
Parallele Programmierung FS25
Exercise Session 8

Jonas Wetzel

Plan für heute

• Organisation
• Nachbesprechung Exercise 7
• Theory
• Intro Exercise 8
• Exam Questions
• Kahoot

Organisation

• Mein Name ist Jonas Wetzel
• Meine Website (Materialien und Inhalt der Übungen):

n.ethz.ch/~jwetzel
• Meine Email: jwetzel@ethz.ch
• Discord: @jonas.too

mailto:jwetzel@ethz.ch

Organisation

• Mein Name ist Jonas Wetzel
• Meine Website (Materialien und Inhalt der Übungen):

n.ethz.ch/~jwetzel
• Meine Email: jwetzel@ethz.ch
• Discord: @jonas.too
• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9

mailto:jwetzel@ethz.ch
https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9
• Falls ihr Feedback möchtet kommt bitte zu mir

https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

• Wo sind wir jetzt?

Plan für heute

• Organisation

• Nachbesprechung Exercise 7
• Theory
• Intro Exercise 8
• Exam Questions
• Kahoot

Post-Discussion
Exercise 7

9

Feedback for Assignment 7

public synchronized boolean transferMoney(Account from, Account to, int amount) {

 …
 …
 return true;
}

10

• What is wrong with the following code snippet?

Essential

Feedback for Assignment 7

public class Account … {
 …
 private final Lock lock = new ReentrantLock();
 …
}

11

• What we should have done for avoiding deadlocks

Essential

Feedback for Assignment 7

12

• What we should have done for avoiding deadlocks

public class BankingSystem {
 …
 public boolean transferMoney(Account from, Account to, aint amount) {
 Account first, second;
 // Introduce lock ordering:
 if (to.getId() > from.getId()) {
 first = from; second = to;
 } else {
 first = to; second = from;
 }
 …
}

Essential

Feedback for Assignment 7

13

• Acquire locks, use finally to always release the locks
public class BankingSystem {
 …
 public boolean transferMoney(Account from, Account to, int amount) {
 …
 first.getLock().lock();
 second.getLock().lock();
 try {
 …
 } finally {
 first.getLock().unlock();
 second.getLock().unlock();
 }

Feedback for Assignment 7

14

• Summing up: How to do it safe
Lock each account before reading out its balance, but don’t release the lock until all
accounts are summed up.
 ➔ Two-phase locking

In the first phase locks will be acquired without releasing,
in the second phase locks will be released.
 ➔ Deadlocks still a problem
 ➔ Ordered locking required

How do we get livelocks?

• See livelock example
• Go over solution?

Plan für heute

• Organisation
• Nachbesprechung Exercise 7

• Theory
• Intro Exercise 8
• Exam Questions
• Kahoot

I recommend reading:

The Art of Multiprocessor Programming: An excellent
book that covers almost everything from the lecture,
especially for the second part of the course.

(WARNING: The 2008 version of the book has some
small mistakes!)

spcl.inf.ethz.ch

@spcl_eth

class C {
 private int x = 0;
 private int y = 0;
 void f() {
 x = 1;
 y = 1;
 }
 void g() {
 int a = y;
 int b = x;
 assert(b >= a);
 }
}

Motivation

Can this fail?

11

Thread 1

Thread 2

spcl.inf.ethz.ch

@spcl_eth

There is no interleaving of f and g causing the assertion to fail

Another proof

13

class C {
 private int x = 0;
 private int y = 0;
 void f() {
 x = 1;
 y = 1;
 }
 void g() {
 int a = y;
 int b = x;
 assert(b >= a);
 }
}

Thread 1

Thread 2

spcl.inf.ethz.ch

@spcl_eth

There is no interleaving of f and g causing the assertion to fail

Another proof (by contradiction):

Assume b<a ⇒ a==1 and b==0.

Another proof

13

class C {
 private int x = 0;
 private int y = 0;
 void f() {
 x = 1;
 y = 1;
 }
 void g() {
 int a = y;
 int b = x;
 assert(b >= a);
 }
}

Thread 1

Thread 2

spcl.inf.ethz.ch

@spcl_eth

There is no interleaving of f and g causing the assertion to fail

Another proof (by contradiction):

Assume b<a ⇒ a==1 and b==0.

But if a==1 ⇒ y=1 happened before a=y.
And if b==0 ⇒ b=x happened before x=1.

Because we assume that programs execute in order:

a=y happened before b=x
x=1 happened before y=1

Another proof

13

class C {
 private int x = 0;
 private int y = 0;
 void f() {
 x = 1;
 y = 1;
 }
 void g() {
 int a = y;
 int b = x;
 assert(b >= a);
 }
}

Thread 1

Thread 2

spcl.inf.ethz.ch

@spcl_eth

There is no interleaving of f and g causing the assertion to fail

Another proof (by contradiction):

Assume b<a ⇒ a==1 and b==0.

But if a==1 ⇒ y=1 happened before a=y.
And if b==0 ⇒ b=x happened before x=1.

Because we assume that programs execute in order:

a=y happened before b=x
x=1 happened before y=1

So by transitivity,
a=y happened before b=x happened before x=1 happened before
y=1 happened before a=y ⇒ Contradiction 

Another proof

13

class C {
 private int x = 0;
 private int y = 0;
 void f() {
 x = 1;
 y = 1;
 }
 void g() {
 int a = y;
 int b = x;
 assert(b >= a);
 }
}

Thread 1

Thread 2

But does this really work?

No
Optimizations by Compiler
Optimizations by Hardware

(basically the Memory Reordering)

spcl.inf.ethz.ch

@spcl_eth

void f() {

x = 1;

y = x+1;

z = x+1;

}

Why it still can fail: Memory reordering

void f() {

x = 1;

z = x+1;

y = x+1;

}

Rule of thumb: Compiler and hardware allowed to make changes that do
not affect the semantics of a sequentially executed program

semantically

equivalent?

15

void f() {

x = 1;

z = 2;

y = 2;

}

semantically

equivalent?

Are these semantically equivalent?

spcl.inf.ethz.ch

@spcl_eth

int x;

void wait() {

x = 1;

while(x==1);

}

void arrive(){

x = 2;

}

Example: Fail with self-made rendezvous (C / GCC)

Assembly without optimization

movl $0x1, x

test:

mov x, %eax

cmp $0x1, %eax

je test

movl $0x2, x

18

spcl.inf.ethz.ch

@spcl_eth

int x;

void wait() {

x = 1;

while(x==1);

}

void arrive(){

x = 2;

}

Example: Fail with self-made rendezvous (C / GCC)

Assembly without optimization

movl $0x1, x

test:

mov x, %eax

cmp $0x1, %eax

je test

movl $0x2, x

Assembly with optimization

movl $0x1, x

test:

jmp test

movl $0x2, x

je: jump (only) if equal,
i.e., if cmp yields true

jmp: jump always

18

spcl.inf.ethz.ch

@spcl_eth

int x;

void wait() {

x = 1;

while(x==1);

}

void arrive(){

x = 2;

}

Example: Fail with self-made rendezvous (C / GCC)

Assembly without optimization

movl $0x1, x

test:

mov x, %eax

cmp $0x1, %eax

je test

movl $0x2, x

Assembly with optimization

movl $0x1, x

test:

jmp test

movl $0x2, x

je: jump (only) if equal,
i.e., if cmp yields true

jmp: jump always

18

spcl.inf.ethz.ch

@spcl_eth

Memory hierachy (one core)

Registers

L1 Cache

L2 Cache

System Memory

fast, low latency, high cost, low capacity

slow, high latency latency, low cost, high capacity

20

ALUs

0.5ns

1 ns

7 ns

100 ns

spcl.inf.ethz.ch

@spcl_eth

Memory hierachy (many cores)

Registers

L1 Cache

Shared L2 Cache

System Memory

21

Registers

L1 Cache

Registers

L1 Cache

…

ALUs ALUs ALUs

spcl.inf.ethz.ch

@spcl_eth

31

Why memory models, x86 example

Answer:

i=1, j=1

i=0, j=1

i=1, j=0

i=0, j=0 (but why?)

spcl.inf.ethz.ch

@spcl_eth

31

Why memory models, x86 example

Answer:

i=1, j=1

i=0, j=1

i=1, j=0

i=0, j=0 (but why?)

spcl.inf.ethz.ch

@spcl_eth

⇒ JMM restricts allowable outcomes of programs

⇒ You saw that if we don’t have these operations (volatile, synchronized etc.) – outcome can be “arbitrary” (not quite
correct, say unexpected ⇒)

⇒ JMM defines Actions: read(x):1 “read variable x, the value read is 1”

⇒ Executions combine actions with ordering:

⇒ Program Order

⇒ Synchronizes-with

⇒ Synchronization Order

⇒ Happens-before

33

Java Memory Model (JMM): Necessary basics

spcl.inf.ethz.ch

@spcl_eth

⇒ Program order is a total order of intra-thread actions

⇒ Program statements are NOT a total order across threads!

⇒ Program order does not provide an ordering guarantee for memory accesses!

⇒ The only reason it exists is to provide the link between possible executions and the original program.

⇒ Intra-thread consistency: Per thread, the PO order is consistent with the thread’s isolated execution

34

JMM: Program Order (PO)

spcl.inf.ethz.ch

@spcl_eth

⇒ Synchronization actions are:

⇒ Read/write of a volatile variable

⇒ Lock monitor, unlock monitor

⇒ First/last action of a thread (synthetic)

⇒ Actions which start a thread

⇒ Actions which determine if a thread has terminated

⇒

35

JMM: Synchronization Actions (SA) and Synchronization Order (SO)

spcl.inf.ethz.ch

@spcl_eth

⇒ Synchronization actions are:

⇒ Read/write of a volatile variable

⇒ Lock monitor, unlock monitor

⇒ First/last action of a thread (synthetic)

⇒ Actions which start a thread

⇒ Actions which determine if a thread has terminated

⇒ Synchronization Actions form the Synchronization Order (SO)

⇒ SO is a total order

⇒ All threads see SA in the same order

⇒ SA within a thread are in PO

⇒ SO is consistent: all reads in SO see the last writes in SO

35

JMM: Synchronization Actions (SA) and Synchronization Order (SO)

spcl.inf.ethz.ch

@spcl_eth

⇒ SW only pairs the specific actions which "see" each other

⇒ A volatile write to x synchronizes with subsequent read of x (subsequent in SO)

⇒ The transitive closure of PO and SW forms HB

⇒ HB consistency: When reading a variable, we see either the last write (in HB) or any other unordered
write.

⇒ This means races are allowed!

37

JMM: Synchronizes-With (SW) / Happens-Before (HB) orders

spcl.inf.ethz.ch

@spcl_eth

⇒ Synchronization actions are:

⇒ Read/write of a volatile variable

⇒ Lock monitor, unlock monitor

⇒ First/last action of a thread (synthetic)

⇒ Actions which start a thread

⇒ Actions which determine if a thread has terminated

⇒ Synchronization Actions form the Synchronization Order (SO)

⇒ SO is a total order

⇒ All threads see SA in the same order

⇒ SA within a thread are in PO

⇒ SO is consistent: all reads in SO see the last writes in SO

35

JMM: Synchronization Actions (SA) and Synchronization Order (SO)

Exercise: List all outcomes

(r1,r2) allowed by the JMM.

spcl.inf.ethz.ch

@spcl_eth

38

Example

spcl.inf.ethz.ch

@spcl_eth

38

Example

spcl.inf.ethz.ch

@spcl_eth

38

Example

spcl.inf.ethz.ch

@spcl_eth

38

Example

Lecture recap: Program Order

43

• The code in a program is executed in a certain order
• Executing a line of code means some “action” is happening → we can

look at the code and define a partial order of these actions!

Essential

Lecture recap: Program Order

44

• PO: Transitive closure of “Action from statement S1 happens before
that of S2 (if they both happen)”

• This is a partial order because the relation is not total, i.e. not all
statements are part of every execution!

Lecture recap: Program Order

45

• We want to allow the compiler / hardware to optimize our code, i.e.
remove useless code:

• int a=0;
• for (int i=0; i<10 i++) {a++;}
• In sequential code we would expect this to be “rewritten” to a=10

since anyway nobody sees the intermediate values.
• But what if a is shared?

Essential

Lecture recap: Synchronization Actions (SAs)

46

• Java defines synchronization actions (read/write of volatile variable,
lock/unlock, etc.)

• SAs within thread obeys PO
• All threads see SAs in the same order (synchronization order SO)
• Reads are consistent in SO (see the last written value)

Lecture recap: Synchronizes With

47

• SAs accross threads synchronize with each other, i.e., a volatile read
sees the last value written by another thread

• Transitive closure of PO and SW forms happens before order
• All values we observe must obey this happens before order!

Lecture recap: Happens-before relationship

48

Two actions can be ordered by a happens-before relationship. If one
action happens-before another, then the first is visible to and ordered
before the second.

• Transitive closure of PO and SW forms happens before order
• All values we observe must obey this happens before order!
• If x and y are actions of the same thread and x comes

before y in program order, then hb(x, y).

• If an action x synchronizes-with a following action y, then we

also have hb(x, y).

• If hb(x, y) and hb(y, z), then hb(x, z).

Examples

49

• Initial value of x,y is 0.
• We can either get r1,r2 = (0,0), (1,1) or (0,1) NOT (1,0) from this code!
• Above we show the HB order for (1,1)
• What must happen for (0,0)?

Essential

Examples

50

• Initial value of x,y is 0.
• What must happen for (0,0)? - right thread runs first!

Essential

Lecture recap: State Space Diagram

51

• When dealing with mutual exclusion problems, we should focus on:
• the structure of the underlying state space, and
• the state transitions that occur

• Remember the state diagram captures the entire state space and all
possible computations (execution paths a program may take)

• A good solution will have a state space with no bad states

Process P

do

p1: Non-critical section P

p2: while turn != 1

p3: Critical section

p4: turn = 2

Process Q

do

q1: Non-critical section Q

q2: while turn != 2

q3: Critical section

q4: turn = 1

turn = 1;

Lecture recap: State Space Diagram
Essential

P

p1: Non-critical section P

p2: while turn != 1

p3: Critical section

p4: turn = 2

Q

q1: Non-critical section Q

q2: while turn != 2

q3: Critical section

q4: turn = 1

Essential

Correctness of Mutual exclusion

54

• “Statements from the critical sections of two or more processes must
not be interleaved.”

• We can see that there is no state in which the program counters of
both P and Q point to statements in their critical sections

• Mutual exclusion holds!

Essential

Freedom from deadlock

55

• “If some processes are trying to enter their critical sections then one
of them must eventually succeed.”

• P is trying to enter its CS when the control pointer is at p2
 (awaiting turn to have the value 1. p2: turn==1)

• Q is trying to enter its CS when the control pointer is at q2
 (q2: turn==2)

Essential

Freedom from deadlock

56

• Since the behaviour of processes P and Q is symmetrical, we only
have to check what happens for one of the processes, say P.

• Freedom from deadlock means that from any state where a process
wishes to enter its CS (by awaiting its turn), there is always a path
(sequence of transitions) leading to it entering its CS.
i.e. the control pointer can always move to point to p3

Essential

Freedom from deadlock

57

• Typically, a deadlocked state has no transitions leading from it, i.e. no
statement is able to be executed.

• Sometimes a cycle of transitions may exist from a state for each
process, from which no useful progress in the parallel program can
be made. The program is still deadlocked but this situation is
sometimes termed ‘livelock’. Every one is ‘busy doing nothing’.

There is always a path for P to execute p2 (turn == 1)

Freedom from individual starvation

59

• “If any process tries to enter its critical section then that process must
eventually succeed.”

• If a process is wishing to enter its CS (awaiting its turn) and another
process refuses to set the turn, the first process is said to be starved.

• Possible starvation reveals itself as cycles in the state diagram.

• Because the definition of the critical section problem allows for a
process to not make progress from its Non-critical section, starvation
is, in general, possible in this example

Essential

If a process does not make progress
from its Non-critical section, starvation
is possible in this example

Atomic operations

• An atomic action is one that effectively happens at once i.e. this action
cannot stop in the middle nor be interleaved

• It either happens completely, or it doesn’t happen at all.

• No side effects of an atomic action are visible until the action is complete

61

Hardware support for atomic operations

• Test-And-Set (TAS)

• Compare-And-Swap (CAS)

• Load Linked / Store Conditional

• http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

62

http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

Hardware Semantics

boolean TAS(memref s)

 if (mem[s] == 0) {

 mem[s] = 1;

 return true;

 } else

 return false;

int CAS (memref a, int old, int new)

 oldval = mem[a];

 if (old == oldval)

 mem[a] = new;

 return oldval;

63

a
to

m
ic

a
to

m
ic

java.util.concurrent.atomic.AtomicBoolean

 boolean set();

 boolean get();

 boolean compareAndSet(boolean expect, boolean update);

 boolean getAndSet(boolean newValue);

64

atomically set to value update iff

current value is expect. Return

true on success.

sets newValue and returns

previous value.

But why do these operations work without

volatile?

65

The memory effects for accesses and updates of atomics generally follow the rules for
volatiles, as stated in The Java Language Specification (17.4 Memory Model):

• get has the memory effects of reading a volatile variable.
• set has the memory effects of writing (assigning) a volatile variable.

Source: https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html

https://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.4

Was ist volatile?

• Wir wollen Locks selber bauen
• Wie machen wir das?

Was ist volatile?

• Wir wollen Locks selber bauen
• Wie machen wir das?

• Atomics geben uns eine Möglichkeit
• Was wenn wir keine atomics haben?

Was ist volatile?

• Wir wollen Locks selber bauen
• Wie machen wir das?

• Atomics geben uns eine Möglichkeit
• Was wenn wir keine atomics haben?

• Volatile!

Volatile Keyword

• When multiple threads access a shared variable, each thread may
keep local copy in its CPU cache, updates might not be
immediately visible to other threads

• Volatile gives us visibility guarantee!

Volatile Keyword

• Volatile variable ensures that any
read or write operation always
happens directly in main memory,
so all threads see latest value on
next read

Volatile Keyword

• Without volatile, another thread
calling stop() might not be seen by
the run() method because the CPU
might cache running locally

• With volatile, the change to running
is guaranteed to be visible to all
threads

Volatile Keyword

• It also prevents optimizations like out of order execution from
happening!

• Java Memory Model allows JVM and CPU to reorder instructions
for optimization

Volatile Keyword

• Without volatile, compiler or CPU
might reorder (1) and (2), leading
reader() to see flag == true but still
read old value of x

• With volatile, (2) happens after (1),
ensuring x = 42 is visible before flag =
true is read.

Volatile Keyword

• Volatile has limitations
• Does not prevent race conditions: volatile ensures visibility but

not atomicity for compound actions like count++
• Not a replacement for synchronization: It doesn’t provide mutual

exclusion (locking)

Volatile Keyword

• Volatile has limitations
• Does not prevent race

conditions: volatile ensures
visibility but not atomicity for
compound actions like count++

• Not a replacement for
synchronization: It doesn’t
provide mutual exclusion
(locking)

Volatile Summary

• Volatile ensures that all reads and writes go directly to main
memory, preventing stale values

• It prevents instruction reordering
• It does NOT provide atomicity or mutual exclusion
• Suitable for simple flags and state indicators, but not for counters

or complex data structures

Volatile Code Example

• See code Visibility.java

Volatile

• Suitable for simple flags and state indicators, but not for counters
or complex data structures

• Can we build a lock with that?

Volatile

• Suitable for simple flags and state indicators, but not for counters
or complex data structures

• Can we build a lock with that?
• Yes, as we’ll see in the next few minutes

Beyond Locks Recap

spcl.inf.ethz.ch

@spcl_eth

In the following we assume

1) atomic reads and writes of variables of primitive type

2) no reordering of read and write sequences (! not true in practice ! here for simplicity !)

3) threads entering a critical section will leave it eventually

Otherwise we assume a multithreaded environment where processes can interleave arbitrarily.

We make no assumptions for progress outside of critical sections (i.e., threads may stall outside of a CS)!

Assumptions

6

You know

how to fix this

with volatile!

Will make

«atomic» more

precise today.

spcl.inf.ethz.ch

@spcl_eth

Pieces of code with the following conditions

1. Mutual exclusion: statements from critical sections of two or more processes must not be interleaved

2. Freedom from deadlock: if some processes are trying to enter a critical section then one of them must
eventually succeed

3. Freedom from starvation: if any process tries to enter its critical section, then that process must
eventually succeed

Critical sections

According to M. Ben Ari, Principles of Concurrent and Distributed Programming 7

spcl.inf.ethz.ch

@spcl_eth

Process P

local variables

loop

non-critical section

preprotocol

critical section

postprotocol

Critical section problem

Process Q

local variables

loop

non-critical section

preprotocol

critical section

postprotocol

global (shared) variables

8

spcl.inf.ethz.ch

@spcl_eth

Process P

local variables

loop

p1 non-critical section

p2 while(wantq);

p3 wantp = true

p4 critical section

p5 wantp = false

Mutual exclusion for 2 processes -- 1st Try

Process Q

local variables

loop

q1 non-critical section

q2 while(wantp);

q3 wantq = true

q4 critical section

q5 wantq = false

volatile boolean wantp=false, wantq=false

10

Lecture recap: State Space Diagram

85

• When dealing with mutual exclusion problems, we should focus on:
• the structure of the underlying state space, and
• the state transitions that occur

• Remember the state diagram captures the entire state space and all
possible computations (execution paths a program may take)

• A good solution will have a state space with no bad states

spcl.inf.ethz.ch

@spcl_eth

State space diagram [p, q, wantp, wantq]

p1, q1, false, false

1 non-critical section 2 while(wantp) 3 wantp = true 4 critical section 5 wantp = false
while(wantq) wantq = true wantq = false

11

p1 non-critical section

p2 while(wantq);

p3 wantp = true

p4 critical section

p5 wantp = false

spcl.inf.ethz.ch

@spcl_eth

State space diagram [p, q, wantp, wantq]

p1, q1, false, false

p1, q2, false, false

p2, q1, false, false

1 non-critical section 2 while(wantp) 3 wantp = true 4 critical section 5 wantp = false
while(wantq) wantq = true wantq = false

11

p1 non-critical section

p2 while(wantq);

p3 wantp = true

p4 critical section

p5 wantp = false

spcl.inf.ethz.ch

@spcl_eth

State space diagram [p, q, wantp, wantq]

p1, q1, false, false

p1, q2, false, false

p2, q1, false, false

p2, q2, false, false

p3, q1, false, false

p1, q3, false, false p2, q3, false, false p3, q3, false, false

p3, q2, false, false

p4, q1, true, false

p4, q2, true, false

p4, q3, true, false

p1, q4, false, true p2, q4, false, true p3, q4, false, true p4, q4, true, true

1 non-critical section 2 while(wantp) 3 wantp = true 4 critical section 5 wantp = false
while(wantq) wantq = true wantq = false

11

p1 non-critical section

p2 while(wantq);

p3 wantp = true

p4 critical section

p5 wantp = false

spcl.inf.ethz.ch

@spcl_eth

All of interest covered:

Reduced state space diagram [p, q, wantp, wantq] – only states 2, 3, and 5

p2, q2, false, false

p2, q3, false, false p3, q3, false, false

p3, q2, false, false p5, q2, true, false

p5, q3, true, false

p2, q5, false, true p3, q5, false, true p5, q5, true, true

no mutual exclusion !

1 non-critical section 2 await wantq == false 3 wantp = true 4 critical section 5 wantp = false
await wantp == false wantq = true wantq = false

13

p1 non-critical section

p2 while(wantq);

p3 wantp = true

p4 critical section

p5 wantp = false

spcl.inf.ethz.ch

@spcl_eth

Process P

local variables

loop

p1 non-critical section

p2 wantp = true

p3 while(wantq);

p4 critical section

p5 wantp = false

Mutual exclusion for 2 processes -- 2nd Try

Process Q

local variables

loop

q1 non-critical section

q2 wantq = true

q3 while(wantp):

q4 critical section

q5 wantq = false

volatile boolean wantp=false, wantq=false

Do you see the problem?

14

spcl.inf.ethz.ch

@spcl_eth

State space diagram [p, q, wantp, wantq]

p2, q2, false, false

p2, q3, false, true p3, q3, true, true

p3, q2, true, false p5, q2, true, false

p5, q3, true, true

p2, q5, false, true p3, q5, true, true

deadlock !

15

1 non-critical section 2 wantp = true 3 while(wantp) 4 critical section 5 wantp = false
wantq = true while(wantq) wantq = false

spcl.inf.ethz.ch

@spcl_eth

Process P

local variables

loop

p1 non-critical section

p2 while(turn != 1);

p3 critical section

p4 turn = 2

Mutual exclusion for 2 processes -- 3rd Try

Process Q

local variables

loop

q1 non-critical section

q2 while(turn != 2);

q3 critical section

q4 turn = 1

volatile int turn = 1;

16

Do you see the problem?

spcl.inf.ethz.ch

@spcl_eth

State space diagram [p, q, turn]

p2, q2, 1

p2, q2, 2

p4, q2, 1

p2, q4, 2

starvation!

We have not made any

assumptions about progress

outside of the CS...

17

Correctness of Mutual exclusion

94

• “Statements from the critical sections of two or more processes must
not be interleaved.”

• We can see that there is no state in which the program counters of
both P and Q point to statements in their critical sections

Freedom from deadlock

95

• “If some processes are trying to enter their critical sections then one
of them must eventually succeed.”

• We don’t have a situation when the processes aren’t making any
progress anymore

Freedom from deadlock

96

• Since the behaviour of processes P and Q is symmetrical, we only
have to check what happens for one of the processes, say P.

• Freedom from deadlock means that from any state where a process
wishes to enter its CS (by awaiting its turn), there is always a path
(sequence of transitions) leading to it entering its CS.

Freedom from deadlock

97

• Typically, a deadlocked state has no transitions leading from it, i.e. no
statement is able to be executed.

• Sometimes a cycle of transitions may exist from a state for each
process, from which no useful progress in the parallel program can
be made. The program is still deadlocked but this situation is
sometimes termed ‘livelock’. Every one is ‘busy doing nothing’.

Freedom from individual starvation

98

• “If any process tries to enter its critical section then that process must
eventually succeed.”

• If a process is wishing to enter its CS (awaiting its turn) and another
process refuses to set the turn, the first process is said to be starved.

• Possible starvation reveals itself as cycles in the state diagram.

• Because the definition of the critical section problem allows for a
process to not make progress from its Non-critical section, starvation
is, in general, possible in this example

So how do we fix our attempts?

Deckers Lock

• Each thread sets its flag[id] = true to indicate that it wants access
to critical section

• If other thread also wants access, they use turn variable to decide
who goes first

• If it's not thread's turn, it backs off, resets its flag, and waits for its
turn

• After exiting critical section, thread gives turn to the other thread
and resets its flag

spcl.inf.ethz.ch

@spcl_eth

Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

18

spcl.inf.ethz.ch

@spcl_eth

Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

only when q
tries to get
lock

18

spcl.inf.ethz.ch

@spcl_eth

Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

only when q
tries to get
lock

and q has
preference

18

spcl.inf.ethz.ch

@spcl_eth

Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

only when q
tries to get
lock

and q has
preference

let q proceed

18

spcl.inf.ethz.ch

@spcl_eth

Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

only when q
tries to get
lock

and q has
preference

let q proceed

and wait

18

spcl.inf.ethz.ch

@spcl_eth

Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

only when q
tries to get
lock

and q has
preference

let q proceed

and wait

and try again

18

Deckers Lock

• Ensures mutual exclusion (only one thread enters the critical
section at a time)

• Avoids deadlock by using the turn variable
• Provides fairness (both threads get their turn)
• Limited to two threads (doesn’t scale well)

Petersons Lock

• Each thread sets flag[id] = true to indicate it wants access to the
critical section.

• The thread gives priority to the other thread by setting turn = other.
• If the other thread also wants access (flag[other] == true) and it’s

still its turn, the thread waits.
• Once it gets access, it enters the critical section.
• After exiting, the thread resets flag[id] = false so the other thread

can proceed.

spcl.inf.ethz.ch

@spcl_eth

Process P (1)

loop

non-critical section

flag[P] = true

victim = P

while(flag[Q] && victim == P);

critical section

flag[P] = false

More concise than Decker: Peterson Lock

Process Q (2)

loop

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);

critical section

flag[Q] = false

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim = 1

19

spcl.inf.ethz.ch

@spcl_eth

Process P (1)

loop

non-critical section

flag[P] = true

victim = P

while(flag[Q] && victim == P);

critical section

flag[P] = false

More concise than Decker: Peterson Lock

Process Q (2)

loop

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);

critical section

flag[Q] = false

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim = 1

I am
interested

19

spcl.inf.ethz.ch

@spcl_eth

Process P (1)

loop

non-critical section

flag[P] = true

victim = P

while(flag[Q] && victim == P);

critical section

flag[P] = false

More concise than Decker: Peterson Lock

Process Q (2)

loop

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);

critical section

flag[Q] = false

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim = 1

I am
interested

but you go
first

19

spcl.inf.ethz.ch

@spcl_eth

Process P (1)

loop

non-critical section

flag[P] = true

victim = P

while(flag[Q] && victim == P);

critical section

flag[P] = false

More concise than Decker: Peterson Lock

Process Q (2)

loop

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);

critical section

flag[Q] = false

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim = 1

I am
interested

but you go
first

We both are
interested

19

spcl.inf.ethz.ch

@spcl_eth

Process P (1)

loop

non-critical section

flag[P] = true

victim = P

while(flag[Q] && victim == P);

critical section

flag[P] = false

More concise than Decker: Peterson Lock

Process Q (2)

loop

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);

critical section

flag[Q] = false

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim = 1

I am
interested

but you go
first

We both are
interested

And you go first

19

Peterson Lock

• Ensures mutual exclusion (only one thread enters the critical
section at a time)

 Prevents deadlock (always allows progress)
 Fair (bounded waiting) (no thread is starved forever)

• simpler than Deckers Lock
 Works only for two threads (not scalable)

Peterson Lock

• Ensures mutual exclusion (only one thread enters the critical
section at a time)

 Prevents deadlock (always allows progress)
 Fair (bounded waiting) (no thread is starved forever)

• simpler than Deckers Lock
 Works only for two threads (not scalable)

• Bakery Lock allows us to extend Peterson Lock Idea to n Threads!
• We’ll see it in like 3 weeks

Deckers Lock & Peterson Lock

• See code for both locks

Can we build a lock with atomics?

• How?

Hardware Semantics

int CAS (memref a, int old, int new)

 oldval = mem[a];

 if (old == oldval)

 mem[a] = new;

 return oldval;

118

a
to

m
ic

Can we build a lock with atomics?

• Now you see why we
like atomics so
much. It’s much
simpler!

Performance of Atomic Lock

• High contention makes performance bad

Plan für heute

• Organisation
• Nachbesprechung Exercise 7
• Theory

• Intro Exercise 8
• Exam Questions
• Kahoot

Pre-Discussion
Exercise 8

Assignment 8: Overview

- Why do we need a memory model?

- Why don’t we simply tell the compiler “execute everything
exactly as I wrote it”?

- How can we use Javas memory model to reason about
executions?

Plan für heute

• Organisation
• Nachbesprechung Exercise 7
• Theory
• Intro Exercise 8

• Exam Questions
• Kahoot

Old Exam Task (FS 2023)

128

essentials

Old Exam Task (FS 2023)

129

essentials

Not good:

Extra Tasks

Plan für heute

• Organisation
• Nachbesprechung Exercise 5
• Theory Recap
• Intro Exercise 6
• Exam Questions

• Kahoot

Kahoot

Feedback

• Falls ihr Feedback möchtet sagt mir bitte Bescheid!
• Schreibt mir eine Mail oder auf Discord

Danke

• Bis nächste Woche!

	Default Section
	Slide 1: Parallele Programmierung FS25
	Slide 2: Plan für heute
	Slide 3: Organisation
	Slide 4: Organisation
	Slide 5: Organisation
	Slide 6: Organisation
	Slide 7
	Slide 8: Plan für heute
	Slide 9: Post-Discussion Exercise 7
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: How do we get livelocks?

	Gamal
	Slide 16: Plan für heute
	Slide 17: I recommend reading:
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: But does this really work?
	Slide 24: No
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

	theory
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66: Was ist volatile?
	Slide 67: Was ist volatile?
	Slide 68: Was ist volatile?
	Slide 69: Volatile Keyword
	Slide 70: Volatile Keyword
	Slide 71: Volatile Keyword
	Slide 72: Volatile Keyword
	Slide 73: Volatile Keyword
	Slide 74: Volatile Keyword
	Slide 75: Volatile Keyword
	Slide 76: Volatile Summary
	Slide 77: Volatile Code Example
	Slide 78: Volatile
	Slide 79: Volatile
	Slide 80: Beyond Locks Recap
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99: So how do we fix our attempts?
	Slide 100: Deckers Lock
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107: Deckers Lock
	Slide 108: Petersons Lock
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114: Peterson Lock
	Slide 115: Peterson Lock
	Slide 116: Deckers Lock & Peterson Lock
	Slide 117: Can we build a lock with atomics?
	Slide 118
	Slide 119: Can we build a lock with atomics?
	Slide 120: Performance of Atomic Lock

	exercise 8
	Slide 121: Plan für heute
	Slide 122: Pre-Discussion Exercise 8
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127: Plan für heute
	Slide 128: Old Exam Task (FS 2023)
	Slide 129: Old Exam Task (FS 2023)
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145: Extra Tasks
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150: Plan für heute
	Slide 151: Kahoot
	Slide 152: Feedback
	Slide 153: Danke

