
Parallele Programmierung FS25
Exercise Session 7

Jonas Wetzel

Plan für heute

• Organisation
• Nachbesprechung Exercise 6
• Summary Part 1
• Intro Lecture Part 2
• Intro Exercise 7
• Exam Questions
• Kahoot

Organisation

• Mein Name ist Jonas Wetzel
• Meine Website (Materialien und Inhalt der Übungen):

n.ethz.ch/~jwetzel
• Meine Email: jwetzel@ethz.ch
• Discord: @jonas.too

mailto:jwetzel@ethz.ch

Organisation

• Mein Name ist Jonas Wetzel
• Meine Website (Materialien und Inhalt der Übungen):

n.ethz.ch/~jwetzel
• Meine Email: jwetzel@ethz.ch
• Discord: @jonas.too
• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9

mailto:jwetzel@ethz.ch
https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9
• Falls ihr Feedback möchtet kommt bitte zu mir

https://forms.gle/qiDnqkfSP2NUQGvc9

Evaluation
• Please fill in the evaluation (~5min)

• It is anonymous
• (you don’t need to be logged in)

• It helps us improving the exercise
sessions

Organisation

• Wo sind wir jetzt?

First part
done!

Plan für heute

• Organisation

• Nachbesprechung Exercise 6
• Summary Part 1
• Intro Lecture Part 2
• Intro Exercise 7
• Exam Questions
• Kahoot

Post-Discussion
Exercise 6

9

Merge Sort

Discussion of solution

Longest Sequence

Given a sequence of numbers:

[1, 9, 4, 3, 3, 8, 7, 7, 7, 0]

find the longest sequence of the same consecutive number

public class LongestSequenceMulti extends RecursiveTask<Sequence> {

 protected Sequence compute() {
 if (// work is small)
 // do the work directly

 else {
 // split work into pieces

 // invoke the pieces and wait for the results

 // return the longest result
 }
 }
}

Outline almost as before,
except:

Longest Sequence

Longest Sequence

public class LongestSequenceMulti extends RecursiveTask<Sequence> {

 protected Sequence compute() {
 if (// work is small)
 // do the work directly

 else {
 // split work into pieces

 // invoke the pieces and wait for the results

 // check that result is not in between the pieces

 // return the longest result
 }
 }
}

Outline almost as before,
except:

Longest Sequence

public class LongestSequenceMulti extends RecursiveTask<Sequence> {

 protected Sequence compute() {
 if (// work is small)
 // do the work directly

 else {
 // split work into pieces

 // invoke the pieces and wait for the results

 // check that result is not in between the pieces

 // return the longest result
 }
 }
}

Outline almost as before,
except:

[1, 2, 3, 3, 4, 1]

[1, 2, 3] [3, 4, 1]

Longest Sequence

See code

Plan für heute

• Organisation
• Nachbesprechung Exercise 6

• Summary Part 1
• Intro Lecture Part 2
• Intro Exercise 7
• Exam Questions
• Kahoot

Lecture Recap

Creating Threads: extends Thread (old)

Creating Threads: impl Runnable (better)

20

Thread Quiz: Spot the mistake

Wrong order!

Thread Quiz: Spot the mistake

Thread Quiz: Spot the mistake

We need to join!

Thread Quiz: Spot the mistake

public class Counter {
 private int value;
 // returns a unique value

 public int getNext() {
 return value++;
 }
}

How to implement a thread safe Counter?

Thread Safe Counter

Thread Safe Counter

public class AtomicCounter {
 private AtomicInteger value;

 public int getNext() {
 return value.incrementAndGet();
 }
}

public class SyncCounter {
 private int value;

 public synchronized int getNext() {
 return value++;
 }
}

public class LockCounter {
 private int value;
 private Lock = new ReentrantLock();

 public int getNext() {
 lock.lock();
 try {
 return value++;
 } finally {
 lock.unlock()
 }
 }
}

How to implement a thread safe Counter?

essentials

Thread Safe Counter

public class AtomicCounter {
 private AtomicInteger value;

 public int getNext() {
 return value.incrementAndGet();
 }
}

public class SyncCounter {
 private int value;

 public synchronized int getNext() {
 return value++;
 }
}

public class LockCounter {
 private int value;
 private Lock = new ReentrantLock();

 public int getNext() {
 lock.lock();
 try {
 return value++;
 } finally {
 lock.unlock()
 }
 }
}

What is the difference between
synchronized and a Lock?

essentials

Java: The synchronized keyword

Synchronization is built around an internal entity
 known as the intrinsic lock or monitor lock

Every intrinsic lock has an object (or class) associated with it

A thread that needs exclusive access to an object’s field has to acquire
 the object’s intrinsic lock before accessing them

essentials

What exactly is a lock/monitor?

29

Counter C

int count = 0;

attributes

methods

synchronized increment() {

 count++;

}

Counter C = new Counter()

Counter C

Thread 1

Thread 2

Thread 3

custom

Thanks to Gamal Hassan PProg FS24!

What exactly is a lock/monitor?

30

Counter C

int count = 0;

attributes

methods

synchronized increment() {

 count++;

}

Counter C = new Counter()

Counter C

Thread 1

Thread 2

Thread 3

increment()

custom

What exactly is a lock/monitor?

31

Counter C

int count = 0;

attributes

methods

synchronized increment() {

 count++;

}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

Counter C

count++

custom

What exactly is a lock/monitor?

32

Counter C

int count = 0;

attributes

methods

synchronized increment() {

 count++;

}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

Counter C

count++

increment()

custom

What exactly is a lock/monitor?

33

Counter C

int count = 0;

attributes

methods

synchronized increment() {

 count++;

}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

Counter C

count++

WAITING

custom

java.util.concurrent.Lock Interface
More low-level primitive than synchronized.

Clients need to implement:
 lock(): Acquires the lock, blocks until it is acquired
 trylock(): Acquire lock only if its lock is free when function is called
 unlock(): Release the lock

Allows more flexible structuring than synchronized blocks

What does it mean to be more flexible?
Why is this useful?

essentials

What exactly is a lock/monitor?

35

Counter C

int count = 0;

attributes

methods

increment() {

 myLock.lock()

 count++;

 myLock.unlock();

}

Counter C = new Counter()

Counter C

Thread 1

Thread 2

Thread 3

custom

myLock

What exactly is a lock/monitor?

36

Thread 1

Thread 2

Thread 3

increment()

custom

Counter C

int count = 0;

attributes

methods

increment() {

 myLock.lock()

 count++;

 myLock.unlock();

}

Counter C = new Counter()

Counter C

myLock

What exactly is a lock/monitor?

37

Thread 1

Thread 2

Thread 3

increment()

custom

Counter C

int count = 0;

attributes

methods

increment() {

 myLock.lock()

 count++;

 myLock.unlock();

}

Counter C = new Counter()

Counter C

myLock
lock()

What exactly is a lock/monitor?

38

Thread 1

Thread 2

Thread 3

custom

Counter C

int count = 0;

attributes

methods

increment() {

 myLock.lock()

 count++;

 myLock.unlock();

}

Counter C = new Counter()

Counter C

myLock

count++

Lock Flexibility

A.lock();
B.lock();
B.unlock();
A.unlock();

synchronized (A) {
 synchronized (B) {
 }
}

Synchronized forces all lock acquisition and release
to occur in a block-structured way

A.lock();
B.lock();
A.unlock();
B.unlock();

The following lock order cannot
be expressed using synchronized blocks

essentials

Lock Flexibility

A.lock();
B.lock();
B.unlock();
A.unlock();

synchronized (A) {
 synchronized (B) {
 }
}

Synchronized forces all lock acquisition and release
to occur in a block-structured way

A.lock();
B.lock();
A.unlock();
B.unlock();

The following lock order cannot
be expressed using synchronized blocks

As we will see later in the course, such order is useful
for implementing concurred data structures and

referred
to as “hand-over-hand” locking (or “chain-locking”)

essentials

Lock Flexibility

Consider a list of locks that you should
acquire

public int getNext(List<Lock> locks) {

 // acquire all locks

 // critical section

 // release all locks

}

Can this be achieved using synchronized?

essentials

Lock Flexibility

Is the Lock acquired?

Is the Lock acquired by current thread?

Try acquire the Lock without blocking

lock.isLocked()

lock.isHeldByCurrentThread()

lock.tryLock()

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/loc
ks/ReentrantLock.html

essentials

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/locks/ReentrantLock.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/locks/ReentrantLock.html

Implementing Classes of java.util.concurrent.Lock

ReentrantLock
ReentrantReadWriteLock.ReadLock
ReentrantReadWriteLock.WriteLock

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/loc
ks/Lock.html

Readers/Writers Lock will be covered
in detail in 3 weeks

details

Basic Synchronization Rule

Access to shared and mutable state needs to be always protected!

essentials

Synchronization Issues

Data Race: ??

Synchronization Issues

Data Race: A program has a data race if, during any possible execution,
a memory location could be written from one thread, while
concurrently being read or written from another thread.

essentials

Synchronization Issues

Data Race: A program has a data race if, during any possible execution,
a memory location could be written from one thread, while
concurrently being read or written from another thread.

Deadlock: ??

Synchronization Issues

Data Race: A program has a data race if, during any possible execution,
a memory location could be written from one thread, while
concurrently being read or written from another thread.

Deadlock: Circular waiting/blocking (no instructions are executed and
CPU time may be used) between threads, so that the system (union
of all threads) cannot make any progress anymore.

essentials

Quiz: What is wrong with this code?

void exchangeSecret(Person a, Person b) {

 a.getLock().lock();

 b.getLock().lock();

 Secret s = a.getSecret();

 b.setSecret(s);

 a.getLock().unlock();

 b.getLock().unlock()

}

public class Person {

 private ReentrantLock mLock = new ReentrantLock();

 private String mName;

 public ReentrantLock getLock() {

 return mLock;

 }

 ...

}

Quiz: What is wrong with this code?

void exchangeSecret(Person a, Person b) {

 a.getLock().lock();

 b.getLock().lock();

 Secret s = a.getSecret();

 b.setSecret(s);

 a.getLock().unlock();

 b.getLock().unlock()

}

public class Person {

 private ReentrantLock mLock = new ReentrantLock();

 private String mName;

 public ReentrantLock getLock() {

 return mLock;

 }

 ...

}

Thread 1:

exchangeSecret(p1, p2)

Thread 2:

exchangeSecret(p2, p1)
Deadlock

essentials

Possible solution
void exchangeSecret(Person a, Person b) {

 ReentrantLock first, second;

 if (a.getName().compareTo(b.getName()) < 0) {

 first = a.getLock(); second = b.getLock();

 } else if (a.getName().compareTo(b.getName()) > 0) {

 first = b.getLock(); second = a.getLock();

 } else { throw new UnsupportedOperationException(); }

 first.lock();

 second.lock();

 Secret s = a.getSecret();

 b.setSecret(s);

 first.unlock();

 second.unlock();

}

Always acquire and release the Locks in the same order

essentials

Deadlocks and Race conditions

Not easy to spot

Hard to debug

➔ Might happen only very rarely
➔ Testing usually not good enough

Reasoning about code is required

Lesson learned: Need to be careful when programming with locks

details

Wait and Notify Recap

54

Object (lock) provides wait and notify methods

(any object is a lock)

wait: Thread must own object’s lock to call wait
 thread releases lock and is added to “waiting list” for that object
 thread waits until notify is called on the object

notify: Thread must own object’s lock to call notify

notify: Wake one (arbitrary) thread from object’s “waiting list”

notifyAll: Wake all threads

Producer-Consumer Problem

55

Generating Data
Processing Data

Buffer

custom

How to use wait/notify

56

Remember? Thread State Model

57

Remember? Thread State Model

58

Wait and Notify Recap

59

What is the difference? Issues?

Wait and Notify Recap

60

Spurious wake-ups and notifyAll()
 → wait has to be in a while loop

Wait/notify “Template”

61

Wait/notify “Template”

62

Wait/notify “Template”

63

Is that all?

64

No, it must be inside a synchronized block!

65

Pipelining: Main Concepts Recap

•Latency

•Throughput
•

•Balanced/Unbalanced Pipeline

66

essentials

Pipelining: Main Concepts Recap

•Latency
time needed to perform a given computation

(e.g., process a customer)

•Throughput
•

•Balanced/Unbalanced Pipeline

67

essentials

Pipelining: Main Concepts Recap

•Latency
time needed to perform a given computation

(e.g., process a customer)

•Throughput
•amount of work that can be done by a system in a given period of time

(e.g., how many customers can be processed in one minute)

•Balanced/Unbalanced Pipeline

68

essentials

Pipelining: Main Concepts Recap

•Latency
time needed to perform a given computation

(e.g., process a customer)

•Throughput
•amount of work that can be done by a system in a given period of time

(e.g., how many customers can be processed in one minute)

•Balanced/Unbalanced Pipeline
•a pipeline is balanced if each stage takes the same length of time

69

essentials

++++++++

++++

++

+

Divide and Conquer
essentials

++++++++

++++

++

+
base case

no further split

Divide and Conquer
essentials

++++++++

++++

++

+

Tasks at different
levels of granularity

Divide and Conquer
essentials

++++++++

++++

++

+

Tasks at different
levels of granularity

What determines a task?

Divide and Conquer
essentials

++++++++

++++

++

+

Tasks at different
levels of granularity

What determines a task?

i) input array ii) start index iii) length/end index

These are fields we want to store in the task

Divide and Conquer
essentials

Will this work?

Does this fix our issue?

79

No. Java Threads are too
heavyweight. What should we

do?

ExecutorService!

Java's executor service:managing asynchronous tasks

46

ExecutorService

User submits tasks
gets back a
Future

.submit(Callable<T> task) → Future<T>

.submit(Runnable task) → Future<?>

Does this fix our issue?

86

No. We have dependencies
between tasks

Big Picture

91

custom

Credits to Erxuan Li PProg FS25

Plan für heute

• Organisation
• Nachbesprechung Exercise 6
• Summary Part 1

• Intro Lecture Part 2
• Intro Exercise 7
• Exam Questions
• Kahoot

The Future

• Prof. Höfler hat den ACM
Prize gewonnen

Was ist volatile?

• Wir wollen Locks selber bauen
• Wie machen wir das?

Was ist volatile?

• Wir wollen Locks selber bauen
• Wie machen wir das?

• Atomics geben uns eine Möglichkeit
• Was wenn wir keine atomics haben?

Was ist volatile?

• Wir wollen Locks selber bauen
• Wie machen wir das?

• Atomics geben uns eine Möglichkeit
• Was wenn wir keine atomics haben?

• Volatile!

Volatile Keyword

• When multiple threads access a shared variable, each thread may
keep local copy in its CPU cache, updates might not be
immediately visible to other threads

• Volatile gives us visibility guarantee!

Volatile Keyword

• Volatile variable ensures that any
read or write operation always
happens directly in main memory,
so all threads see latest value on
next read

Volatile Keyword

• Without volatile, another thread
calling stop() might not be seen by
the run() method because the CPU
might cache running locally

• With volatile, the change to running
is guaranteed to be visible to all
threads

Volatile Keyword

• It also prevents optimizations like out of order execution from
happening!

• Java Memory Model allows JVM and CPU to reorder instructions
for optimization

Volatile Keyword

• Without volatile, compiler or CPU
might reorder (1) and (2), leading
reader() to see flag == true but still
read old value of x

• With volatile, (2) happens after (1),
ensuring x = 42 is visible before flag =
true is read.

Volatile Keyword

• Volatile has limitations
• Does not prevent race conditions: volatile ensures visibility but

not atomicity for compound actions like count++
• Not a replacement for synchronization: It doesn’t provide mutual

exclusion (locking)

Volatile Keyword

• Volatile has limitations
• Does not prevent race

conditions: volatile ensures
visibility but not atomicity for
compound actions like count++

• Not a replacement for
synchronization: It doesn’t
provide mutual exclusion
(locking)

Volatile Summary

• Volatile ensures that all reads and writes go directly to main
memory, preventing stale values

• It prevents instruction reordering
• It does NOT provide atomicity or mutual exclusion
• Suitable for simple flags and state indicators, but not for counters

or complex data structures

Volatile

• Suitable for simple flags and state indicators, but not for counters
or complex data structures

• Can we build a lock with that?

Volatile

• Suitable for simple flags and state indicators, but not for counters
or complex data structures

• Can we build a lock with that?
• Yes, we can!

Deckers Lock

• Each thread sets its flag[id] = true to indicate that it wants access
to critical section

• If other thread also wants access, they use turn variable to decide
who goes first

• If it's not thread's turn, it backs off, resets its flag, and waits for its
turn

• After exiting critical section, thread gives turn to the other thread
and resets its flag

spcl.inf.ethz.ch

@spcl_eth

Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

18

spcl.inf.ethz.ch

@spcl_eth

Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

only when q
tries to get
lock

18

spcl.inf.ethz.ch

@spcl_eth

Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

only when q
tries to get
lock

and q has
preference

18

spcl.inf.ethz.ch

@spcl_eth

Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

only when q
tries to get
lock

and q has
preference

let q proceed

18

spcl.inf.ethz.ch

@spcl_eth

Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

only when q
tries to get
lock

and q has
preference

let q proceed

and wait

18

spcl.inf.ethz.ch

@spcl_eth

Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

only when q
tries to get
lock

and q has
preference

let q proceed

and wait

and try again

18

Deckers Lock

• Ensures mutual exclusion (only one thread enters the critical
section at a time)

• Avoids deadlock by using the turn variable
• Provides fairness (both threads get their turn)
• Limited to two threads (doesn’t scale well)

Petersons Lock

• Each thread sets flag[id] = true to indicate it wants access to the
critical section.

• The thread gives priority to the other thread by setting turn = other.
• If the other thread also wants access (flag[other] == true) and it’s

still its turn, the thread waits.
• Once it gets access, it enters the critical section.
• After exiting, the thread resets flag[id] = false so the other thread

can proceed.

spcl.inf.ethz.ch

@spcl_eth

Process P (1)

loop

non-critical section

flag[P] = true

victim = P

while(flag[Q] && victim == P);

critical section

flag[P] = false

More concise than Decker: Peterson Lock

Process Q (2)

loop

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);

critical section

flag[Q] = false

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim = 1

19

spcl.inf.ethz.ch

@spcl_eth

Process P (1)

loop

non-critical section

flag[P] = true

victim = P

while(flag[Q] && victim == P);

critical section

flag[P] = false

More concise than Decker: Peterson Lock

Process Q (2)

loop

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);

critical section

flag[Q] = false

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim = 1

I am
interested

19

spcl.inf.ethz.ch

@spcl_eth

Process P (1)

loop

non-critical section

flag[P] = true

victim = P

while(flag[Q] && victim == P);

critical section

flag[P] = false

More concise than Decker: Peterson Lock

Process Q (2)

loop

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);

critical section

flag[Q] = false

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim = 1

I am
interested

but you go
first

19

spcl.inf.ethz.ch

@spcl_eth

Process P (1)

loop

non-critical section

flag[P] = true

victim = P

while(flag[Q] && victim == P);

critical section

flag[P] = false

More concise than Decker: Peterson Lock

Process Q (2)

loop

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);

critical section

flag[Q] = false

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim = 1

I am
interested

but you go
first

We both are
interested

19

spcl.inf.ethz.ch

@spcl_eth

Process P (1)

loop

non-critical section

flag[P] = true

victim = P

while(flag[Q] && victim == P);

critical section

flag[P] = false

More concise than Decker: Peterson Lock

Process Q (2)

loop

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);

critical section

flag[Q] = false

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim = 1

I am
interested

but you go
first

We both are
interested

And you go first

19

Peterson Lock

• Ensures mutual exclusion (only one thread enters the critical
section at a time)

 Prevents deadlock (always allows progress)
 Fair (bounded waiting) (no thread is starved forever)

• simpler than Deckers Lock
 Works only for two threads (not scalable)

Peterson Lock

• Ensures mutual exclusion (only one thread enters the critical
section at a time)

 Prevents deadlock (always allows progress)
 Fair (bounded waiting) (no thread is starved forever)

• simpler than Deckers Lock
 Works only for two threads (not scalable)

• Bakery Lock allows us to extend Peterson Lock Idea to n Threads!
• We’ll see it in like 3 weeks

Deckers Lock & Peterson Lock

• See code

Can we build a lock with atomics?

• How?

Can we build a lock with atomics?

• Now you see why we
like atomics so
much. It’s much
simpler!

Plan für heute

• Organisation
• Nachbesprechung Exercise 6
• Theory Recap

• Intro Exercise 7
• Exam Questions
• Kahoot

Pre-Discussion
Exercise 7

Exercise 7

Banking System

– Multi-Threaded Implementation

– Coding exercise: Use synchronized and/or Locks

− Might have to make additions to existing classes

– Reason about Performance

– Reason about Deadlocks

– Run Tests

Multi-threaded Implementation

Task 1 – Problem Identification:

The methods of the classes Account and BankingSystem must be
thread-safe.

You should understand why the current implementation does not work
for more than one thread.

Thread-Safe – transferMoney()

Task 2 – Synchronized:

A simple solution to make the transferMoney() thread-safe is to use the
synchronized keyword:
public synchronized boolean transferMoney(…)

Even though the code works as expected, the performance is poor.

The performance of the multi-threaded implementation is worse than the
single-threaded. Why does this happen?

essentials

Performance of transferMoney()

Task 3 – Locking:

Since the solution with the synchronized keyword does not perform
well, you should find a better strategy to achieve the thread-safe
implementation.

● Does your proposed solution work if a transaction happens from and to
the same account?

● How do you know that your proposed solution does not suffer from
deadlocks?

essentials

ThreadSafe - sumAccounts()

Task 4 – Summing Up

With a fine-grained synchronization on the transfer method, the
method sumAccounts() may return incorrect results when a transaction
takes place at the same time.

● Explain why the current implementation of the sumAccounts() method is
not thread-safe any more.

● You should provide a thread-safe implementation.

● Is there any way to parallelize this method?

essentials

Testing

You should run the provided tests for your implementation.

If the test succeeds, your code is not necessarily correct.

It is hard to reproduce a bad interleaving.

Plan für heute

• Organisation
• Nachbesprechung Exercise 6
• Theory Recap
• Intro Exercise 7

• Exam Questions
• Kahoot

Old Exam Task (FS 2023)

140

essentials

Old Exam Task (FS 2023)

141

essentials

Not good:

Extra Tasks

Plan für heute

• Organisation
• Nachbesprechung Exercise 5
• Theory Recap
• Intro Exercise 6
• Exam Questions

• Kahoot

Kahoot!!

• omg

Feedback

• Falls ihr Feedback möchtet sagt mir bitte Bescheid!
• Schreibt mir eine Mail oder auf Discord

Danke

• Bis nächste Woche!

	Slide 1: Parallele Programmierung FS25
	Slide 2: Plan für heute
	Slide 3: Organisation
	Slide 4: Organisation
	Slide 5: Organisation
	Slide 6: Evaluation
	Slide 7: Organisation
	Slide 8: Plan für heute
	Slide 9: Post-Discussion Exercise 6
	Slide 10: Merge Sort
	Slide 11: Longest Sequence
	Slide 12: Longest Sequence
	Slide 13: Longest Sequence
	Slide 14: Longest Sequence
	Slide 15: Longest Sequence
	Slide 16: Plan für heute
	Slide 17: Lecture Recap
	Slide 18: Creating Threads: extends Thread (old)
	Slide 19: Creating Threads: impl Runnable (better)
	Slide 20
	Slide 21: Thread Quiz: Spot the mistake
	Slide 22: Thread Quiz: Spot the mistake
	Slide 23: Thread Quiz: Spot the mistake
	Slide 24: Thread Quiz: Spot the mistake
	Slide 25: Thread Safe Counter
	Slide 26: Thread Safe Counter
	Slide 27: Thread Safe Counter
	Slide 28: Java: The synchronized keyword
	Slide 29: What exactly is a lock/monitor?
	Slide 30: What exactly is a lock/monitor?
	Slide 31: What exactly is a lock/monitor?
	Slide 32: What exactly is a lock/monitor?
	Slide 33: What exactly is a lock/monitor?
	Slide 34: java.util.concurrent.Lock Interface
	Slide 35: What exactly is a lock/monitor?
	Slide 36: What exactly is a lock/monitor?
	Slide 37: What exactly is a lock/monitor?
	Slide 38: What exactly is a lock/monitor?
	Slide 39: Lock Flexibility
	Slide 40: Lock Flexibility
	Slide 41: Lock Flexibility
	Slide 42: Lock Flexibility
	Slide 43: Implementing Classes of java.util.concurrent.Lock
	Slide 44: Basic Synchronization Rule
	Slide 45: Synchronization Issues
	Slide 46: Synchronization Issues
	Slide 47: Synchronization Issues
	Slide 48: Synchronization Issues
	Slide 49: Quiz: What is wrong with this code?
	Slide 50: Quiz: What is wrong with this code?
	Slide 51
	Slide 52: Possible solution
	Slide 53: Deadlocks and Race conditions
	Slide 54: Wait and Notify Recap
	Slide 55: Producer-Consumer Problem
	Slide 56: How to use wait/notify
	Slide 57: Remember? Thread State Model
	Slide 58: Remember? Thread State Model
	Slide 59: Wait and Notify Recap
	Slide 60: Wait and Notify Recap
	Slide 61: Wait/notify “Template”
	Slide 62: Wait/notify “Template”
	Slide 63: Wait/notify “Template”
	Slide 64: Is that all?
	Slide 65: No, it must be inside a synchronized block!
	Slide 66: Pipelining: Main Concepts Recap
	Slide 67: Pipelining: Main Concepts Recap
	Slide 68: Pipelining: Main Concepts Recap
	Slide 69: Pipelining: Main Concepts Recap
	Slide 70: Divide and Conquer
	Slide 71: Divide and Conquer
	Slide 72: Divide and Conquer
	Slide 73: Divide and Conquer
	Slide 74: Divide and Conquer
	Slide 75: Will this work?
	Slide 76
	Slide 77
	Slide 78
	Slide 79: Does this fix our issue?
	Slide 80: No. Java Threads are too heavyweight. What should we do?
	Slide 81: ExecutorService!
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86: Does this fix our issue?
	Slide 87: No. We have dependencies between tasks
	Slide 88
	Slide 89
	Slide 90
	Slide 91: Big Picture
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97: Plan für heute
	Slide 98: The Future
	Slide 99: Was ist volatile?
	Slide 100: Was ist volatile?
	Slide 101: Was ist volatile?
	Slide 102: Volatile Keyword
	Slide 103: Volatile Keyword
	Slide 104: Volatile Keyword
	Slide 105: Volatile Keyword
	Slide 106: Volatile Keyword
	Slide 107: Volatile Keyword
	Slide 108: Volatile Keyword
	Slide 109: Volatile Summary
	Slide 110: Volatile
	Slide 111: Volatile
	Slide 112: Deckers Lock
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119: Deckers Lock
	Slide 120: Petersons Lock
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126: Peterson Lock
	Slide 127: Peterson Lock
	Slide 128: Deckers Lock & Peterson Lock
	Slide 129: Can we build a lock with atomics?
	Slide 130: Can we build a lock with atomics?
	Slide 131: Plan für heute
	Slide 132: Pre-Discussion Exercise 7
	Slide 133: Exercise 7
	Slide 134: Multi-threaded Implementation
	Slide 135: Thread-Safe – transferMoney()
	Slide 136: Performance of transferMoney()
	Slide 137: ThreadSafe - sumAccounts()
	Slide 138: Testing
	Slide 139: Plan für heute
	Slide 140: Old Exam Task (FS 2023)
	Slide 141: Old Exam Task (FS 2023)
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157: Extra Tasks
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162: Plan für heute
	Slide 163: Kahoot!!
	Slide 164
	Slide 165: Feedback
	Slide 166: Danke

