round-robin 
fashion.

35
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Wait and Notify Recap
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Object (lock) provides wait and notify methods

(any object is a lock)

wait: Thread must own object’s lock to call wait
  thread releases lock and is added to “waiting list” for that object
  thread waits until notify is called on the object

notify: Thread must own object’s lock to call notify

notify: Wake one (arbitrary) thread from object’s “waiting list”

notifyAll: Wake all threads

essentials



Wait and Notify Recap
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Spurious wake-ups and notifyAll()
  → wait has to be in a while loop

essentials



Spurious Wake-ups

• A waiting thread is woken up without being explicitly notified 
through notify or notifyAll.

• Reasons: various
• JVM Implementation: one thread is “nudged for housekeeping”
• Performance (OS dependent): to avoid unnecessary context 

switches, to rebalance CPU load

• Java does not prevent them. It expects you to handle them.

38
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1
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How to find the difference between notify vs notifyAll?
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https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html

essentials
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Task E: AtomicCounter
public class AtomicCounter implements Counter {

   

    public void increment() {

       ??

    }

    public int value() {

       ??

    }

}

essentials
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Task E: AtomicCounter
public class AtomicCounter implements Counter {    

    private AtomicInteger c = new AtomicInteger(0);

    public void increment() {

        c.incrementAndGet();

    }

    public int value() {

        return c.get();

    }

}

essentials
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Task E: AtomicCounter
public class AtomicCounter implements Counter {    

    private AtomicInteger c = new AtomicInteger(0);

    public void increment() {

        c.incrementAndGet();

    }

    public int value() {

        return c.get();

    }

}

What is the difference?

int

c++;

AtomicInteger

c.incrementAndGet();

essentials
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Task E: AtomicCounter
public class AtomicCounter implements Counter {    

    private AtomicInteger c = new AtomicInteger(0);

    public void increment() {

        c.incrementAndGet();

    }

    public int value() {

        return c.get();

    }

}

What is the difference?

int

c++;

AtomicInteger

c.getAndIncrement();

1. load c → 
0 
2. c + 1 → 1 
3. store c ← 
1 

not 
atomic

atomic

An operation is atomic if no other 
thread can see it partly executed. 
Atomic as in “appears indivisible”.

However, does not mean it’s 
implemented as single instruction.

essentials



Post- vs Pre-Increment

58

details

Post-Increment
int i = 0;

AtomicInteger c = new 

AtomicInteger(0);

System.out.println(i++);

System.out.println(c.getAndIncrement

());

  

int i = 0;

AtomicInteger c = new 

AtomicInteger(0);

System.out.println(++i);

System.out.println(c.incrementAndGet

());

  

Pre-Increment



• See code exercise 3



Plan für heute

• Organisation
• Nachbesprechung Exercise 3

•Theory Recap
• Intro Exercise 4
• Exam Questions
• Kahoot



Pipelining: Main Concepts Recap

Latency

Throughput

Balanced/Unbalanced Pipeline

61
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Pipelining: Main Concepts Recap

Latency
time needed to perform a given computation 

(e.g., process a customer)

Throughput

Balanced/Unbalanced Pipeline
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Pipelining: Main Concepts Recap

Latency
time needed to perform a given computation 

(e.g., process a customer)

Throughput
amount of work that can be done by a system in a given period of time

(e.g., how many customers can be processed in one minute)

Balanced/Unbalanced Pipeline
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Pipelining: Main Concepts Recap

Latency
time needed to perform a given computation 

(e.g., process a customer)

Throughput
amount of work that can be done by a system in a given period of time

(e.g., how many customers can be processed in one minute)

Balanced/Unbalanced Pipeline
a pipeline is balanced if all stages require the same time

64

essentials



Library
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Every student takes the exact same amount of time to read a book, concretely: 

1) Reading book A takes 80 minutes    3) Reading book C takes 120 
minutes 

2) Reading book B takes 40 minutes    4) Reading book D takes 40 minutes

At UZH the law students have been tasked with writing a legal essay about the 
philosophy of Swiss law. In order to write the essay, each student needs to read four 
different books on the subject, denoted as A, B, C and D (in this order).

essentials



Library
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Every student takes the exact same amount of time to read a book, concretely: 

1) Reading book A takes 80 minutes    3) Reading book C takes 120 
minutes 

2) Reading book B takes 40 minutes    4) Reading book D takes 40 minutes

Question 1: Let’s assume all law students are a bit too competitive and don’t return 
any books before they’re done reading all of them. How long will it take for 4 students 
until all of them have started writing their essays?

Over at UZH the law students have been tasked with writing a legal essay about the 
philosophy of Swiss law. In order to write the essay, each student needs to read four 
different books on the subject, denoted as A, B, C and D (in this order).
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Every student takes the exact same amount of time to read a book, concretely: 

1) Reading book A takes 80 minutes    3) Reading book C takes 120 
minutes 

2) Reading book B takes 40 minutes    4) Reading book D takes 40 minutes

Question 1: Let’s assume all law students are a bit too competitive and don’t return 
any books before they’re done reading all of them. How long will it take for 4 students 
until all of them have started writing their essays?

student 1

student 2

student 3

student 4

Total: 4 * 280 min

Latency: 280 min

Throughput: 1 per 280 min

essentials
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Library
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Every student takes the exact same amount of time to read a book, concretely: 

1) Reading book A takes 80 minutes    3) Reading book C takes 120 
minutes 

2) Reading book B takes 40 minutes    4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have 
to return a book before they can start on the next one. How long will it now take for 4 
students until all of them have started writing their essays? 

Draw diagrams, as seen before
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Every student takes the exact same amount of time to read a book, concretely: 

1) Reading book A takes 80 minutes    3) Reading book C takes 120 
minutes 

2) Reading book B takes 40 minutes    4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have 
to return a book before they can start on the next one. How long will it now take for 4 
students until all of them have started writing their essays? 

student 1

student 2

student 3

student 4

Latency?

essentials



Library
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Every student takes the exact same amount of time to read a book, concretely: 

1) Reading book A takes 80 minutes    3) Reading book C takes 120 
minutes 

2) Reading book B takes 40 minutes    4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have 
to return a book before they can start on the next one. How long will it now take for 4 
students until all of them have started writing their essays? 

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min
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Library
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Every student takes the exact same amount of time to read a book, concretely: 

1) Reading book A takes 80 minutes    3) Reading book C takes 120 
minutes 

2) Reading book B takes 40 minutes    4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have 
to return a book before they can start on the next one. How long will it now take for 4 
students until all of them have started writing their essays? 

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

For this pipeline, latency makes sense only if asked 
for a particular student, not for the whole pipeline.

essentials
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Every student takes the exact same amount of time to read a book, concretely: 

1) Reading book A takes 80 minutes    3) Reading book C takes 120 
minutes 

2) Reading book B takes 40 minutes    4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have 
to return a book before they can start on the next one. How long will it now take for 4 
students until all of them have started writing their essays? 

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

Throughput?Balanced?

essentials



Library

73

Every student takes the exact same amount of time to read a book, concretely: 

1) Reading book A takes 80 minutes    3) Reading book C takes 120 
minutes 

2) Reading book B takes 40 minutes    4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have 
to return a book before they can start on the next one. How long will it now take for 4 
students until all of them have started writing their essays? 

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

Throughput?

1 student 

per 160 minutes

Balanced?

With lead in
(fixed number of 

students)

essentials



Library
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Every student takes the exact same amount of time to read a book, concretely: 

1) Reading book A takes 80 minutes    3) Reading book C takes 120 
minutes 

2) Reading book B takes 40 minutes    4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have 
to return a book before they can start on the next one. How long will it now take for 4 
students until all of them have started writing their essays? 

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

Throughput?

1 student 

per 120 minutes

Balanced?

Without lead in
(indefinite number of 

students)

essentials
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Every student takes the exact same amount of time to read a book, concretely: 

1) Reading book A takes 80 minutes    3) Reading book C takes 120 
minutes 

2) Reading book B takes 40 minutes    4) Reading book D takes 40 minutes

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

Throughput?

1 student 

per 160 minutes

Balanced?

No

The pipeline is not balanced 
since the stages have different length

essentials
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custom

Credits to Gamal Hassan PProg FS24 
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custom



Speedup
Sub-linear: usually
Super-linear: 
not possible in 
theory

81
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Exercise 4
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Bob, Mary, John and Alice

Task 1 - Pipelining

96

50 min 90 min 15 min

a) Laundry time using 
sequential order

b) Design a strategy with 
better laundry time

c) How would the laundry 
time improve if they 
bought a new dryer?

essentials



Task 2 - Pipelining II

Assume a processor that can issue either
● one multiplication instruction with latency 6 cycles
● one addition instruction with latency 3 cycles

for each cycle. How many cycles are required to execute following loops?

97

for (int i = 0; i < data.length; i += 4) {

    j = i + 1;

    k = i + 2;

    l = i + 3;        

    data[i] = data[i] * data[i];

    data[j] = data[j] * data[j];

    data[k] = data[k] * data[k];

    data[l] = data[l] * data[l];        

}

for (int i = 0; i < data.length; i += 2) {

    j = i + 1;

    data[i] = data[i] * data[i];

    data[j] = data[j] * data[j];

}

for (int i = 0; i < data.length; i++) {

    data[i] = data[i] * data[i];

}

essentials



Task 3 - Identify Potential Parallelization

Can we parallelize following two loops using parallel for construct?

98

for (int i=1; i<size; i++) {    // for loop: i from 1 to (size-1)

    if (data[i-1] > 0)          // If the previous value is positive

        data[i] = (-1)*data[i]; // change the sign of this value

}                               // end for loop

for (int i=0; i<size; i++) {      // for loop: i from 0 to (size-1)

    data[i] = Math.sin(data[i]);  // calculate sin() of the value

}                                 // end for loop

essentials
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Past Exam Task
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Rep. Exam, FS 2023





Locks sind reentrant!













Spurious wake-ups! Deswegen ist wait() immer in einer while loop.





Nein, nicht jede stage hat die selbe Zeit.





• Let T:= “duration between the completion of two subsequent 
instances".  We have that T = 100s (duration of longest stage).
• -> throughput 

• For the total duration we have: duration for 15 instances := D = 
“Latency for first instance + (15-1) T = 200s + 14 times 100s = 
1600s





• 1.) 1 Student /15 Minuten = 4 Studenten/h

• 2.) 1 Student/20Minuten = 3 Studenten/h
• 3.) 1 Student /15 Minuten = 4 Studenten/h













Feedback

• Falls ihr Feedback möchtet sagt mir bitte Bescheid!
• Schreibt mir eine Mail oder auf Discord



Danke

• Bis nächste Woche!
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