Parallele Programmierung FS25

Exercise Session 8
Jonas Wetzel

Plan fur heute

* Organisation

* Nachbesprechung Exercise 7
* Theory

* Intro Exercise 8

e Exam Questions

* Kahoot

Organisation

e Mein Name ist Jonas Wetzel

* Meine Website (Materialien und Inhalt der Ubungen):
n.ethz.ch/~jwetzel

 Meine Email: jwetzel@ethz.ch

* Discord: @jonas.too

mailto:jwetzel@ethz.ch

Organisation

e Mein Name ist Jonas Wetzel

* Meine Website (Materialien und Inhalt der Ubungen):
n.ethz.ch/~jwetzel

 Meine Email: jwetzel@ethz.ch

* Discord: @jonas.too
* Feedback zur Session: https://forms.gle/qiDngkfSP2NUQGvc9Y

mailto:jwetzel@ethz.ch
https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

* Feedback zur Session: https://forms.gle/qiDngkfSP2NUQGvc9

e Falls ihr Feedback mochtet kommt bitte zu mir

https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

* Wo sind wir jetzt?

So far:

* Programming with locks and critical sections
* Key guidelines and trade-offs
* Bad interleavings (high level races)

Now:

®» The unfortunate reality of parallel programming in practice — memory models

* Why you must avoid data races (= low level races / memory reorderings)
» |mplementation of a Mutex with Atomic Registers

Dekker’s algorithm

Peterson’s algorithm

Interested in Bachelor/Semester project?
http://spcl.inf.ethz.ch/SeMa

Plan fur heute

* Organisation

* Nachbesprechung Exercise 7
* Theory

* Intro Exercise 8

e Exam Questions

* Kahoot

Post-Discussion
Exercise /

Essential

Feedback for Assignment 7

* What is wrong with the following code snippet?

public synchronized boolean transferMoney(Account from, Account to, int amount) {

return true;

10

Essential

Feedback for Assignment 7

* What we should have done for avoiding deadlocks

public class Account ... {

private final Lock lock = new ReentrantLock();

11

Essential

Feedback for Assignment 7

* What we should have done for avoiding deadlocks

public class BankingSystem {

public boolean transferMoney(Account from, Account to, aint amount) {
Account first, second;
// Introduce lock ordering:
if (to.getld() > from.getld()) {
first = from; second = to;
} else {
first = to; second = from;

}

12

Feedback for Assignment 7

* Acquire locks, use finally to always release the locks
public class BankingSystem {

public boolean transferMoney(Account from, Account to, int amount) {

first.getLock().lock();
second.getLock().lock();

try {

} finally {
first.getLock().unlock();
second.getLock().unlock();

13

Feedback for Assignment 7

e Summing up: How to do it safe

Lock each account before reading out its balance, but don’t release the lock until all
accounts are summed up.
=> Two-phase locking

In the first phase locks will be acquired without releasing,
in the second phase locks will be released.

—=> Deadlocks still a problem

=> Ordered locking required

14

How do we get livelocks?

* See livelock example
* Go over solution?

Plan fur heute

* Organisation

* Nachbesprechung Exercise 7
* Theory

* Intro Exercise 8

e Exam Questions

* Kahoot

| recommend reading:

THE ART
%
MULTIPROCESSOR
PROGRAMMING

. ¥

Maurice Herlihy & Nir Shavit

The Art of Multiprocessor Programming: An excellent
book that covers almost everything from the lecture,
especially for the second part of the course.

(WARNING: The 2008 version of the book has some
small mistakes!)

Motivation

class C {
private int x = 0;
private int y = 0;
Thread 1
X = 1;
y = 1;
}
Thread 2

int a = y;
int b = Xx;
assert(b >= a);

, } Can this fail?

Another proof

class C {
private int x = 0;
private int y = 0;
Thread 1
X = 1;
y = 1;
}

int a = y;
int b = x;
assert(b >= a);

There is no interleaving of £ and g causing the assertion to fail

Another proof

class C {
private int x = 0;
private int y = 0;
Thread 1
X = 1;
y = 1;
}
Thread 2

int a = y;
int b = x;
assert(b >= a);

There is no interleaving of £ and g causing the assertion to fail
Another proof (by contradiction):

Assume b<a [0 a==1 and b==0.

Another proof

class C {
private int x = 0;
private int y = 0;
Thread 1
X = 1;
y = 1;
}
Thread 2

int a = y;
int b = x;
assert(b >= a);

There is no interleaving of £ and g causing the assertion to fail
Another proof (by contradiction):

Assume b<a [0 a==1 and b==0.

But if a

=1 [y=1 happened before a=y.
0 b=x happened before x=1.

Because we assume that programs execute in order:

a=y happened before b=x
x=1 happened before y=1

Another proof

class C {
private int x = 0;
private int y = 0;
Thread 1
X = 1;
y = 1;
}
Thread 2

int a = y;
int b = x;
assert(b >= a);

There is no interleaving of £ and g causing the assertion to fail
Another proof (by contradiction):

Assume b<a [0 a==1 and b==0.

But if a

=1 [y=1 happened before a=y.
0 b=x happened before x=1.

Because we assume that programs execute in order:

a=y happened before b=x
x=1 happened before y=1

So by transitivity,
a=y happened before b=x happened before x=1 happened before
y=1 happened before a=y [Contradiction ¢

But does this really work?

No

Optimizations by Compiler
Optimizations by Hardware

(basically the Memory Reordering)

Why it still can fail: Memory reordering

Rule of thumb: Compiler and hardware allowed to make changes that do

not affect the semantics of a sequentially executed program

void f() {
X =
y:
Z =
}

1;
X+1;
X+1;

semantically
equivalent?

X
Z

y

void f() {

15
X+1;
X+1;

semantically
equivalent?

Are these semantically equivalent?

X
Z

y

void f() {

Example: Fail with self-made rendezvous (C / GCC)

int x;

void wait() {
X = 1;
while(x==1);
¥

Assembly without optimization

movl $Ox1, x
test:

mov X, %eax
cmp $0x1, %eax
je test

void arrive(){
X = 2;

movl $Ox2, x

Example: Fail with self-made rendezvous (C / GCC)

int x;

void wait() {
X = 1;
while(x==1);
}

Assembly without optimization

movl $Ox1, x
test:

mov X, %eax
cmp $0x1, %eax
je test

void arrive(){
X = 2;

je: jump (only) if equal,

i.e., if cmp yields true

movl $Ox2, x

Example: Fail with self-made rendezvous (C / GCC)

int x;

void wait() {
X = 1;
while(x==1);
}

Assembly without optimization

movl $Ox1, x

test:

mov X, %eax
cmp $0x1, %eax

je test

void arrive(){
X = 2;

movl $0x2, x

je: jump (only) if equal,

i.e., if cmp yields true

Assembly with optimization

movl $Ox1, x

test:
j test :::>

jmp
jmp: jump always

movl $0x2, x

Memory hierachy (one core)

fast, low latency, high cost, low capacity

slow, high latency latency, low cost, high capacity

20

Memory hierachy (many cores)

21

Why memory models, x86 example

x=y=0

Thread‘/\;rhread :
x=1 y=1
| =Y I =X

What could be the result?

Why memory models, x86 example

x=y=0

Thread‘/\rhread 5
x=1 y=1
| =Y i =X

What could be the result?

oOFr O

[WS U S—

Java Memory Model (JMM): Necessary basics

[0 JMM restricts allowable outcomes of programs

0 You saw that if we don’t have these operations (volatile, synchronized etc.) — outcome can be “arbitrary” (not quite
correct, say unexpected [I)

[JMM defines Actions: read(x) :1 “read variable x, the value read is 1”

[l Executions combine actions with ordering:
0 Program Order
0 Synchronizes-with
0 Synchronization Order
0 Happens-before

JMM: Program Order (PO)

[

Program order is a total order of intra-thread actions

0 Program statements are NOT a total order across threads!

Program order does not provide an ordering guarantee for memory accesses!

0 The only reason it exists is to provide the link between possible executions and the original program.

Intra-thread consistency: Per thread, the PO order is consistent with the thread’s isolated execution

if (x == 2) { read(}:}:ﬁi po if (x == 2) { |read(}:):2
y = 1; write(y,1) y = 1; X
} else { } else {
} z = 1; po z = 1; |write(z,1}
rl = y; read(y):1 ’ o

rli = y; ‘read(}f):l‘

JMM: Synchronization Actions (SA) and Synchronization Order (SO)

[0 Synchronization actions are:

[0 Read/write of a volatile variable
Lock monitor, unlock monitor
First/last action of a thread (synthetic)
Actions which start a thread

O O O O

Actions which determine if a thread has terminated

JMM: Synchronization Actions (SA) and Synchronization Order (SO)

[0 Synchronization actions are:

[0 Read/write of a volatile variable
Lock monitor, unlock monitor
First/last action of a thread (synthetic)
Actions which start a thread

O O O O

Actions which determine if a thread has terminated

[0 Synchronization Actions form the Synchronization Order (SO)
0 SOis atotal order
0 All threads see SA in the same order
0 SA within a thread are in PO
[SO is consistent: all reads in SO see the last writes in SO

JMM: Synchronizes-With (SW) / Happens-Before (HB) orders

SW only pairs the specific actions which "see" each other

The transitive closure of PO and SW forms HB

HB consistency: When reading a variable, we see either the last write (in HB) or any other unordered
write.

[]
[A volatile write to x synchronizes with subsequent read of x (subsequent in SO)
[
(]

[0 This means races are allowed!

Happens-before

Ways to achieve a

Program order Synchronizes-with
happens-before relationship Within a|single “ ¥ Between
thread ' | threads
: l . | . |
Ways to achieve a Mutex Thread Acquire & release
synchronizes-with relationship lock/unlock create/join semantics
: | y I g I : | :
Constructs which provide C++11 Acquire & release | volatile types| | volatile types in
acquire & release semantics | atomic types fences in Java Microsoft C/C++
: l . | . 1 .
APls which expose C++11 Mintomic Platform-specific

acquire & release fences fences fences memory fences

volatile int x, vy,
x =1, y = 1;

int rl = vy, | int r2 = x;

Exercise: List all outcomes
(r1,r2) allowed by the JMM.

Example

int x; volatile int g;

write(x, 1)

write(g, 1)

int rl = g;
hb

int r2 = x;

read(g):1

read(x):1

hb

38

Example

int x; volatile int g;

Case

1; |write(x, 1)||int rl = g
hb hb
1; |write(g, 1) || int r2 = x

hb
1: HB consistent, observe the latest write in —

(r1,72) = (1,1)

»

¥

read(g):1

read(x):1

hb

int x; volatile int g;

write(x, 1)

write(g, 1)

int rl

int r2

g

X5

read(g) :0

read(x) :0

hb

38

Example

int x; volatile int g; int x; volatile int g;
x = 1; |write(x, 1) || int rl = g; |read(g):1 x = 1; |write(x, 1) || int rl = g; |read(g):0
hb hb hb hb hb
g =1; |write(g, 1 ||int r2 = x; |read(x):1 g =1; |write(g, 1) ||int r2 = x; |read(x):0

Case 2: HB consistent, observe the default value

. . . hb
Case 1: HB consistent, observe the latest write in — (r1,72) = (0,0)

(r1,72) = (1,1)

int x; volatile int g;

x = 1; |write(x, 1) || int ri g; |read(g):0
hb hb

g =1; |write(g, 1) || int r2 X; |read(x):1

38

Exampl

e

int x; volatile int g;

write(x, 1)

x =1;
hb
g =1;

write(g, 1)

int rl =g

hb

»

int r2 = x;

read(g):1

read(x):1

hb
Case 1: HB consistent, observe the latest write in —
(r1,72) = (1,1)

int x; volatile int g;

hb

write(x, 1)

int ri

write(g, 1)

int r2

g

£

read(g) :0

read(x):1

Case 3: HB consistent (!), reading via race!
(r1,72) = (0,1)

hb

int x; volatile int g;

write(x, 1)

write(g, 1)

int rl = g;

int r2 X;

(r1,72) = (0,0)

int x; volatile int g;

read(g) :0

hb

read(x) :0

Case 2: HB consistent, observe the default value

1; |write(x, 1)

1; |write(g, 1)

int rl = g;
hb
int r2 = x;

read(g):1

read(x) :0

hb

Lecture recap: Program Order

* The code in a program is executed in a certain order
* Executing a line of code means some “action” is happening - we can
look at the code and define a partial order of these actions!

if (x ==

2) {

read(x):2‘

write(y,1)

read(y):1

pPo

po

if (x == 2) { [read(x):2
y = 13

} else {
z = 1; write(z,1)

ri = y; read(y):l‘

Essential

X

po

43

Lecture recap: Program Order

e PO: Transitive closure of “Action from statement S1 happens before

that of S2 (if they both happen)”
* This is a partial order because the relation is not total, i.e. not all

statements are part of every execution!

if (x == 2) { read(x):21\ e if (x == 2) { [read(x):2

y = 1; write(y,1) y = 1; x
} else { } else {

z = 1; po z = 1; write(z,1)
} } po
rl =y, read(y):1 rl = y; read(y):l‘

44

Essential

Lecture recap: Program Order

* We want to allow the compiler / hardware to optimize our code, i.e.
remove useless code:

* int a=0;

e for (inti=0; i<10 i++) {a++;}

* |n sequential code we would expect this to be “rewritten” to a=10
since anyway nobody sees the intermediate values.

 But whatif ais shared?

45

Lecture recap: Synchronization Actions (SAs)

Java defines synchronization actions (read/write of volatile variable,
lock/unlock, etc.)

SAs within thread obeys PO

All threads see SAs in the same order (synchronization order SO)
Reads are consistent in SO (see the last written value)

46

Lecture recap: Synchronizes With

* SAs accross threads synchronize with each other, i.e., a volatile read
sees the last value written by another thread

* Transitive closure of PO and SW forms happens before order

e All values we observe must obey this happens before order!

47

Lecture recap: Happens-before relationship

Two actions can be ordered by a happens-before relationship. If one
action happens-before another, then the first is visible to and ordered
before the second.

* Transitive closure of PO and SW forms happens before order

e All values we observe must obey this happens before order!

 |f x and y are actions of the same thread and x comes
nefore y In program order, then hb(x, y).

* |f an action x synchronizes-with a following action y, then we
also have hb(x, y).

If hb(X, y) and hb(y, z), then hb(x, z).

48

Examples int x; volatile int

T -
2

x = 1; |write(x, 1) || int rl
hb hb
g =1; Iw‘rite{g. 1}‘ int r2

* [nitial value of x,y is O.

gs

s

read(g):1

read(x) :1

hb

Essential

 We can either getrl,r2 =(0,0), (1,1) or (0,1) NOT (1,0) from this code!

* Above we show the HB order for (1,1)
 What must happen for (0,0)?

49

Examples

int x; volatile int g;

x = 1; |write(x, 1) || 1nt ril g; |read(g):0

g =1; |write(g, 1) || int r2 ¥: |read(x):0

* |nitial value of x,y is O.
 What must happen for (0,0)? - right thread runs first!

hb

Essential

50

Lecture recap: State Space Diagram

 When dealing with mutual exclusion problems, we should focus on:
* the structure of the underlying state space, and
* the state transitions that occur

* Remember the state diagram captures the entire state space and all
possible computations (execution paths a program may take)

* A good solution will have a state space with no bad states

51

Lecture recap: State Space Diagram

turn = 1;

Essential

Process P

do

pl: Non-critical section P
p2: whileturn!=1

p3: Critical section

p4. turn=2

Process Q

do

gl: Non-critical section Q
g2: whileturn!=2

g3: Critical section

g4d: turn=1

pl,ql,1

2,q1,1

/j:

) |

il

3,q1,1

o

I

p4,ql1,1

Non-critical section P
while turn 1= 1
Critical section

turn = 2

Essential

Non-critical section Q
while turn 1= 2
Critical section

turn =1

Essential

Correctness of Mutual exclusion

 “Statements from the critical sections of two or more processes must
not be interleaved.”

 We can see that there is no state in which the program counters of
both P and Q point to statements in their critical sections

e Mutual exclusion holds!

54

Essential

Freedom from deadlock

 “If some processes are trying to enter their critical sections then one
of them must eventually succeed.”

* Pistrying to enter its CS when the control pointer is at p2
(awaiting turn to have the value 1. p2: turn==1)

 Qistrying to enter its CS when the control pointer is at g2
(q2: turn==2)

55

Essential

Freedom from deadlock

Since the behaviour of processes P and Q is symmetrical, we only
have to check what happens for one of the processes, say P.

Freedom from deadlock means that from any state where a process
wishes to enter its CS (by awaiting its turn), there is always a path
(sequence of transitions) leading to it entering its CS.

i.e. the control pointer can always move to point to p3

Freedom from deadlock

Typically, a deadlocked state has no transitions leading from it, i.e. no
statement is able to be executed.

Sometimes a cycle of transitions may exist from a state for each
process, from which no useful progress in the parallel program can
be made. The program is still deadlocked but this situation is
sometimes termed ‘livelock’. Every one is ‘busy doing nothing’.

57

pl,ql,l

p2,q91,1 p2,92,1

p3,q1,1 P3,92,1

iim o

1 p2,93,2 p2,94,2

P4-q1-}/ p4,92, l

There is always a path for P to execute p2 (turn==1)

Essential

Freedom from individual starvation

* “If any process tries to enter its critical section then that process must
eventually succeed.”

e |f a process is wishing to enter its CS (awaiting its turn) and another
process refuses to set the turn, the first process is said to be starved.

* Possible starvation reveals itself as cycles in the state diagram.
* Because the definition of the critical section problem allows for a

process to not make progress from its Non-critical section, starvation
is, in general, possible in this example

59

If a process does not make progress
from its Non-critical section, starvation
is possible in this example

Atomic operations

* An atomic action is one that effectively happens at once i.e. this action
cannot stop in the middle nor be interleaved

* |t either happens completely, or it doesn’t happen at all.

* No side effects of an atomic action are visible until the action is complete

61

Hardware support for atomic operations

 Test-And-Set (TAS)
 Compare-And-Swap (CAS)

 Load Linked / Store Conditional

http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

62

http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

Hardware Semantics

boolean TAS(memref s) Int CAS (memref a, int old, int new)
If (mem[s] ==0) { oldval = mem[a];
mem|s] = 1; _
If (old == oldval)

return true,

} else mem[a] = new;

return false; return oldval:

63

atomically set to value iff
current value is . Return
true on success.

sets and returns
previous value.

64

But why do these operations work without
volatile?

The memory effects for accesses and updates of atomics generally follow the rules for
volatiles, as stated in The Java Language Specification (17.4 Memory Model):

* get has the memory effects of reading a volatile variable.
* set has the memory effects of writing (assigning) a volatile variable.

Source: https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html

65

https://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.4

Was ist volatile?

* Wir wollen Locks selber bauen
* Wie machen wir das?

Was ist volatile?

* Wir wollen Locks selber bauen

 Wie machen wir das?
* Atomics geben uns eine Moglichkeit
 Was wenn wir keine atomics haben?

Was ist volatile?

* Wir wollen Locks selber bauen

 Wie machen wir das?
* Atomics geben uns eine Moglichkeit
 Was wenn wir keine atomics haben?

* \Volatile!

Volatile Keyword

* When multiple threads access a shared variable, each thread may
keep local copy in its CPU cache, updates might not be
iImmediately visible to other threads

* Volatile gives us visibility guarantee!

Volatile Keyword

* VVolatile variable ensures that any

read or write operation always ass Bamte {
happens directly in main memory, !ltpm Ry
so all threads see latest value on | roming = fole

next read

void run() {
while (running) {

Volatile Keyword

* Without volatile, another thread
calling stop() might not be seen by | JEESESEEE

private volatile boolean running = true;

the run() method because the CPU I

might cache running locally | ruantng = false

void run() {
while (running) {

* With volatile, the change to running
IS guaranteed to be visible to all
threads

Volatile Keyword

* |t also prevents optimizations like out of order execution from
happening!

* Java Memory Model allows JVM and CPU to reorder instructions
for optimization

Volatile Keyword

* Without volatile, compiler or CPU
might reorder (1) and (2), leading
reader() to see flag == true but still
read old value of x

* With volatile, (2) happens after (1),
ensuring x =42 is visible before flag =
true is read.

PProgFS25 - Jonas Wetzel

class Example {
private int x = 0;
private volatile boolean flag = false;

void writer() {

X = ;
flag = true;

hy

void reader() {
if (flag) {
System.out.println(x);

Volatile Keyword

* \Volatile has limitations

* Does not prevent race conditions: volatile ensures visibility but
not atomicity for compound actions like count++

* Not a replacement for synchronization: It doesn’t provide mutual
exclusion (locking)

PProgFS25 - Jonas Wetzel

Volatile Keyword ETp——

private volatile int count = 0;

void increment() {
count++;

* \Volatile has limitations

* Does not prevent race
conditions: volatile ensures
visibility but not atomicity for
compound actions like count++

PProgFS25 - Jonas Wetzel

* Not a replacement for
synchronization: It doesn’t D) | _
. . private AtomicInteger count = new AtomicInteger(0):;
provide mutual exclusion
void increment() {

(lOCk|ng) count.incrementAndGet();

Volatile Summary

* Volatile ensures that all reads and writes go directly to main
memory, preventing stale values

* It prevents instruction reordering
* |t does NOT provide atomicity or mutual exclusion

* Suitable for simple flags and state indicators, but not for counters
or complex data structures

Volatile Code Example

* See code Visibility.java

Volatile

* Suitable for simple flags and state indicators, but not for counters
or complex data structures

e Can we build a lock with that?

Volatile

* Suitable for simple flags and state indicators, but not for counters
or complex data structures

e Can we build a lock with that?

* Yes, as we’ll see in the next few minutes

Beyond Locks Recap

Assumptions Will make

«atomic» more
In the following we assume precise today.

1) atomic reads and writes of variables of primitive type

You know
how to fix this

with volatile!

2) no reordering of read and write sequences (! not true in practice ! here for simplicity !)
3) threads entering a critical section will leave it eventually

Otherwise we assume a multithreaded environment where processes can interleave arbitrarily.
We make no assumptions for progress outside of critical sections (i.e., threads may stall outside of a CS)!

Critical sections

Pieces of code with the following conditions
1. Mutual exclusion: statements from critical sections of two or more processes must not be interleaved

2. Freedom from deadlock: if some processes are trying to enter a critical section then one of them must
eventually succeed

3. Freedom from starvation: if any process tries to enter its critical section, then that process must
eventually succeed

According to M. Ben Ari, Principles of Concurrent and Distributed Programming

Critical section problem

global (shared) variables

Process P Process Q

local variables local variables

loop loop
non-critical section non-critical section
preprotocol preprotocol
critical section critical section

postprotocol postprotocol

Mutual exclusion for 2 processes -- 1st Try

volatile boolean wantp=false, wantg=false

Process P Process Q

local variables local variables

loop loop

p1 non-critical section q1 non-critical section
p2 while(wantq); q2 while(wantp);

p3 wantp = true q3 wantq = true

p4 critical section q4 critical section

PS5 wantp = false qs wantq = false

Lecture recap: State Space Diagram

 When dealing with mutual exclusion problems, we should focus on:
* the structure of the underlying state space, and
* the state transitions that occur

* Remember the state diagram captures the entire state space and all
possible computations (execution paths a program may take)

* A good solution will have a state space with no bad states

85

State space diagram [p, q, wantp, wantq]

1 non-critical section 2 while(wantp)3 wantp = true

pl, ql, false, false

while(wantq)

wantqg = true

4 critical section

5 wantp = false
wantq = false

p1
p2
p3
p4
p5

non-critical section
while(wantq);
wantp = true
critical section

wantp = false

State space diagram [p, q, wantp, wantq]

1 non-critical section 2 while(wantp)3 wantp = true
while(wantg) wantq = true

pl, ql, false, false =P p2, ql, false, false

'

pl, g2, false, false

4 critical section

5 wantp = false
wantq = false

p1
p2
p3

p5

non-critical section
while(wantq);
wantp = true
critical section

wantp = false

State space diagram [p, q, wantp, wantq]

1 non-critical section 2 while(wantp)3 wantp = true
while(wantq) wantq =true

4 critical section 5 wantp = false

wantq = false

p1 non-critical section

p2 while(wantq);
p3 wantp = true
p4 critical section
p5 wantp = false

pl, ql, false, false == p2 ql, false, false == p3 1, false, false ——)
¢ { {

pl, g2, false, false == p2 2, false, false == p3 2, false, false ——)
‘ ' |

pl, g3, false, false === p2, g3, false, false e====Pp p3, g3, false, false =)
‘ ' '

pl, q4, false, true === p2, q4, false, true p3, a4, false, true ==

p4, ql, true, false

'

p4, g2, true, false

p4, g3, true, false

‘

p4, g4, true, true

Reduced state space diagram [p, q, wantp, wantqg] — only states 2, 3, and 5

1 non-critical section 2 await wantg ==false 3 _ wantp=true 4 critical section

............................ await wantp —— false wantq - true
All of interest covered:

v ¥ v
¥ p2,q2, false, false == p3 g2, false, false =P p5, g2, true, false

®e
°
°
LT R ; ° ' o0 ®
®00000000ec M. . e s ese0ee Qoo
..... ° ° eoo0eo0000 °
..... ."..OOoooooo.ooooooooooooo..o oooo.oo.oooooooooooo..ooooooooooo' °
° ° °
- -

¥ p2,0q3, false, false === p3, g3, false, false =P p5, g3, true, false

®e
L]
.
....... : N Seceee
....... ° ecoo0o0o®
ooooooooo .~.oooooooooooooooooo.ooo.ooo 000000o;oooooo.ooooooaoooooocooooooo ° :
L] L] []
(]

» p2,q5, false, true p3, q5, false, true =P p5 @5, true, true

no mutual exclusion !

5 wantp = false
wantq = false

7

p1
p2

\

0o O N
non-critical section

while(wantq);

p3

wantp = true

Vp4
p5

\

critical section

wantp = false

Mutual exclusion for 2 processes -- 2nd Try

volatile boolean wantp=false, wantg=false

Process P Process Q Do you see the problem?
local variables local variables

loop loop

pl non-critical section ql non-critical section

p2 wantp = true q2 wantq = true

p3 while(wantq); q3 while(wantp):

pa critical section q4 critical section

PS5 wantp = false g5 wantq = false

Ul &= W N =

State space diagram [p, q, wantp, wantq]

1 non-critical section 2 wantp=true 3 while(wantp) 4
wantq = true while(wantq)

v p2,92, false, false =P p3, g2, true, false

critical section

5 wantp = false
wantq = false

el p5, g2, true, false

P2, g5, false, true =P p3, g5, true, true

non-critical section
wantq = true
while(wantp):
critical section

wantq = false

deadlock !

Mutual exclusion for 2 processes -- 3rd Try

volatile int turn = 1;

Process P Process Q Do you see the problem?
local variables local variables

loop loop

pl non-critical section ql non-critical section

p2 while(turn 1= 1); q2 while(turn 1= 2);

p3 critical section q3 critical section

pa turn=2 q4 turn=1

State space diagram [p, q, turn]

starvation!

17

Correctness of Mutual exclusion

 “Statements from the critical sections of two or more processes must
not be interleaved.”

 We can see that there is no state in which the program counters of
both P and Q point to statements in their critical sections

94

Freedom from deadlock

 “If some processes are trying to enter their critical sections then one
of them must eventually succeed.”

* We don’t have a situation when the processes aren’t making any
progress anymore

95

Freedom from deadlock

* Since the behaviour of processes P and Q is symmetrical, we only
have to check what happens for one of the processes, say P.

* Freedom from deadlock means that from any state where a process
wishes to enter its CS (by awaiting its turn), there is always a path
(sequence of transitions) leading to it entering its CS.

96

Freedom from deadlock

Typically, a deadlocked state has no transitions leading from it, i.e. no
statement is able to be executed.

Sometimes a cycle of transitions may exist from a state for each
process, from which no useful progress in the parallel program can
be made. The program is still deadlocked but this situation is
sometimes termed ‘livelock’. Every one is ‘busy doing nothing’.

97

Freedom from individual starvation

* “If any process tries to enter its critical section then that process must
eventually succeed.”

e |f a process is wishing to enter its CS (awaiting its turn) and another
process refuses to set the turn, the first process is said to be starved.

* Possible starvation reveals itself as cycles in the state diagram.
* Because the definition of the critical section problem allows for a

process to not make progress from its Non-critical section, starvation
is, in general, possible in this example

98

So how do we fix our attempts?

Deckers Lock

* Each thread sets its flag[id] = true to indicate that it wants access
to critical section

* |f other thread also wants access, they use turn variable to decide
who goes first

* Ifit's not thread's turn, it backs off, resets its flag, and waits for its
turn

* After exiting critical section, thread gives turn to the other thread
and resets its flag

A combination of the tries 2 and 3: Decker’s Algorithm

volatile boolean wantp=false, wantqg=false, integer turn=1

Process P Process Q
loop loop

non-critical section
wantp = true
while (wantq) {
if (turn == 2) {
wantp = false;
while(turn 1= 1);
wantp = true; }}
critical section
turn=2
wantp = false

non-critical section
wantq = true
while (wantp) {
if (turn==1) {
wantq = false
while(turn 1= 2);
wantq = true; }}
critical section
turn=1
wantq = false

A combination of the tries 2 and 3: Decker’s Algorithm

volatile boolean wantp=false, wantqg=false, integer turn=1

Process P only when q Process Q
loop tries to get loop

non-critical section
wantp = true
while (wantq) {
if (turn == 2) {
wantp = false;
while(turn 1= 1);
wantp = true; }}
critical section
turn=2
wantp = false

lock

non-critical section
wantq = true
while (wantp) {
if (turn ==1) {
wantq = false
while(turn 1= 2);
wantq = true; }}
critical section
turn=1
wantq = false

A combination of the tries 2 and 3: Decker’s Algorithm

volatile boolean wantp=false, wantqg=false, integer turn=1

Process P only when q Process Q

loop tries to get loop
non-critical section lock non-critical section
wantp = true and g has wantq = true
while (wantq) { preference while (wantp) {

if (turn == 2) {
wantp = false;
while(turn !=1);
wantp = true; }}
critical section
turn=2
wantp = false

if (turn==1) {
wantq = false
while(turn != 2);
wantq = true; }}
critical section
turn=1
wantq = false

A combination of the tries 2 and 3: Decker’s Algorithm

volatile boolean wantp=false, wantqg=false, integer turn=1

Process P only when q Process Q

loop tries to get loop
non-critical section lock non-critical section
wantp = true and g has wantq = true
while (wantq) { preference while (wantp) {

if (turn == 2) {
wantp = false;
while(turn !=1);
wantp = true; }}
critical section
turn=2
wantp = false

let q proceed

if (turn ==1) {
wantq = false
while(turn != 2);
wantq = true; }}
critical section
turn=1
wantq = false

A combination of the tries 2 and 3: Decker’s Algorithm

volatile boolean wantp=false, wantqg=false, integer turn=1

Process P

loop

non-critical section
wantp = true
while (wantq) {
if (turn == 2) {
wantp = false;
while(turn 1= 1);
wantp = true; }}
critical section
turn=2
wantp = false

only when g
tries to get
lock

and g has
preference

let g proceed

and wait

Process Q

non-critical section
wantq = true
while (wantp) {
if (turn ==1) {
wantq = false
while(turn 1= 2);
wantq = true; }}
critical section
turn=1
wantq = false

A combination of the tries 2 and 3: Decker’s Algorithm

volatile boolean wantp=false, wantqg=false, integer turn=1

Process P

loop

non-critical section
wantp = true
while (wantq) {
if (turn == 2) {
wantp = false;
while(turn 1= 1);
wantp = true; }}
critical section
turn=2
wantp = false

only when g
tries to get
lock

and g has
preference

let g proceed

and wait

and try again

Process Q

non-critical section
wantq = true
while (wantp) {
if (turn ==1) {
wantq = false
while(turn 1= 2);
wantq = true; }}
critical section
turn=1
wantq = false

Deckers Lock

| Ensures mutual exclusion (only one thread enters the critical
section at a time)

* U< Avoids deadlock by using the turn variable

* L« Provides fairness (both threads get their turn)
« X Limited to two threads (doesn’t scale well)

Petersons Lock

* Each thread sets flag[id] = true to indicate it wants access to the
critical section.

* The thread gives priority to the other thread by setting turn = other.

* If the other thread also wants access (flag[other] == true) and it’s
still its turn, the thread waits.

* Once it gets access, it enters the critical section.

* After exiting, the thread resets flag[id] = false so the other thread
can proceed.

More concise than Decker: Peterson Lock

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim =1

Process P (1) Process Q (2)
loop loop

non-critical section

flag[P] = true

victim=P

while(flag[Q] && victim == P);
critical section

flag[P] = false

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);
critical section

flag[Q] = false

More concise than Decker: Peterson Lock

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim =1

Process P (1) Process Q (2)
loop loop
| am
non-critical section interested non-critical section
flag[P] = true flag[Q] = true
victim=P victim=Q
while(flag[Q] && victim == P); while(flag[P] && victim == Q);
critical section critical section

flag[P] = false flag[Q] = false

More concise than Decker: Peterson Lock

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];

volatile integer victim =1

Process P (1)

loop
non-critical section
flag[P] = true
victim=P

while(flag[Q] && victim =

critical section
flag[P] = false

| am
interested
but you go
first

=P);

Process Q (2)
loop
non-critical section
flag[Q] = true
victim = Q
while(flag[P] && victim == Q);
critical section
flag[Q] = false

More concise than Decker: Peterson Lock

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim =1

Process P (1) Process Q (2)
loop - loop
non-critical section interested non-critical section
flag[P] = true E‘:Sttyou go flag[Q] = true
victim=P victim = Q
while(flag[Q] && victim == P); while(flag[P] && victim == Q);
critical sectian critical section
flag[P] = false e Etare flag[Q] = false

interested

More concise than Decker: Peterson Lock

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim =1

Process P (1)

loop
non-critical seCtion)

victim=P
while(flag[Q] && victim == P);
critical sect
flag[P] = false

Process Q (2)
loop
non-critical section
flag[Q] = true
victim = Q
while(flag[P] && victim == Q);
critical section
flag[Q] = false

19

Peterson Lock

|2 Ensures mutual exclusion (only one thread enters the critical
section at a time)

.« Prevents deadlock (always allows progress)

L« Fair (bounded waiting) (no thread is starved forever)

Lo simpler than Deckers Lock
X{ Works only for two threads (not scalable)

Peterson Lock

|2 Ensures mutual exclusion (only one thread enters the critical
section at a time)

.« Prevents deadlock (always allows progress)

L« Fair (bounded waiting) (no thread is starved forever)

Lo simpler than Deckers Lock
X{ Works only for two threads (not scalable)

* Bakery Lock allows us to extend Peterson Lock Idea to n Threads!
* We’ll see itin like 3 weeks

Deckers Lock & Peterson Lock

e See code for both locks

Can we build a lock with atomics?

e How?

Hardware Semantics

iInt CAS (memref a, int old, int new)
oldval = mem[a];
If (old == oldval)
mem(a] = new,;

return oldval;

118

Can we build a lock with atomics?

PProgFS25 - Jonas Wetzel

* Now you see why we
like atomics so
) class SpinLock {
mUCh. It S mUCh private AtomicBoolean locked = new
Slmpler! AtomicBoolean(false):

import java.util.concurrent.atomic.AtomicBoolean;

public void lock() {
while (!locked.compareAndSet(false, true)) {

}

public void unlock() {
locked.set(false);

}.

Performance of Atomic Lock

* High contention makes performance bad

Plan fur heute

* Organisation

* Nachbesprechung Exercise 7
* Theory

* Intro Exercise 8

e Exam Questions
* Kahoot

Pre-Discussion
Exercise 8

Assignment 8: Overview

- Why do we need a memory model?

- Why don’t we simply tell the compiler “execute everything
exactly as | wrote it”?

- How can we use Javas memory model to reason about
executions?

2.1 When are interleavings bad?

Assume there are two Java threads, sharing the variables v, w, X, y and z. The variables rl and r2 are
private. Assume the code these two threads are executing looks as follows:

Thread 1 | Thread 2
x=23; y=42;

rl =x; 2=y;
v=rl; w=r12;
z=12;

Is the result (the values of the private variables after both threads finish the execution) always the same or
could it depend on the order in which the threads are scheduled?

Thread 1 | Thread 2
X =23; y =42;
rl =x; 2=y;
v=rl; w=r12;
y=2 z=2;

L2 e T T T T

3 Building Blocks of the Java Memory Model

3.1 Relations

A relation is a mathematical concept defined over elements of a set. For example over the set of natural
numbers we know the relation “is less than”. A binary (concerning two elements) relation R over a set .S
can be expressed as ordered pairs over S x S. Instead of (s, s1) € R we often write sgRs;.

Relations can have different properties, for example:

Symmetry: Vsg,s1 € S : soRs1 — s1Rsg
Reflexivity: Vsg € S : sgRsg
Transitivity: Vs, s1,52 € 5 : sgRs1 A s1Rso2 — sgRs2

Show that the relation ’beats™ in the game of rock-paper-scissors is not transitive.

3.2 Transitive Closure
For a relation R we call the smallest relation which contains R and is transitive the transitive closure R+
of R.

For the set S : {a,b,c,d, e, f} and the relation X over S : (a,b), (¢,d), (a,c), (e, f) give the transitive
closure X+,

3.4 Is Program Order Enough?

Program order is great to specify the behaviour of a sequential block of code. A very informal memory
model for sequential code could be “the program should appear as if all statements have been executed in
program order”. One way to achieve that would be to simply exccute every statement when encountered,
without doing any optimizations. However, such a compiler would be wasteful. Imagine a code snippet
such as

int funca() {
for (int i=0; i<9999; i++) {
b=3;
}
return b;

}

How could a compiler optimize funca() so that it still behaves as intended to an "observer” who is simply
calling the function and using the return value?

Note that it is important to be clear which effect of the program are observable. Here we only look at
the return value. Probably printed values should also not change. But if the code uses shared variables
then suddenly another thread could observe how these change their values! We see that simply relying on
program order is not enough, either we disallow all modifications (bad), or we additionally need a set of
observable actions and must ensure that these actions “look like” everything was done in program order.

3.5 Happens Before

‘When reasoning about the behaviour of parallel code, it is often useful to define a "happens before” relation
as well. For the piece of code below (executed by two threads) look at each given output and draw arrows
which indicate in which order statements must have been executed to produce this output. Your "happens
before™ arrows must contain the program order relation for each threads code. Initially the shared variables
x and y are 0.

Output 1: r1=0, r2=1.
Qutput 2: r1=1, r2=1.

4 Javas Memory Model

Plan fur heute

* Organisation

* Nachbesprechung Exercise 7
* Theory

* Intro Exercise 8

* Exam Questions

* Kahoot

essentials

Old Exam Task (FS 2023)

5. (a) Erklaren Sie den Begriff “Deadlock” im Kon- Explain the term “deadlock”™ in the con- (2)
text von gegenseitigem Ausschluss mehrerer text of mutual exclusion in a multi-
Threads. threaded environment.

(b) Was ist der Unterschied zwischen einem What is the difference between a dead- (2)
“Deadlock” und einem “Livelock™? lock and a livelock?

128

essentials

Old Exam Task (FS 2023)

5. (a) Erklaren Sie den Begriff “Deadlock” im Kon- Explain the term “deadlock”™ in the con- (2)
text von gegenseitigem Ausschluss mehrerer text of mutual exclusion in a multi-
Threads. threaded environment.

Solution: A deadlock occurs when no progress can happen in a multi-threaded envi-
ronment because threads wait for each other’s actions.

For mentioning no change in state or the idea thereof with other words (1pt). For
mentioning the idea of waiting on each other/circular wait (1pt). If an example is
provided but no definition is given (1 pt).

(b) Was ist der Unterschied zwischen einem What is the difference between a dead- (2)
“Deadlock” und einem “Livelock”? lock and a livelock?

Solution: In a deadlock the state of the system does not change. In a livelock, the
state of the system changes continuously but without progress being made. (1+1pts)

129

1 public class Main {
2> public static Thread CreateThread(int start) {

3 return new Thread(new Runnable() {

4

5 @0verride

6 public void run() {

7 for (int i = start; i < 7; i+=2) {

8 System.out.println("Number " + i);
9 }

10 }

11 k) 3

12 }

13

14 public static void main(String[] args) throws InterruptedException {
15 CreateThread (1) .start();

16 CreateThread(2) .start();

17, }

18 }

Markieren Sie alle Ausgaben, welche durch Mark all the print sequences that can be

den Codeausschnitt ausgegeben werden produced by running the program shown
konnen. above.

O O O O

1 Number 1 1 Number 1 1 Number 6 1 Number 2

2 Number 2 2 Number 6 2 Number 5 2 Number 4

3 Number 3 3 Number 3 3 Number 4 3 Number 6

4 Number 4 4 Number 4 4 Number 3 4 Number 1

5 Number 5 5 Number 5 5 Number 2 5 Number 3

6 Number 6 6 Number 2 6 Number 1 ¢ Number 5

1 public class Main {
2> public static Thread CreateThread(int start) {

3 return new Thread(new Runnable() {

4

5 @0verride

6 public void run() {

7 for (int i = start; i < 7; i+=2) {

8 System.out.println("Number " + i);
9 }

10 }

11 k) 3

12 }

13

14 public static void main(String[] args) throws InterruptedException {
15 CreateThread (1) .start();

16 CreateThread(2).start();

17, }

18 }

Markieren Sie alle Ausgaben, welche durch Mark all the print sequences that can be

den Codeausschnitt ausgegeben werden produced by running the program shown
konnen. above.

O O O O

1 Number 1 1 Number 1 1 Number 6 1 Number 2

2 Number 2 2 Number 6 2 Number 5 2 Number 4

3 Number 3 3 Number 3 3 Number 4 3 Number 6

4 Number 4 4 Number 4 4 Number 3 4 Number 1

5 Number 5 5 Number 5 5 Number 2 5 Number 3

6 Number 6 6 Number 2 6 Number 1 ¢ Number 5

Fork/Join Framework (16 points)

Der folgende Code zielt darauf ab, ein Bild The following code aims to negate an im-
zu negieren, indem es mithilfe des Fork/Join- age by recursively subdividing it into mul-
Frameworks rekursiv in mehrere Unterfenster tiple subwindows (four per recursion step)
(vier pro Rekursionsschritt) unterteilt wird. Die using the Fork/Join framework. The sub-
Unterfenster kénnen dann parallel negiert wer- windows can then be negated in parallel.
den. Das folgende Beispiel verdeutlicht die Un- The example below illustrates the subdivi-
terteilung des Bildes und die Negierung der ein- sion of the image and negation of the indi-
zelnen Unterfenster. vidual subwindows.

Negate

Bitte lesen Sie den Code sorgfiltig durch und Please read the code carefully and then an-
beantworten Sie dann die Fragen zum Code: swer the questions regarding the code:

public class ImageNegationF] extends RecursiveAction {
final static int CUTOFF = 32;
double[] [] image, invertedImage;
int startx, starty;
int length;

public ImageNegationFJ(double[][] image, doublel][] invertedImage,
int startx, int starty, int length) {
this.image = image;

this.invertedImage = invertedImage;
this.startx = startx;
this.starty = starty;
this.length = length;

@Override
protected void compute() {

@Override
protected void compute() {
if (this.length <= CUTOFF) {
for (int offsetX = @; offsetX < this.length; offsetX++) {
for (int offsetY = 0; offsetY < this.length; offsetY++) {
this.invertedImage[this.startx + offsetX] [this.starty + offsetY] = 1
— this.imagel[this.startx + offsetX] [this.starty + offsetY];

}

} else {

int halfSize = (this.length) / 2;

ImageNegationFJ upperLeft = new ImageNegationFJ(this.image,
this.invertedImage, this.startx, this.starty, halfSize);

ImageNegationFJ upperRight = new ImageNegationFJ(this.image,
this.invertedImage, this.startx + halfSize, this.starty,
halfSize);

ImageNegationF] lowerLeft = new ImageNegationFJ(this.image,
this.invertedImage, this.startx, this.starty + halfSize,
halfSize);

ImageNegationF] lowerRight = new ImageNegationFJ(this.image,
this.invertedImage, this.startx + halfSize,
this.starty + halfSize, halfSize);

upperLeft.fork();

upperLeft.join();

upperRight. fork();

upperRight.join();

lowerLeft.fork();

lowerLeft.join();

lowerRight.compute();

final static int CUTOFF = 32;

double([] [] image, invertedImage;

@0verride
protected void compute() {
if (this.length <= CUTOFF
for (int offsetX = @; offsetX < this.length; offsetX++) {
for (int offsetY = 0; offsetY < this.length; offsetY++) {
this.invertedImage[this.startx + offsetX] [this.starty + offsetY] =1
- this.image[this.startx + offsetX] [this.starty + offsetY];

}

else

int halfSize = (this.length) / 2;

ImageNegationF] upperLeft = new ImageNegationF](this.image,
this.invertedImage, this.startx, this.starty, halfSize);

ImageNegationFJ upperRight = new ImageNegationFJ(this.image,
this.invertedImage, this.startx + halfSize, this.starty,
halfSize);

ImageNegationF] lowerLeft = new ImageNegationFJ](this.image,
this.invertedImage, this.startx, this.starty + halfSize,
halfSize);

ImageNegationF] lowerRight = new ImageNegationFJ](this.image,
this.invertedImage, this.startx + halfSize,
this.starty + halfSize, halfSize);

upperLeft.fork();

upperLeft.join();

upperRight.fork();

upperRight.join();

lowerLeft.fork();

lowerLeft.join();

lowerRight.compute();

(a) Welche Annahme trifft der Code beziiglich What assumption does the code make (2)
der Abmessungen des Arrays, das das Einga- concerning the dimensions of the array
bebild darstellt? representing the input image?

Tobias Steinbrecher @tsteinbreche - 8 months ago - edited 8 months ago v 13 A

The image should be square s X s and we should have s = de, where d < 32. This is necessary, because we want length to be divisible by 2

in the case length > 32.If this would not be the case, we would do floor division and leave pixels unprocessed.

+ Add Comment «++ More

@override
protected void compute() {
if (this.length <= CUTOFF

for (int offsetX = @; offsetX < this.length; offsetX++) {
for (int offsetY = @; offsetY < this.length; offsetY++) {
this.invertedImage[this.startx + offsetX][this.starty + offsetY] = 1
- this.image[this.startx + offsetX] [this.starty + offsetY];

}

else
int halfSize = (this.length) / 2;

ImageNegationF] upperLeft = new ImageNegationFJ(this.image,
this.invertedImage, this.startx, this.starty, halfSize);

ImageNegationF] upperRight = new ImageNegationFJ](this.image,
this.invertedImage, this.startx + halfSize, this.starty,

halfSize);

ImageNegationF] lowerLeft = new ImageNegationFJ](this.image,
this.invertedImage, this.startx, this.starty + halfSize,

halfSize);

ImageNegationF] lowerRight = new ImageNegationFJ(this.image,
this.invertedImage, this.startx + halfSize,
this.starty + halfSize, halfSize);

upperLeft.fork();
upperLeft.join();
upperRight.fork();
upperRight.join();
lowerLeft.fork();
lowerLeft.join();
lowerRight.compute();

(b) Parallelisiert der Code die beabsichtigte Auf-
caha Lrarval-+ Adanr nﬂil\t es xveltere Optill’lie-
2024-07-30T13:53:26.664575+00:00 _ _
rungsmogucnkeen: wenn ja, welche Opti-

mierung wiirden Sie vorschlagen und warum?

Does the code correctly parallelize the
intended task or is there further opti-
mization that could be done?” If so,
which optimization would you propose
and why?

upperLeft.fork();
upperLeft.join();
upperRight. fork();

Not good: upperRight.join();
lowerLeft. fork();
lowerLeft.join();
lowerRight.compute();

Tobias Steinbrecher @tsteinbreche - 8 months ago - edited 7 months ago v

No, the parallelization is incorrect, as we have subsequent fork() and join() calls, which means that we wait for the corresponding

subproblem to be finished, before calling fork() on the next one. To fix this, we should do the following:

upperLeft. fork();
upperRight. fork();
lowerLeft.fork();
lowerRight. compute();
upperLeft.join();
upperRight.join();
lowerLeft.join();

public class ImageNegationFJ extends
final static int CUTOFF = 32;
double[]l[] image, invertedImage;
int startx, starty;
int length;

public ImageNegationFJ(double

RecursiveAction {

image, double invertedImage,

int startx, int starty, int length) {

this.image = image;

this.invertedImage =

this.startx = startx;
this.starty = starty;
this.length = length;

@Override
protected void compute() {

(c) Vervollstindigen Sie das folgende Code-

Sie
tierte ImageNegationFJ Klasse die
ForkJoinPool Klasse verwenden, um die Va-
riable negatedImage mit den negierten Wer-
ten zu fiillen.
double[] [] image = {{0, 1}, {1, 0}};
int imageSize = image.length;
double[] [] negatedImage =

geriist, indem die oben implemen-

und

.....................................

.....................................

invertedImage;

Complete the following code skeleton

by using the above implemented
ImageNegationFJ class and the
ForkJoinPool class to fill the vari-

able negatedImage with the negated
values.

new double[imageSize] [imageSize];

...............

...............

(4)

Tobias Steinbrecher @tsteinbreche - 8 months ago v 10

double[][] image = {{0,1}, {1,0}};

int imageSize = image. length;

double[][] negatedImage = new double[imageSize] [imageSize];

ForkJoinPool fjp = new ForkJoinPool();

ForkJoinTask t = new ImageNegationFJ(image, negatedImage, 0@, 0 ,imageSize);
fip.invoke(t);

+ Add Comment +++ More

(d) Unter der Annahme, die Klasse
ImageNegationFJ korrekt parallelisiert ist,
wie viele Threads verwendet der ForkJoin-
Pool effektiv, um das 2 x 2 negatedImage
Array aus Aufgabe 3c) zu fiillen?

dass

double[] []1 image

@0verride
protected void compute() {
if (this.length <= CUTOFF
for (int offsetX = @; offsetX < this.length; offsetX++) {
for (int offsetY = @; offsetY < this.length; offsetY++) {
this.invertedImage[this.startx + offsetX] [this.starty + offsetY] =1
— this.image[this.startx + offsetX] [this.starty + offsetY];

final

}

else

int halfSize = (this.length) / 2;

ImageNegationF] upperLeft = new ImageNegationFJ(this.image,
this.invertedImage, this.startx, this.starty, halfSize);

ImageNegationF] upperRight = new ImageNegationFJ](this.image,
this.invertedImage, this.startx + halfSize, this.starty,
halfSize);

ImageNegationF] lowerLeft = new ImageNegationFJ(this.image,
this.invertedImage, this.startx, this.starty + halfSize,
halfSize);

ImageNegationF] lowerRight = new ImageNegationFJ](this.image,
this.invertedImage, this.startx + halfSize,
this.starty + halfSize, halfSize);

upperLeft.fork();

upperLeft.join();

upperRight. fork();

upperRight.join();

lowerLeft.fork();

lowerLeft.join();

lowerRight.compute();

Assuming that the ImageNegationFJ
class is correctly parallelized, how many
does the ForkJoinPool effec-
tively use to fill the 2 x 2 negatedImage
array from task 3c)?

threads

= {{0,1}, {1,0}};

static

int CUTOFF = 32;

(d) Unter der Annahme, dass die Klasse Assuming that the ImageNegationFJ (2)

ImageNegationFJ korrekt parallelisiert ist, class is correctly parallelized, how many
wie viele Threads verwendet der ForkJoin- threads does the ForkJoinPool effec-
Pool effektiv, um das 2 x 2 negatedImage tively use to fill the 2 x 2 negatedImage
Array aus Aufgabe 3c) zu fiillen? array from task 3c)?

double[][] image = {{0,1}, {1,0}};

@0verride
protected void compute() {
if (this.length <= CUTOFF
for (int offsetX = @; offsetX < this.length; offsetX++) {
for (int offsetY = @; offsetY < this.length; offsetY++) {
this.invertedImage[this.startx + offsetX] [this.starty + offsetY] =1
— this.image[this.startx + offsetX] [this.starty + offsetY];

final static int CUTOFF = 32;

+
else
int halfSize = (this.length) / 2;
ImageNegationF] upperLeft = new ImageNegationFJ(this.image . . — . .
o envemeiinge, tis o ot P e Tobias Steinbrecher @tsteinbreche - 8 months ago - edited 8 months ago
ImageNegationF] upperRight = new ImageNegationFJ](this.image,
this.invertedImage, this.startx + halfSize, this.starty,
halfSize);
ImageNegationF] lowerLeft = new ImageNegationFJ(this.image,
o 5 5 + . .
e ey TeceIagE, (IS, STAME S sarty hatfsize, Because of the sequential cutoff, only one Thread would be used effectively.
ImageNegationF] lowerRight = new ImageNegationFJ](this.image,
this.invertedImage, this.startx + halfSize,
this.starty + halfSize, halfSize);
upperLeft.fork();
upperLeft.join();
upperRight. fork();
upperRight.join();
lowerLeft.fork();
lowerLeft.join();
lowerRight.compute();

(e) Gehen Sie von einem konstanten Overhead
von 16 MB = 2*MB pro Thread aus und
dass pro Split immer vier neue Threads er-
stellt werden. Dies bedeutet, dass die Anzahl
der Threads nicht durch den ForkJoinPool
festgelegt wird, sodass kein Thread wieder-
verwendet wird und es zu keinem Work Ste-
aling zwischen den Threads kommt. Was ist
der niedrigste Wert fiir CUTOFF, wenn Sie ein
Bild der Grole 4000 x 4000 eingeben, bevor
Ihnen bei einem RAM der Groflie 10 GB der
Speicher ausgeht? Hinweis: 1 GB = 210 MB.

Assume a fixed overhead of 16 MB =
24 MB per thread and that there are al-
ways four new threads created per split.
This means that the number of threads
is not fixed by the ForkJoinPool, so no
thread is re-used and there is no work
stealing among the threads. What is
the lowest value for CUTOFF if you input
an image of size 4000 x 4000 before you
run out of memory using a RAM of size
10 GB? Hint: 1GB = 2! MB.

(4)

(e) Gehen Sie von einem konstanten Overhead
von 16 MB = 2*MB pro Thread aus und
dass pro Split immer vier neue Threads er-
stellt werden. Dies bedeutet, dass die Anzahl
der Threads nicht durch den ForkJoinPool
festgelegt wird, sodass kein Thread wieder-
verwendet wird und es zu keinem Work Ste-
aling zwischen den Threads kommt. Was ist
der niedrigste Wert fiir CUTOFF, wenn Sie ein
Bild der Grole 4000 x 4000 eingeben, bevor
Ihnen bei einem RAM der Groflie 10 GB der
Speicher ausgeht? Hinweis: 1 GB = 210 MB.

Tobias Steinbrecher @tsteinbreche - 8 months ago - edited 8 months ago

Number of threads, which we can use:

~10-2%

N 51

Assume a fixed overhead of 16 MB =
24 MB per thread and that there are al-
ways four new threads created per split.
This means that the number of threads
is not fixed by the ForkJoinPool, so no
thread is re-used and there is no work
stealing among the threads. What is
the lowest value for CUTOFF if you input
an image of size 4000 x 4000 before you
run out of memory using a RAM of size
10 GB? Hint: 1GB = 2! MB.

—10-2=10-4°

In each recursive call, we will use 4 new threads (under given assumptions). Thereby, we have the constraint (¢ := number of divisions)

4" <10-4° <= i <logy(10) +3 < i< 4

and the smallest possible value is CUTOFF = 4000/24 = 250 to avoid a fifth division.

<+ Add Comment

(4)

14

+ More

Extra Tasks

Pipelining

Let us assume that 4 people are at the airport. To prepare for departure, each of them has to first scan their
boarding pass (which takes 1 min), and then to do the security check (which takes 10 minutes).

a) Assume that there is only one machine for scanning the boarding pass and only one security line.
Explain why this pipeline is unbalanced. Compute its throughput.
b) Now assume that there are 2 security lines. Which 1s the new throughput?

¢) If there were 4 security lines opened, would the pipeline be balanced?

Pipelining

Let us assume that 4 people are at the airport. To prepare for departure, each of them has to first scan their
boarding pass (which takes 1 min), and then to do the security check (which takes 10 minutes).

a) Assume that there is only one machine for scanning the boarding pass and only one security line.
Explain why this pipeline is unbalanced. Compute its throughput.
b) Now assume that there are 2 security lines. Which is the new throughput?

¢) If there were 4 security lines opened, would the pipeline be balanced?

Solution

a) The pipeline is unbalanced, because the latency 1s not constant. Person 1 has a latency of 11 minutes,
whereas person 2 has latency of 20 minutes — 1) scan boarding pass (1 min), i1) wait for the first person
to finish security check (9 min), iii) pass trough security check (10 min). The throughput is 1 person
per 10 minutes.

b) The new throughput is 2 persons per 10 minutes. Note that even though the pipeline is unbalanced,
the throughput is constant.

¢) No. For the first 4 people the latency will be constant, but the Sth one would still have to wait.
A pipeline is balanced only when the latency is constant for all its inputs.

Wait and Notify

Consider the following implementation of a FairThreadCounter which implements the Round Robin policy
for 2 threads (as described in exercise 3).

yog25-exercises / Repository

3 public FairThreadCounter (Counter counter, int id, int numThreads, int numIterations) {
4 super (counter, id, numThreads, numlterations);
5 assert numThreads ==

6 }

7

8 public void run() {

9 for (int i = 0; i < numIterations; i++) {

10 synchronized (counter) {

11 counter.increment () ;

12 counter.notify () ;

13 try {

14 counter.wait () ;

15 } catch (InterruptedException e) {

16 e.printStackTrace();

17 }

18 }

19 }

20 }

21 1}

22

23 public static void main(String[] args) {

24 Counter counter = new SequentialCounter();

25 count (counter, 2, ThreadCounterType.FAIR, 10);
26 System.out.println ("Counter: " + counter.value());
27 1}

a) What will be printed in the console after running the program?

b) Does the solution behave as expected? If not, explain why and fix the errors.

a) What will be printed in the console after running the program?
b) Does the solution behave as expected? If not, explain why and fix the errors.

Solution

a) Nothing — the program does not terminate, so nothing will be printed. The problem is that in the last
iteration, the second thread will be stuck at line 14 waiting to be notified. As the first thread already
finished incrementing, the second thread will never be notified.

a) What will be printed in the console after running the program?

b) Does the solution behave as expected? If not, explain why and fix the errors.

[G PN,

b) There are several mistakes in this solution:

* Non-deterministic thread order. Even though both threads increment within a synchronized
block, which one starts is not specified. To fix this one should first check whether the thread is
supposed to increment (and wait if necessary) and increment only after this condition is true.

* Unhandled spurious wakeups. After calling wait the counter does not check whether it was
woken up spuriously or it is indeed its turn to perform the increment.

* Non-termination. Even without spurious wake-ups, the program will not terminate as in the
last iteration, the second thread will be stuck at line 14 waiting to be notified. A tempting
solution is to put an additional counter.notify () statement after the for loop. However,
this does not solve the problem as there is not guarantee that the notify will be executed after
the second thread called wait. To fix this issue properly, the code needs to be changed such
that it includes an explicit condition that denotes whether the thread should wait or continue.
This can be a boolean flag (if there are only two threads) or a thread id as used in exercise 3.

Plan fur heute

* Organisation

* Nachbesprechung Exercise 5
* Theory Recap

* Intro Exercise 6

e Exam Questions

e Kahoot

Kahoot

Feedback

* Falls ihr Feedback mochtet sagt mir bitte Bescheid!
* Schreibt mir eine Mail oder auf Discord

Danke

* Bis nachste Woche!

	Default Section
	Slide 1: Parallele Programmierung FS25
	Slide 2: Plan für heute
	Slide 3: Organisation
	Slide 4: Organisation
	Slide 5: Organisation
	Slide 6: Organisation
	Slide 7
	Slide 8: Plan für heute
	Slide 9: Post-Discussion Exercise 7
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: How do we get livelocks?

	Gamal
	Slide 16: Plan für heute
	Slide 17: I recommend reading:
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: But does this really work?
	Slide 24: No
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

	theory
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66: Was ist volatile?
	Slide 67: Was ist volatile?
	Slide 68: Was ist volatile?
	Slide 69: Volatile Keyword
	Slide 70: Volatile Keyword
	Slide 71: Volatile Keyword
	Slide 72: Volatile Keyword
	Slide 73: Volatile Keyword
	Slide 74: Volatile Keyword
	Slide 75: Volatile Keyword
	Slide 76: Volatile Summary
	Slide 77: Volatile Code Example
	Slide 78: Volatile
	Slide 79: Volatile
	Slide 80: Beyond Locks Recap
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99: So how do we fix our attempts?
	Slide 100: Deckers Lock
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107: Deckers Lock
	Slide 108: Petersons Lock
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114: Peterson Lock
	Slide 115: Peterson Lock
	Slide 116: Deckers Lock & Peterson Lock
	Slide 117: Can we build a lock with atomics?
	Slide 118
	Slide 119: Can we build a lock with atomics?
	Slide 120: Performance of Atomic Lock

	exercise 8
	Slide 121: Plan für heute
	Slide 122: Pre-Discussion Exercise 8
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127: Plan für heute
	Slide 128: Old Exam Task (FS 2023)
	Slide 129: Old Exam Task (FS 2023)
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145: Extra Tasks
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150: Plan für heute
	Slide 151: Kahoot
	Slide 152: Feedback
	Slide 153: Danke

