
Parallele Programmierung FS25
Exercise Session 6

Jonas Wetzel

Plan für heute

• Organisation
• Nachbesprechung Exercise 5
• Theory Recap
• Intro Exercise 6
• Exam Questions
• Kahoot

Organisation

• Mein Name ist Jonas Wetzel
• Meine Website (Materialien und Inhalt der Übungen):

n.ethz.ch/~jwetzel
• Meine Email: jwetzel@ethz.ch
• Discord: @jonas.too

mailto:jwetzel@ethz.ch

Organisation

• Mein Name ist Jonas Wetzel
• Meine Website (Materialien und Inhalt der Übungen):

n.ethz.ch/~jwetzel
• Meine Email: jwetzel@ethz.ch
• Discord: @jonas.too
• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9

mailto:jwetzel@ethz.ch
https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9
• Falls ihr Feedback möchtet kommt bitte zu mir

https://forms.gle/qiDnqkfSP2NUQGvc9

Exam Preparation Session

• Monday, March 31, 11:15 – 12:00
• Tuesday, April 1, 10:15 – 12:00

• HG F 5 / HG F 7

• Hosted by Vera Schubert and Jackson Stanhope

Organisation

• Wo sind wir jetzt?

Plan für heute

• Organisation

• Nachbesprechung Exercise 5
• Theory Recap
• Intro Exercise 6
• Exam Questions
• Kahoot

Recall: Amdahl's vs Gustafson's Law

The key goal is to:

➔ Understand the main difference and implications
(i.e., when to use which formula)

➔ Know how to derive the formulas based on your understanding,
not because you memorized them for the exam

Recall: Amdahl's vs Gustafson's Law

The key goal is to:

➔ Understand the main difference and implications
(i.e., when to use which formula)

➔ Know how to derive the formulas based on your understanding,
not because you memorized them for the exam

Recall: Amdahl's vs Gustafson's Law

p=1 p=4
Amdahl's Law Gustafson's Law

Less time for the parallel part More work in the same time
Time

p=1
p1 p2 p3 p4p1 p2 p3 p4

p=4
p1p1

essentials

Recall: Amdahl's vs Gustafson's Law

The key goal is to:

➔ Understand the main difference and implications
(i.e., when to use which formula)

➔ Know how to derive the formulas based on your understanding,
not because you memorized them for the exam

Amdahl's Law Derivation

T1 - sequential time

f - sequential fraction

Tp - parallel time on p

 processors

Tp = T1f + T1(1-f)/p

Sp - speedup

Sp <= T1/Tp
Sp <= 1/(f + (1-f)/p)

p=1
Amdahl's Law

p=4

Less time for the parallel part

T1

T1f

T1(1-f)/p

T1f

essentials

Gustafson's Law Derivation

Gustafson's Law T - sequential time of original

work

T1 - sequential time with work*p

f - sequential fraction

T1 = ?

Tp - parallel time on p processors

Tp = ?

Sp - speedup

Sp = T1/Tp
Sp = ?

More work in the same time

p=4

essentials

Gustafson's Law Derivation

Gustafson's Law T - sequential time of original

work

T1 - sequential time with work*p

f - sequential fraction

T1 = Tf + T(1-f)p

Tp - parallel time on p processors

Tp = ?

Sp - speedup

Sp = T1/Tp
Sp = ?

More work in the same time

T

p=4

essentials

Gustafson's Law Derivation

Gustafson's Law T - sequential time of original

work

T1 - sequential time with work*p

f - sequential fraction

T1 = Tf + T(1-f)p

Tp - parallel time on p processors

Tp = Tf + T(1-f)p/p = T

Sp - speedup

Sp = T1/Tp
Sp = ?

More work in the same Time

p=4

essentials

Gustafson's Law Derivation

Gustafson's Law T - sequential time of original

work

T1 - sequential time with work*p

f - sequential fraction

T1 = Tf + T(1-f)p

Tp - parallel time on p processors

Tp = Tf + T(1-f)p/p = T

Sp - speedup

Sp = T1/Tp
Sp = f + (1-f)p

More work in the same time

p=4

essentials

fib(4) task graph public class Fibonacci {
 public static long fib(int n) {
 if (n < 2) {
 return n;
 }

spawn task for fib(n-1);
spawn task for fib(n-2);
wait for tasks to complete

 return addition of task results

 }

}

fib(4) task graph FJ public class Fibonacci {
 public static long fib(int n) {
 if (n < 2) {
 return n;
 }
 spawn task for fib(n-1);
 spawn task for fib(n-2);
 wait for tasks to complete
 return addition of task results

 }

}

What is a task?

new forked task, continuation of
current task, join

What is an edge?

spawn, same procedure, wait

essentials

4

2 1

1 0

3 2

1 0

+

+

+

+

The DAG starts in a single thread
(main or worker thread)Tasks are

executed in
parallel

Each forked task
eventually joins

Final result
returned in
single thread

fib(4) simplified task graph public class Fibonacci {
 public static long fib(int n) {
 if (n < 2) {
 return n;
 }
 spawn task for fib(n-1);
 spawn task for fib(n-2);
 wait for tasks to complete
 return addition of task results

 }

}

What is a task?

Call to Fibonacci

What is an edge?

spawn
 (no dependency within same procedure)

4

2 1

1 0

3 2

1 0

Simpler at the expense of not modelling
joins and inter-process dependencies

essentials

fib(4) simplified task graph public class Fibonacci {
 public static long fib(int n) {
 if (n < 2) {
 return n;
 }
 spawn task for fib(n-1);
 spawn task for fib(n-2);
 wait for tasks to complete
 return addition of task results

 }

}

What is a task?

Call to Fibonacci

What is an edge?

spawn
 (no dependency within same procedure)

4

2 1

1 0

3 2

1 0

Simpler at the expense of not modelling
joins and inter-process dependencies

Caching results can
speed-up computation

essentials

Task Graphs

Critical path: path from start to end
that takes the longest (for some metric)

Example: #nodes

essentials

Critical path: path from start to end
that takes the longest (for some metric)

Example: #nodes

Task Graphs

essentials

fib(4) task graph FJ public class Fibonacci {
 public static long fib(int n) {
 if (n < 2) {
 return n;
 }
 spawn task for fib(n-1);
 spawn task for fib(n-2);
 wait for tasks to complete
 return addition of task results

 }

}

What is a task?

new forked task, continuation of
current task, join

What is an edge?

spawn, same procedure, wait

4

2 1

1 0

3 2

1 0

essentials

+

+

+

+

critical path length is 7 tasks

fib(4) simplified task graph public class Fibonacci {
 public static long fib(int n) {
 if (n < 2) {
 return n;
 }
 spawn task for fib(n-1);
 spawn task for fib(n-2);
 wait for tasks to complete
 return addition of task results

 }

}

What is a task?

Call to Fibonacci

What is an edge?

spawn
 (no dependency within same procedure)

4

2 1

1 0

3 2

1 0

essentials

critical path length is 4 tasks

Task Graph Simplified

Adding eight numbers:

Task: Call to add()

Cut-off: 1

Task Graph Simplified

Adding eight numbers: What is the corresponding task graph?

Task: Call to add()

Cut-off: 1

Task Graph Simplified

Adding eight numbers:
What is the corresponding task graph?

[1, …,7]

[1,…, 6]

[1, …,5]

[1, …,4]

[1,…, 3]

[1, ..,8]

[1, 2]

[1]

Task: Call to add()

Cut-off: 1

Task Graph Simplified

Adding eight numbers:
What is the corresponding task graph?

Critical path

8

essentials

[1, …,7]

[1,…, 6]

[1, …,5]

[1, …,4]

[1,…, 3]

[1, ..,8]

[1, 2]

[1]

Task: Call to add()

Cut-off: 1

Task Graph FJ

Adding eight numbers:
What is the corresponding task graph?

Task: fork, join, continuation

Cut-off: 1

essentials

[1,…,7]

[1,…, 6]

[1,…,5]

[1,…,4]

[1,…, 3]

[1,...,8]

[8]

[7]

[6]

[5]

[4]

[1, 2]
[3]

+
+

+
+ + +

+

[1] [2]

Task Graph FJ

Adding eight numbers:
What is the corresponding task graph?

essentials

Critical path

15

[1,…,7]

[1,…, 6]

[1,…,5]

[1,…,4]

[1,…, 3]

[1,...,8]

[8]

[7]

[6]

[5]

[4]

[1, 2]
[3]

+
+

+
+ + +

+

[1] [2]

Task: fork, join, continuation

Cut-off: 1

Task Graph Simplified

Adding eight numbers:

Task: Call to add()

Cut-off: 1

Task Graph Simplified

Adding eight numbers: What is the corresponding task graph?

Task: Call to add()

Cut-off: 1

Task Graph Simplified

Adding eight numbers: What is the corresponding task graph?

[1,...,8]

[1,...,4] [5,...,8]

[1,2]
[3,4]

[5,6]

[7,8]

[1] [2] [3] [8]…

Task: Call to add()

Cut-off: 1

Task Graph Simplified

Adding eight numbers: What is the corresponding task graph?

Critical path

4

essentials

[1,...,8]

[1,...,4] [5,...,8]

[1,2]
[3,4]

[5,6]

[7,8]

[1] [2] [3] [8]…

Task: Call to add()

Cut-off: 1

Task Graph FJ

Adding eight numbers: What is the corresponding task graph?

+

[1,...,8]

[1,...,4] [5,...,8]

[1,2]

[3,4]

[5,6]
[7,8]

+ +

+++ +

Task: fork, join, continuation

Cut-off: 1

Task Graph FJ

Adding eight numbers: What is the corresponding task graph?

Critical path

7

essentials

[1,...,8]

[1,...,4] [5,...,8]

[1,2]

[3,4]

[5,6]
[7,8]

+ +

+++ +

Task: fork, join, continuation

Cut-off: 1

Task Graphs

A wide task graph → higher
potential parallelism

A deep task graph → more
sequential dependencies

• There is a master solution , feel free to take a look if you had
trouble with these theory task

• I’ll also upload my code solution

Coding Part

Task 1: Search And Count

Search an array of integers for a certain feature and count integers that
have this feature:

● Light workload: count number of non-zero values.

● Heavy workload: count how many integers are prime numbers.

We will study single threaded and multi-threaded implementation of
the problem.

Task 1 A: Search And Count - Sequential

public class SearchAndCountSingle {

 private int[] input;

 private Workload.Type type;

 private SearchAndCountSingle(int[] input, Workload.Type wt) {

 this.input = input;

 this.type = wt;

 }

 private int count() {

 int count = 0;

 for (int i = 0; i < input.length; i++) {

 if (Workload.doWork(input[i], type)) count++;

 }

 return count;

 }

}

Straightforward
implementation. Simply
iterate through the input array
and count how many times
given event occurs.

Divide and Conquer

Basic structure of a divide-and-conquer algorithm:
1. If problem is small enough, solve it directly

2. Otherwise
a. Break problem into subproblems

b. Solve subproblems recursively

c. Assemble solutions of subproblems into overall solution

essentials

++++++++

++++

++

+

Divide and Conquer

++++++++

++++

++

+
base case

no further split

Divide and Conquer
essentials

++++++++

++++

++

+

Tasks at different
levels of granularity

What determines a task?

i) input array ii) start index iii) length/end index

These are fields we want to store in the task

Divide and Conquer
essentials

Feedback: Tasks 1 B-D

49

Divide and Conquer Parallelization

++++++++

++++

++

+

thread 1

thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

thread 8

...

essentials

Divide and Conquer Parallelization
Performance optimization

Same thread is reused instead
of creating a new one

++++++++

++++

++

+

thread 1

thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

thread 8

...

essentials

Divide and Conquer Parallelization
Performance optimization

Same thread is reused instead
of creating a new one

++++++++

++++

++

+

thread 1

thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

thread 8

...

Task B:
Extend your implementation such that it creates only a fixed number of threads. Make sure
that your solution is properly synchronized when checking whether to create a new thread

How to achieve this?

essentials

Divide and Conquer Parallelization

++++++++

++++

++

+
Option 1:

Shared counter with
synchronized/atomic access

essentials

Divide and Conquer Parallelization

++++++++

++++

++

+
Option 1:

Shared counter with
synchronized/atomic access

Option 2:
Assign unique sequential id to each
task. Spawn threads for first N tasks.

0

1 2

3 4 5 6

essentials

Divide and Conquer Parallelization

++++++++

++++

++

+
Option 1:

Shared counter with
synchronized/atomic access

Option 2:
Assign unique sequential id to each
task. Spawn threads for first N tasks.

0

1 2

3 4 5 6

n

2n + 1 2n + 2

essentials

Divide and Conquer Parallelization

++++++++

++++

++

+
Option 1:

Shared counter with
synchronized/atomic access

Option 2:
Assign unique sequential id to each
task. Spawn threads for first N tasks.

0

1 2

3 4 5 6

n

2n + 1 2n + 2

+ no synchronization required

- imbalanced amount of work

essentials

Divide and Conquer vs Fork/Join

Divide And Conquer
Fundamental design pattern based on recursively breaking down a
problem into smaller problems that can be combined to give a
solution to the original problem

Fork/Join
A framework that supports Divide and Conquer style parallelism

essentials

Divide and Conquer vs Fork/Join

Divide And Conquer

++++++++

++++

++

+

recursively breaking down a problem into smaller problems

problems are solved sequentially

+

thread 1

essentials

Divide and Conquer vs Fork/Join

Fork/Join

++++++++

++++

++

+

a framework that supports Divide and Conquer style parallelism

problems are solved in parallel

thread 1

thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

...

essentials

Divide and Conquer vs Fork/Join

Fork/Join

++++++++

++++

++

+

a framework that supports Divide and Conquer style parallelism

problems are solved in parallel

thread 1

thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

...

Performance optimization

Same thread is reused instead
of creating a new one

essentials

Search And Count - Task Parallel

public class SearchAndCountMultiple extends RecursiveTask<Integer> {

 private int[] input;

 private int start;

 private int length;

 private int cutOff;

 private Workload.Type workloadType;

}

Define the task structure:

essentials

Search And Count
protected Integer compute() {

}

Recall the template for

divide and conquer

task parallelism

essentials

Search And Count
protected Integer compute() {

 if (// work is small) {

 // do the work directly

 else {

 // split work into pieces

 // invoke the pieces and

 wait for the results

 // combine the results

 }

}

Recall the template for

divide and conquer

task parallelism

essentials

Search And Count
protected Integer compute() {

 if (// work is small) {

 // do the work directly

 else {

 // split work into pieces

 // invoke the pieces and

 wait for the results

 // combine the results

 }

}

Recall the template for

divide and conquer task

parallelism

Let’s fill in the template for

the search and count task

essentials

Search And Count
protected Integer compute() {

 if (// work is small) {

 // do the work directly

 else {

 // split work into pieces

 // invoke the pieces and

 wait for the results

 // combine the results

 }

}

protected Integer compute() {

 if (// work is small) {

 // do the work directly

 else {

 // split work into pieces

 // invoke the pieces and

 wait for the results

 // combine the results

 }

}

public class SearchAndCountMultiple

 extends RecursiveTask<Integer> {

 private int[] input;

 private int start;

 private int length;

 private int cutOff;

 private Workload.Type type;

}

Search And Count
protected Integer compute() {

 if (// work is small)

 // do the work directly

 else {

 // split work into pieces

 // invoke the pieces and

 wait for the results

 // combine the results

 }

}

protected Integer compute() {

 if (length <= cutOff) {

 // do the work directly

 else {

 // split work into pieces

 // invoke the pieces and

 wait for the results

 // combine the results

 }

}

public class SearchAndCountMultiple

 extends RecursiveTask<Integer> {

 private int[] input;

 private int start;

 private int length;

 private int cutOff;

 private Workload.Type type;

}

Search And Count
protected Integer compute() {

 if (// work is small)

 // do the work directly

 else {

 // split work into pieces

 // invoke the pieces and

 wait for the results

 // combine the results

 }

}

protected Integer compute() {

 if (length <= cutOff) {

 // do the work directly

 else {

 // split work into pieces

 // invoke the pieces and

 wait for the results

 // combine the results

 }

}

public class SearchAndCountMultiple

 extends RecursiveTask<Integer> {

 private int[] input;

 private int start;

 private int length;

 private int cutOff;

 private Workload.Type type;

}

essentials

Search And Count
protected Integer compute() {

 if (// work is small)

 // do the work directly

 else {

 // split work into pieces

 // invoke the pieces and

 wait for the results

 // combine the results

 }

}

protected Integer compute() {

 if (length <= cutOff) {

 int count = 0;

 for (int i = start; i < start + length; i++) {

 if (Workload.doWork(input[i], type)) count++;

 }

 return count;

 else {

 // split work into pieces

 // invoke the pieces and

 wait for the results

 // combine the results

 }

}

Same as sequential

implementation

public class SearchAndCountMultiple

 extends RecursiveTask<Integer> {

 private int[] input;

 private int start;

 private int length;

 private int cutOff;

 private Workload.Type type;

}

essentials

Search And Count
protected Integer compute() {

 if (// work is small)

 // do the work directly

 else {

 // split work into pieces

 // invoke the pieces and

 wait for the results

 // combine the results

 }

}

protected Integer compute() {

 if (length <= cutOff) {

 int count = 0;

 for (int i = start; i < start + length; i++) {

 if (Workload.doWork(input[i], type)) count++;

 }

 return count;

 else {

 // split work into pieces

 // invoke the pieces and

 wait for the results

 // combine the results

 }

}

public class SearchAndCountMultiple

 extends RecursiveTask<Integer> {

 private int[] input;

 private int start;

 private int length;

 private int cutOff;

 private Workload.Type type;

}

essentials

Search And Count
protected Integer compute() {

 if (// work is small)

 // do the work directly

 else {

 // split work into pieces

 // invoke the pieces and

 wait for the results

 // combine the results

 }

}

protected Integer compute() {

 if (length <= cutOff) {

 int count = 0;

 for (int i = start; i < start + length; i++) {

 if (Workload.doWork(input[i], type)) count++;

 }

 return count;

 else {

 int half = (length) / 2;

 SearchAndCountMultiple sc1 =

 new SearchAndCountMultiple(input, start, half, cutOff, type);

 SearchAndCountMultiple sc2 =

 new SearchAndCountMultiple(input, start + half, length - half, cutOff, type);

 // invoke the pieces and

 wait for the results

 // combine the results

 }

}

public class SearchAndCountMultiple

 extends RecursiveTask<Integer> {

 private int[] input;

 private int start;

 private int length;

 private int cutOff;

 private Workload.Type type;

}

essentials

Search And Count
protected Integer compute() {

 if (// work is small)

 // do the work directly

 else {

 // split work into pieces

 // invoke the pieces and

 wait for the results

 // combine the results

 }

}

protected Integer compute() {

 if (length <= cutOff) {

 int count = 0;

 for (int i = start; i < start + length; i++) {

 if (Workload.doWork(input[i], type)) count++;

 }

 return count;

 else {

 int half = (length) / 2;

 SearchAndCountMultiple sc1 =

 new SearchAndCountMultiple(input, start, half, cutOff, type);

 SearchAndCountMultiple sc2 =

 new SearchAndCountMultiple(input, start + half, length - half, cutOff, type);

 // invoke the pieces and

 wait for the results

 // combine the results

 }

}

public class SearchAndCountMultiple

 extends RecursiveTask<Integer> {

 private int[] input;

 private int start;

 private int length;

 private int cutOff;

 private Workload.Type type;

}

essentials

Search And Count
protected Integer compute() {

 if (// work is small)

 // do the work directly

 else {

 // split work into pieces

 // invoke the pieces and

 wait for the results

 // combine the results

 }

}

protected Integer compute() {

 if (length <= cutOff) {

 int count = 0;

 for (int i = start; i < start + length; i++) {

 if (Workload.doWork(input[i], type)) count++;

 }

 return count;

 else {

 int half = (length) / 2;

 SearchAndCountMultiple sc1 =

 new SearchAndCountMultiple(input, start, half, cutOff, type);

 SearchAndCountMultiple sc2 =

 new SearchAndCountMultiple(input, start + half, length - half, cutOff, type);

 sc1.fork();

sc2.fork();

 int count1 = sc1.join();

 int count2 = sc2.join();

 // combine the results

 }

}

public class SearchAndCountMultiple

 extends RecursiveTask<Integer> {

 private int[] input;

 private int start;

 private int length;

 private int cutOff;

 private Workload.Type type;

}

essentials

Search And Count
protected Integer compute() {

 if (// work is small)

 // do the work directly

 else {

 // split work into pieces

 // invoke the pieces and

 wait for the results

 // combine the results

 }

}

protected Integer compute() {

 if (length <= cutOff) {

 int count = 0;

 for (int i = start; i < start + length; i++) {

 if (Workload.doWork(input[i], type)) count++;

 }

 return count;

 else {

 int half = (length) / 2;

 SearchAndCountMultiple sc1 =

 new SearchAndCountMultiple(input, start, half, cutOff, type);

 SearchAndCountMultiple sc2 =

 new SearchAndCountMultiple(input, start + half, length - half, cutOff, type);

 sc1.fork();

 sc2.fork();

 int count1 = sc1.join();

 int count2 = sc2.join();

 // combine the results

 }

}

public class SearchAndCountMultiple

 extends RecursiveTask<Integer> {

 private int[] input;

 private int start;

 private int length;

 private int cutOff;

 private Workload.Type type;

}

essentials

Search And Count
protected Integer compute() {

 if (// work is small)

 // do the work directly

 else {

 // split work into pieces

 // invoke the pieces and

 wait for the results

 // combine the results

 }

}

protected Integer compute() {

 if (length <= cutOff) {

 int count = 0;

 for (int i = start; i < start + length; i++) {

 if (Workload.doWork(input[i], type)) count++;

 }

 return count;

 else {

 int half = (length) / 2;

 SearchAndCountMultiple sc1 =

 new SearchAndCountMultiple(input, start, half, cutOff, type);

 SearchAndCountMultiple sc2 =

 new SearchAndCountMultiple(input, start + half, length - half, cutOff, type);

 sc1.fork();

 sc2.fork();

 int count1 = sc1.join();

 int count2 = sc2.join();

 return count1 + count2;

 }

}

public class SearchAndCountMultiple

 extends RecursiveTask<Integer> {

 private int[] input;

 private int start;

 private int length;

 private int cutOff;

 private Workload.Type type;

}

essentials

Search And Count

public class SearchAndCountMultiple

 extends RecursiveTask<Integer> {

 private int[] input;

 private int start;

 private int length;

 private int cutOff;

 private Workload.Type type;

}

protected Integer compute() {

 if (// work is small)

 // do the work directly

 else {

 // split work into pieces

 // invoke the pieces and

 wait for the results

 // combine the results

 }

}

protected Integer compute() {

 if (length <= cutOff) {

 int count = 0;

 for (int i = start; i < start + length; i++) {

 if (Workload.doWork(input[i], type)) count++;

 }

 return count;

 else {

 int half = (length) / 2;

 SearchAndCountMultiple sc1 =

 new SearchAndCountMultiple(input, start, half, cutOff, type);

 SearchAndCountMultiple sc2 =

 new SearchAndCountMultiple(input, start + half, length - half, cutOff, type);

 sc1.fork();

 sc2.fork();

 int count1 = sc1.join();

 int count2 = sc2.join();

 return count1 + count2;

 }

}

essentials

ExecutorService

Fork/Join: recommended for Divide and Conquer tasks as they have strong task
interdependency

ExecutorService: for handling many independent requests where tasks are standalone

• See code

Plan für heute

• Organisation
• Nachbesprechung Exercise 5

• Theory Recap
• Intro Exercise 6
• Exam Questions
• Kahoot

Summary

Lock Object

Shared object that satisfies the following interface

public interface Lock{
public void lock(); // entering CS
public void unlock(); // leaving CS

}

providing the following semantics

new Lock make a new lock, initially “not held”

acquire blocks (only) if this lock is already currently “held”
Once “not held”, makes lock “held” [all at once!]

release makes this lock “not held”
If >= 1 threads are blocked on it, exactly 1 will acquire it

18

DO NOT

DISTURB

COME

IN

Required Properties of Mutual Exclusion

Safety Property

§ At most one process executes the critical section
code

Liveness

§ Minimally: acquire_mutex must terminate in finite
time when no process executes in the critical section

19

Required Properties of Mutual Exclusion

Safety Property

§ At most one process executes the critical section
code

Liveness

§ Minimally: acquire_mutex must terminate in finite
time when no process executes in the critical section

19

Almost-correct pseudocode

class BankAccount {
private int balance = 0;
private Lock lk = new Lock();
…
void withdraw(int amount) {

lk.lock(); // may block
int b = getBalance();
if(amount > b)

throw new WithdrawTooLargeException();
setBalance(b – amount);
lk.unlock();

}
// deposit would also acquire/release lk

}

20

One lock for
each account

Almost-correct pseudocode

class BankAccount {
private int balance = 0;
private Lock lk = new Lock();
…
void withdraw(int amount) {

lk.lock(); // may block
int b = getBalance();
if(amount > b)

throw new WithdrawTooLargeException();
setBalance(b – amount);
lk.unlock();

}
// deposit would also acquire/release lk

}

20

One lock for
each account

Lock won’t be released
if exception is thrown!

Solution: Use try/finally block!

Always gets executed
(even after exception
or return)

Possible mistakes

Incorrect: Use different locks for withdraw and deposit

§ Mutual exclusion works only when using same lock

§ balance field is the shared resource being protected

Poor performance: Use same lock for every bank account

§ No simultaneous operations on different accounts

Incorrect: Forget to release a lock (blocks other threads forever!)

§ Previous slide is wrong because of the exception possibility!

22

if(amount > b) {
lk.unlock(); // hard to remember!
throw new WithdrawTooLargeException();

}

Re-entrant lock
A re-entrant lock (a.k.a. recursive lock)

“remembers”

§ the thread (if any) that currently holds it

§ a count

When the lock goes from not-held to held, the count is set to 0

If (code running in) the current holder calls lock(acquire):

§ it does not block

§ it increments the count

On unlock(release):

§ if the count is > 0, the count is decremented

§ if the count is 0, the lock becomes not-held

25

thread

count

A

Re-entrant locks work

§ This simple code works fine provided lk
is a reentrant lock

§ Okay to call setBalance directly

§ Okay to call withdraw (won’t block
forever)

26

int setBalance(int x) {
lk.lock();

balance = x;
lk.unlock();

}

void withdraw(int amount) {

lk.lock();
…
setBalance(b – amount);

lk.unlock();

}

Race condition

A Race Condition occurs in concurrent programming when the correctness
of the system depends on the specific interleaving or ordering of
operations executed by multiple threads or processes.

Typically, problem is some intermediate state that “messes up” a concurrent thread
that “sees” that state

Note: This lecture makes a big distinction between data races and bad
interleavings, both instances of race-condition bugs

§ Confusion often results from not distinguishing these or using the ambiguous
“race condition” to mean only one

32

The distinction

Data Race [aka Low Level Race Condition, low semantic level]
Erroneous program behavior caused by insufficiently synchronized
accesses of a shared resource by multiple threads, e.g. Simultaneous
read/write or write/write of the same memory location

(for mortals) always an error, due to compiler & HW

Bad Interleaving [aka High Level Race Condition, high semantic level]
Erroneous program behavior caused by an unfavorable execution order of
a multithreaded algorithm that makes use of otherwise well synchronized
resources.

“Bad” depends on your specification
33

Why Locks?

• See code examples

Why Locks?

• example models a bank where multiple threads transfer
money between accounts

• Problem:

• Locking Order Issue: Each transfer call synchronizes first on this and then
on target

• If two threads try to transfer in opposite directions at the same time, they
will deadlock

• e.g. if Thread-1 locks accountA and waits for accountB, while Thread-2
locks accountB and waits for accountA, both will be stuck indefinitely

Why Locks?

• To prevent deadlocks, it ensures that locks are always
acquired in a consistent order

• Prevent deadlock by introducing order with
System.identityHashCode() to determine which account
should be locked first (or any kind of unique ID)

Parallel Patterns

Credits to Erxuan Li PProg FS25

Parallel Patterns

• We are now quite familiar with how to parallize algorithms

• There are a few recurring patterns that are important to know

Map, Reduction, Stencil, Scan, Pack

Reduction

• A reduction is an operation that produces a single answer
from a collection (array etc) via an associative operator.

• Needs to be associative. Otherwise divide-and-conquer won‘t
work

Example: array sum

Map

• Operates on each element of the input data indenpendently
(each array element)

• Output is the same size → no size reduction

• Doesn‘t have to be the same operation on each element

Example: add two arrays

Stencil

• Like map but can take more than one element as input

• Generalization of map and thus also no size reduction

Example:

Image → apply averaging filter on each pixel

Update a value based on its neighbors

Never do it in-place because you would then take values that are
already output values.

Scan

• Collection of data X → return collection of data Y

• Y(i) = functionOf(Y(i - 1) & X(i))

• Seems sequential because of dependencies

• Can parallelize if function is associative → O(log(n)) span

Example: parallel prefix sum

Pack

• Collection of data X → return collection of data X if fulfill
condition

Pack

• First compute bit vector

• Then find index in result array (prefix sum on bit vector)

Plan für heute

• Organisation
• Nachbesprechung Exercise 5
• Theory Recap

• Intro Exercise 6
• Exam Questions
• Kahoot

Assignment 6

Task Parallelism:
● Merge Sort

● Longest Sequence

Merge sort algorithm

In this exercise you will implement the merge sort algorithm using task
parallelism.

The merge sort algorithm partitions the array into smaller arrays, sorts
each one separately and then merges the sorted arrays.

• By default, the partitioning of the array continues recursively until the array size
is 1 or 2, which then is sorted trivially.

• Try larger cutoff values (e.g partition arrays down to minimum size 4 instead of 2)
and see how this affects the algorithm performance.

• Discuss the asymptotic running time of the algorithm and the obtained speedup.

essentials

Longest Sequence

Given a sequence of numbers:

[1, 9, 4, 3, 3, 8, 7, 7, 7, 0]

find the longest sequence of the same consecutive number

Longest Sequence

Given a sequence of numbers:

[1, 9, 4, 3, 3, 8, 7, 7, 7, 0]

find the longest sequence of the same consecutive number

Longest Sequence

Given a sequence of numbers:

[1, 9, 4, 3, 3, 8, 7, 7, 7, 0]

find the longest sequence of the same consecutive number.

If multiple sequences have the same length, return the first one (the one with

lowest starting index)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] [1, 1, 0, 0]

Longest Sequence

Task:

Implement task parallel version that finds the longest sequence of the same

consecutive number.

Challenge:

The input array cannot be divided arbitrarily. For example:

[1, 2, 3, 3, 4, 1]

[1, 2, 3] [3, 4, 1]

essentials

Longest Sequence

Task:

Implement task parallel version that finds the longest sequence of the same

consecutive number.

Challenge:

The input array cannot be divided arbitrarily. For example:

[1, 2, 3, 3, 4, 1]

[1, 2, 3] [3, 4, 1]
Combining results of subtasks

does not give the correct

answer!

essentials

Hint

• ExecutorService ex = Executors.newWorkStealingPool();

Plan für heute

• Organisation
• Nachbesprechung Exercise 5
• Theory Recap
• Intro Exercise 6

• Exam Questions
• Kahoot

Not good:

Plan für heute

• Organisation
• Nachbesprechung Exercise 5
• Theory Recap
• Intro Exercise 6
• Exam Questions

• Kahoot

Feedback

• Falls ihr Feedback möchtet sagt mir bitte Bescheid!
• Schreibt mir eine Mail oder auf Discord

Danke

• Bis nächste Woche!

	Slide 1: Parallele Programmierung FS25
	Slide 2: Plan für heute
	Slide 3: Organisation
	Slide 4: Organisation
	Slide 5: Organisation
	Slide 6: Exam Preparation Session
	Slide 7: Organisation
	Slide 8: Plan für heute
	Slide 9: Recall: Amdahl's vs Gustafson's Law
	Slide 10: Recall: Amdahl's vs Gustafson's Law
	Slide 11: Recall: Amdahl's vs Gustafson's Law
	Slide 12: Recall: Amdahl's vs Gustafson's Law
	Slide 13: Amdahl's Law Derivation
	Slide 14: Gustafson's Law Derivation
	Slide 15: Gustafson's Law Derivation
	Slide 16: Gustafson's Law Derivation
	Slide 17: Gustafson's Law Derivation
	Slide 18: fib(4) task graph
	Slide 21: fib(4) task graph FJ
	Slide 22: fib(4) simplified task graph
	Slide 23: fib(4) simplified task graph
	Slide 24: Task Graphs
	Slide 25: Task Graphs
	Slide 26: fib(4) task graph FJ
	Slide 27: fib(4) simplified task graph
	Slide 28: Task Graph Simplified
	Slide 29: Task Graph Simplified
	Slide 30: Task Graph Simplified
	Slide 31: Task Graph Simplified
	Slide 32: Task Graph FJ
	Slide 33: Task Graph FJ
	Slide 34: Task Graph Simplified
	Slide 35: Task Graph Simplified
	Slide 36: Task Graph Simplified
	Slide 37: Task Graph Simplified
	Slide 38: Task Graph FJ
	Slide 39: Task Graph FJ
	Slide 40: Task Graphs
	Slide 41
	Slide 42: Coding Part
	Slide 43: Task 1: Search And Count
	Slide 44: Task 1 A: Search And Count - Sequential
	Slide 45: Divide and Conquer
	Slide 46: Divide and Conquer
	Slide 47: Divide and Conquer
	Slide 48: Divide and Conquer
	Slide 49: Feedback: Tasks 1 B-D
	Slide 50: Divide and Conquer Parallelization
	Slide 51: Divide and Conquer Parallelization
	Slide 52: Divide and Conquer Parallelization
	Slide 53: Divide and Conquer Parallelization
	Slide 54: Divide and Conquer Parallelization
	Slide 55: Divide and Conquer Parallelization
	Slide 56: Divide and Conquer Parallelization
	Slide 57: Divide and Conquer vs Fork/Join
	Slide 58: Divide and Conquer vs Fork/Join
	Slide 59: Divide and Conquer vs Fork/Join
	Slide 60: Divide and Conquer vs Fork/Join
	Slide 61: Search And Count - Task Parallel
	Slide 62: Search And Count
	Slide 63: Search And Count
	Slide 64: Search And Count
	Slide 65: Search And Count
	Slide 66: Search And Count
	Slide 67: Search And Count
	Slide 68: Search And Count
	Slide 69: Search And Count
	Slide 70: Search And Count
	Slide 71: Search And Count
	Slide 72: Search And Count
	Slide 73: Search And Count
	Slide 74: Search And Count
	Slide 75: Search And Count
	Slide 76: ExecutorService
	Slide 77
	Slide 78: Plan für heute
	Slide 79: Summary
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85: Solution: Use try/finally block!
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93: Why Locks?
	Slide 94: Why Locks?
	Slide 95: Why Locks?
	Slide 96: Parallel Patterns
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102: Parallel Patterns
	Slide 103: Reduction
	Slide 104: Map
	Slide 105: Stencil
	Slide 106: Scan
	Slide 107: Pack
	Slide 108: Pack
	Slide 109: Plan für heute
	Slide 110: Assignment 6
	Slide 111: Merge sort algorithm
	Slide 112: Longest Sequence
	Slide 113: Longest Sequence
	Slide 114: Longest Sequence
	Slide 115: Longest Sequence
	Slide 116: Longest Sequence
	Slide 117: Hint
	Slide 118: Plan für heute
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134: Plan für heute
	Slide 135
	Slide 136: Feedback
	Slide 137: Danke

