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Organisation

• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9
• Falls ihr Feedback möchtet kommt bitte zu mir

https://forms.gle/qiDnqkfSP2NUQGvc9


Organisation

• Wo sind wir jetzt?
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Post-Discussion 
Exercise 7

9



Feedback for Assignment 7

public synchronized boolean transferMoney(Account from, Account to, int amount) {
 
 … 
 …
 return true;
}

10

• What is wrong with the following code snippet?

Essential



Feedback for Assignment 7

public class Account … {
 …
 private final Lock lock = new ReentrantLock();
 …
}

11

• What we should have done for avoiding deadlocks

Essential



Feedback for Assignment 7

12

• What we should have done for avoiding deadlocks

public class BankingSystem {
 …
 public boolean transferMoney(Account from, Account to, aint amount) {
  Account first, second;
  // Introduce lock ordering: 
  if (to.getId() > from.getId()) {
   first = from;  second = to;
  } else {
   first = to; second = from;
  }
        …
}

Essential



Feedback for Assignment 7

13

• Acquire locks, use finally to always release the locks
public class BankingSystem {
 …
 public boolean transferMoney(Account from, Account to, int amount) {
  …
  first.getLock().lock();
  second.getLock().lock();
  try {
   …
  } finally {
   first.getLock().unlock();
   second.getLock().unlock();
  }



Feedback for Assignment 7

14

• Summing up: How to do it safe
Lock each account before reading out its balance, but don’t release the lock until all 
accounts are summed up.
 ➔ Two-phase locking

In the first phase locks will be acquired without releasing,
in the second phase locks will be released.
 ➔ Deadlocks still a problem
 ➔ Ordered locking required



How do we get livelocks?

• See livelock example
• Go over solution?
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I recommend reading:

The Art of Multiprocessor Programming: An excellent 
book that covers almost everything from the lecture, 
especially for the second part of the course.

(WARNING: The 2008 version of the book has some 
small mistakes!)
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@spcl_eth

class C {
  private int x = 0;
  private int y = 0;
  void f() {
    x = 1;
    y = 1;
  }
  void g() {
    int a = y;
    int b = x;
    assert(b >= a);
  }   
}

Motivation

Can this fail?

11

Thread 1

Thread 2
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There is no interleaving of f and g causing the assertion to fail

Another proof

13
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Another proof (by contradiction):

Assume b<a ⇒  a==1 and b==0.  
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There is no interleaving of f and g causing the assertion to fail

Another proof (by contradiction):

Assume b<a ⇒  a==1 and b==0.  

But if a==1 ⇒  y=1 happened before a=y.  
And if b==0 ⇒  b=x happened before x=1.  

Because we assume that programs execute in order:

a=y happened before b=x
x=1 happened before  y=1

Another proof
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There is no interleaving of f and g causing the assertion to fail

Another proof (by contradiction):

Assume b<a ⇒  a==1 and b==0.  

But if a==1 ⇒  y=1 happened before a=y.  
And if b==0 ⇒  b=x happened before x=1.  

Because we assume that programs execute in order:

a=y happened before b=x
x=1 happened before  y=1

So by transitivity, 
a=y happened before b=x happened before x=1 happened before 
y=1 happened before a=y ⇒ Contradiction 

Another proof

13

class C {
  private int x = 0;
  private int y = 0;
  void f() {
    x = 1;
    y = 1;
  }
  void g() {
    int a = y;
    int b = x;
    assert(b >= a);
  }   
}

Thread 1

Thread 2



But does this really work?



No
Optimizations by Compiler
Optimizations by Hardware

(basically the Memory Reordering)
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void f() {

x = 1;

y = x+1;

z = x+1;

}

Why it still can fail: Memory reordering

void f() {

x = 1;

z = x+1;

y = x+1;

}

Rule of thumb: Compiler and hardware allowed to make changes that do 
not affect the semantics of a sequentially executed program

semantically

equivalent?

15

void f() {

x = 1;

z = 2;

y = 2;

}

semantically

equivalent?

Are these semantically equivalent?
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int x;

void wait() {

x = 1;

while(x==1);

}

void arrive(){

x = 2;

}

Example: Fail with self-made rendezvous (C / GCC)

Assembly without optimization

movl $0x1, x

test:

mov    x, %eax

cmp    $0x1, %eax

je     test

movl $0x2, x

18
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int x;

void wait() {

x = 1;

while(x==1);

}

void arrive(){

x = 2;

}

Example: Fail with self-made rendezvous (C / GCC)

Assembly without optimization

movl $0x1, x

test:

mov    x, %eax

cmp    $0x1, %eax

je     test

movl $0x2, x

Assembly with optimization

movl   $0x1, x

test: 

jmp    test

movl $0x2, x

je: jump (only) if equal, 
i.e., if cmp yields true

jmp: jump always

18
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int x;

void wait() {

x = 1;

while(x==1);

}

void arrive(){

x = 2;

}

Example: Fail with self-made rendezvous (C / GCC)

Assembly without optimization

movl $0x1, x

test:

mov    x, %eax

cmp    $0x1, %eax

je     test

movl $0x2, x

Assembly with optimization

movl   $0x1, x

test: 

jmp    test

movl $0x2, x

je: jump (only) if equal, 
i.e., if cmp yields true

jmp: jump always

18
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Memory hierachy (one core)

Registers

L1 Cache

L2 Cache

System Memory

fast, low latency, high cost, low capacity

slow, high latency latency, low cost, high capacity

20

ALUs

0.5ns

1 ns

7 ns

100 ns
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Memory hierachy (many cores)

Registers

L1 Cache

Shared L2 Cache

System Memory

21

Registers

L1 Cache

Registers

L1 Cache

…

ALUs ALUs ALUs
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Why memory models, x86 example

Answer:

i=1, j=1

i=0, j=1

i=1, j=0

i=0, j=0 (but why?)
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i=0, j=0 (but why?)
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⇒ JMM restricts allowable outcomes of programs

⇒ You saw that if we don’t have these operations (volatile, synchronized etc.) – outcome can be “arbitrary” (not quite 
correct, say unexpected ⇒ )

⇒ JMM defines Actions: read(x):1 “read variable x, the value read is 1”

⇒ Executions combine actions with ordering:

⇒ Program Order

⇒ Synchronizes-with

⇒ Synchronization Order

⇒ Happens-before

33

Java Memory Model (JMM): Necessary basics
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⇒ Program order is a total order of intra-thread actions

⇒ Program statements are NOT a total order across threads!

⇒ Program order does not provide an ordering guarantee for memory accesses! 

⇒ The only reason it exists is to provide the link between possible executions and the original program.

⇒ Intra-thread consistency: Per thread, the PO order is consistent with the thread’s isolated execution

34

JMM: Program Order (PO)
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⇒ Synchronization actions are:

⇒ Read/write of a volatile variable

⇒ Lock monitor, unlock monitor

⇒ First/last action of a thread (synthetic) 

⇒ Actions which start a thread

⇒ Actions which determine if a thread has terminated

⇒

35

JMM: Synchronization Actions (SA) and Synchronization Order (SO)
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⇒ Synchronization actions are:

⇒ Read/write of a volatile variable

⇒ Lock monitor, unlock monitor

⇒ First/last action of a thread (synthetic) 

⇒ Actions which start a thread

⇒ Actions which determine if a thread has terminated

⇒ Synchronization Actions form the Synchronization Order (SO)

⇒ SO is a total order 

⇒ All threads see SA in the same order

⇒ SA within a thread are in PO

⇒ SO is consistent: all reads in SO see the last writes in SO

35

JMM: Synchronization Actions (SA) and Synchronization Order (SO)
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⇒ SW only pairs the specific actions which "see" each other

⇒ A volatile write to x synchronizes with subsequent read of x (subsequent in SO)

⇒ The transitive closure of PO and SW forms HB

⇒ HB consistency: When reading a variable, we see either the last write (in HB) or any other unordered 
write.

⇒ This means races are allowed!

37

JMM: Synchronizes-With (SW) / Happens-Before (HB) orders
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⇒ Synchronization actions are:

⇒ Read/write of a volatile variable

⇒ Lock monitor, unlock monitor

⇒ First/last action of a thread (synthetic) 

⇒ Actions which start a thread

⇒ Actions which determine if a thread has terminated

⇒ Synchronization Actions form the Synchronization Order (SO)

⇒ SO is a total order 

⇒ All threads see SA in the same order

⇒ SA within a thread are in PO

⇒ SO is consistent: all reads in SO see the last writes in SO

35

JMM: Synchronization Actions (SA) and Synchronization Order (SO)

Exercise: List all outcomes 

(r1,r2) allowed by the JMM.
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Lecture recap: Program Order

43

• The code in a program is executed in a certain order
• Executing a line of code means some “action” is happening → we can 

look at the code and define a partial order of these actions!

Essential



Lecture recap: Program Order

44

• PO: Transitive closure of “Action from statement S1 happens before 
that of S2 (if they both happen)”

• This is a partial order because the relation is not total, i.e. not all 
statements are part of every execution!



Lecture recap: Program Order

45

• We want to allow the compiler / hardware to optimize our code, i.e. 
remove useless code: 

• int a=0; 
• for (int i=0; i<10 i++) {a++;} 
• In sequential code we would expect this to be “rewritten” to a=10 

since anyway nobody sees the intermediate values.
• But what if a is shared?

Essential



Lecture recap: Synchronization Actions (SAs)

46

• Java defines synchronization actions (read/write of volatile variable, 
lock/unlock, etc.)

• SAs within thread obeys PO
• All threads see SAs in the same order (synchronization order SO)
• Reads are consistent in SO (see the last written value) 



Lecture recap: Synchronizes With

47

• SAs accross threads synchronize with each other, i.e., a volatile read 
sees the last value written by another thread

• Transitive closure of PO and SW forms happens before order
• All values we observe must obey this happens before order!



Lecture recap: Happens-before relationship

48

Two actions can be ordered by a happens-before relationship. If one 
action happens-before another, then the first is visible to and ordered 
before the second.

• Transitive closure of PO and SW forms happens before order
• All values we observe must obey this happens before order!
• If x and y are actions of the same thread and x comes 

before y in program order, then hb(x, y).

• If an action x synchronizes-with a following action y, then we 

also have hb(x, y).

• If hb(x, y) and hb(y, z), then hb(x, z).



Examples

49

• Initial value of x,y is 0.
• We can either get r1,r2 = (0,0), (1,1) or (0,1) NOT (1,0) from this code!
• Above we show the HB order for (1,1)
• What must happen for (0,0)? 

Essential



Examples

50

• Initial value of x,y is 0.
• What must happen for (0,0)? - right thread runs first!

Essential



Lecture recap: State Space Diagram

51

• When dealing with mutual exclusion problems, we should focus on:
• the structure of the underlying state space, and
• the state transitions that occur

• Remember the state diagram captures the entire state space and all 
possible computations (execution paths a program may take)

• A good solution will have a state space with no bad states



Process P

do

p1:      Non-critical section P

p2:      while turn != 1

p3:      Critical section

p4:      turn = 2

Process Q

do

q1:      Non-critical section Q

q2:      while turn != 2

q3:      Critical section

q4:      turn = 1

turn = 1;

Lecture recap: State Space Diagram
Essential



P

p1:      Non-critical section P

p2:      while turn != 1

p3:      Critical section

p4:      turn = 2

Q

q1:      Non-critical section Q

q2:      while turn != 2

q3:      Critical section

q4:      turn = 1

Essential



Correctness of Mutual exclusion

54

• “Statements from the critical sections of two or more processes must 
not be interleaved.”

•  We can see that there is no state in which the program counters of 
both P and Q point to statements in their critical sections

• Mutual exclusion holds!

Essential



Freedom from deadlock

55

• “If some processes are trying to enter their critical sections then one 
of them must eventually succeed.”

• P is trying to enter its CS when the control pointer is at p2
     (awaiting turn to have the value 1. p2: turn==1)

• Q is trying to enter its CS when the control pointer is at q2
      (q2: turn==2)

Essential



Freedom from deadlock

56

• Since the behaviour of processes P and Q is symmetrical, we only 
have to check what happens for one of the processes, say P.

• Freedom from deadlock means that from any state where a process 
wishes to enter its CS (by awaiting its turn), there is always a path 
(sequence of transitions) leading to it entering its CS.
i.e. the control pointer can always move to point to p3

Essential



Freedom from deadlock

57

• Typically, a deadlocked state has no transitions leading from it, i.e. no 
statement is able to be executed.

• Sometimes a cycle of transitions may exist from a state for each 
process, from which no useful progress in the parallel program can 
be made. The program is still deadlocked but this situation is 
sometimes termed ‘livelock’. Every one is ‘busy doing nothing’.



There is always a path for P to execute p2 (turn == 1)



Freedom from individual starvation

59

• “If any process tries to enter its critical section then that process must 
eventually succeed.”

• If a process is wishing to enter its CS (awaiting its turn) and another 
process refuses to set the turn, the first process is said to be starved.

• Possible starvation reveals itself as cycles in the state diagram.

• Because the definition of the critical section problem allows for a 
process to not make progress from its Non-critical section, starvation 
is, in general, possible in this example

Essential



If a process does not make progress 
from its Non-critical section, starvation 
is possible in this example



Atomic operations

• An atomic action is one that effectively happens at once i.e. this action 
cannot stop in the middle nor be interleaved

• It either happens completely, or it doesn’t happen at all.

• No side effects of an atomic action are visible until the action is complete

61



Hardware support for atomic operations

• Test-And-Set (TAS)

• Compare-And-Swap (CAS)

• Load Linked / Store Conditional

• http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html
 

62

http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html


Hardware Semantics

boolean TAS(memref s)

 if (mem[s] == 0) {

  mem[s] = 1; 

  return true;

 } else

              return false;

int CAS (memref a, int old, int new)

 oldval = mem[a];

 if (old == oldval)  

  mem[a] = new;

 return oldval;

63

a
to

m
ic

a
to

m
ic



java.util.concurrent.atomic.AtomicBoolean

 boolean set();

 boolean get();

 boolean compareAndSet(boolean expect, boolean update);

 boolean getAndSet(boolean newValue);

64

atomically set to value update iff 

current value is expect. Return 

true on success.

sets newValue and returns 

previous value.



But why do these operations work without 

volatile?

65

The memory effects for accesses and updates of atomics generally follow the rules for 
volatiles, as stated in The Java Language Specification (17.4 Memory Model):

• get has the memory effects of reading a volatile variable.
• set has the memory effects of writing (assigning) a volatile variable.

Source: https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html

https://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.4


Was ist volatile?

• Wir wollen Locks selber bauen
• Wie machen wir das?
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• Atomics geben uns eine Möglichkeit
• Was wenn wir keine atomics haben?



Was ist volatile?

• Wir wollen Locks selber bauen
• Wie machen wir das?

• Atomics geben uns eine Möglichkeit
• Was wenn wir keine atomics haben?

• Volatile!



Volatile Keyword

• When multiple threads access a shared variable, each thread may 
keep local copy in its CPU cache, updates might not be 
immediately visible to other threads

• Volatile gives us visibility guarantee!



Volatile Keyword

• Volatile variable ensures that any 
read or write operation always 
happens directly in main memory, 
so all threads see latest value on 
next read



Volatile Keyword

• Without volatile, another thread 
calling stop() might not be seen by 
the run() method because the CPU 
might cache running locally

• With volatile, the change to running 
is guaranteed to be visible to all 
threads



Volatile Keyword

• It also prevents optimizations like out of order execution from 
happening!

• Java Memory Model allows JVM and CPU to reorder instructions 
for optimization



Volatile Keyword

• Without volatile, compiler or CPU 
might reorder (1) and (2), leading 
reader() to see flag == true but still 
read old value of x

• With volatile, (2) happens after (1), 
ensuring x = 42 is visible before flag = 
true is read.



Volatile Keyword

• Volatile has limitations
• Does not prevent race conditions: volatile ensures visibility but 

not atomicity for compound actions like count++
• Not a replacement for synchronization: It doesn’t provide mutual 

exclusion (locking)



Volatile Keyword

• Volatile has limitations
• Does not prevent race 

conditions: volatile ensures 
visibility but not atomicity for 
compound actions like count++

• Not a replacement for 
synchronization: It doesn’t 
provide mutual exclusion 
(locking)



Volatile Summary

• Volatile ensures that all reads and writes go directly to main 
memory, preventing stale values

• It prevents instruction reordering
• It does NOT provide atomicity or mutual exclusion
• Suitable for simple flags and state indicators, but not for counters 

or complex data structures



Volatile Code Example

• See code Visibility.java



Volatile

• Suitable for simple flags and state indicators, but not for counters 
or complex data structures

• Can we build a lock with that?



Volatile

• Suitable for simple flags and state indicators, but not for counters 
or complex data structures

• Can we build a lock with that?
• Yes, as we’ll see in the next few minutes



Beyond Locks Recap



spcl.inf.ethz.ch

@spcl_eth

In the following we assume 

1) atomic reads and writes of variables of primitive type

2) no reordering of read and write sequences (! not true in practice ! here for simplicity !)

3) threads entering a critical section will leave it eventually

Otherwise we assume a multithreaded environment where processes can interleave arbitrarily. 

We make no assumptions for progress outside of critical sections (i.e., threads may stall outside of a CS)!

Assumptions

6

You know 

how to fix this 

with volatile!

Will make

«atomic» more

precise today.
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Pieces of code with the following conditions

1. Mutual exclusion: statements from critical sections of two or more processes must not be interleaved

2. Freedom from deadlock: if some processes are trying to enter a critical section then one of them must 
eventually succeed

3. Freedom from starvation: if any process tries to enter its critical section, then that process must 
eventually succeed

Critical sections

According to M. Ben Ari, Principles of Concurrent and Distributed Programming 7
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Process P

local variables

loop

non-critical section

preprotocol

critical section

postprotocol

Critical section problem

Process Q

local variables

loop

non-critical section

preprotocol

critical section

postprotocol

global (shared) variables

8
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Process P

local variables

loop

p1 non-critical section

p2 while(wantq);

p3 wantp = true

p4 critical section

p5 wantp = false

Mutual exclusion for 2 processes  -- 1st Try

Process Q

local variables

loop

q1 non-critical section

q2 while(wantp);

q3 wantq = true

q4 critical section

q5 wantq = false

volatile boolean wantp=false, wantq=false

10



Lecture recap: State Space Diagram

85

• When dealing with mutual exclusion problems, we should focus on:
• the structure of the underlying state space, and
• the state transitions that occur

• Remember the state diagram captures the entire state space and all 
possible computations (execution paths a program may take)

• A good solution will have a state space with no bad states
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State space diagram [p, q, wantp, wantq]

p1, q1, false, false

1 non-critical section 2 while(wantp) 3 wantp = true  4 critical section 5 wantp = false  
while(wantq) wantq = true wantq = false

11

p1 non-critical section

p2 while(wantq);

p3 wantp = true

p4 critical section

p5 wantp = false
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State space diagram [p, q, wantp, wantq]

p1, q1, false, false

p1, q2, false, false

p2, q1, false, false

1 non-critical section 2 while(wantp) 3 wantp = true  4 critical section 5 wantp = false  
while(wantq) wantq = true wantq = false

11

p1 non-critical section

p2 while(wantq);

p3 wantp = true

p4 critical section

p5 wantp = false
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State space diagram [p, q, wantp, wantq]

p1, q1, false, false

p1, q2, false, false

p2, q1, false, false

p2, q2, false, false

p3, q1, false, false

p1, q3, false, false p2, q3, false, false p3, q3, false, false

p3, q2, false, false

p4, q1, true, false

p4, q2, true, false

p4, q3, true, false

p1, q4, false, true p2, q4, false, true p3, q4, false, true p4, q4, true, true

1 non-critical section 2 while(wantp) 3 wantp = true  4 critical section 5 wantp = false  
while(wantq) wantq = true wantq = false

11

p1 non-critical section

p2 while(wantq);

p3 wantp = true

p4 critical section

p5 wantp = false
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All of interest covered:

Reduced state space diagram [p, q, wantp, wantq] – only states 2, 3, and 5 

p2, q2, false, false

p2, q3, false, false p3, q3, false, false

p3, q2, false, false p5, q2, true, false

p5, q3, true, false

p2, q5, false, true p3, q5, false, true p5, q5, true, true

no mutual exclusion !

1 non-critical section 2 await wantq == false 3 wantp = true  4 critical section 5 wantp = false  
await wantp == false wantq = true wantq = false

13

p1 non-critical section

p2 while(wantq);

p3 wantp = true

p4 critical section

p5 wantp = false
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Process P

local variables

loop

p1 non-critical section

p2 wantp = true

p3 while(wantq);

p4 critical section

p5 wantp = false

Mutual exclusion for 2 processes -- 2nd Try

Process Q

local variables

loop

q1 non-critical section

q2 wantq = true

q3 while(wantp):

q4 critical section

q5 wantq = false

volatile boolean wantp=false, wantq=false

Do you see the problem?

14
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State space diagram [p, q, wantp, wantq]

p2, q2, false, false

p2, q3, false, true p3, q3, true, true

p3, q2, true, false p5, q2, true, false

p5, q3, true, true

p2, q5, false, true p3, q5, true, true

deadlock !

15

1 non-critical section 2 wantp = true 3 while(wantp)  4 critical section 5 wantp = false  
wantq = true while(wantq) wantq = false
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Process P

local variables

loop

p1 non-critical section

p2 while(turn != 1);

p3 critical section

p4 turn = 2

Mutual exclusion for 2 processes -- 3rd Try

Process Q

local variables

loop

q1 non-critical section

q2 while(turn != 2);

q3 critical section

q4 turn = 1

volatile int turn = 1;

16

Do you see the problem?
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State space diagram [p, q, turn]

p2, q2, 1

p2, q2, 2

p4, q2, 1

p2, q4, 2

starvation!

We have not made any 

assumptions about progress 

outside of the CS...

17



Correctness of Mutual exclusion

94

• “Statements from the critical sections of two or more processes must 
not be interleaved.”

•  We can see that there is no state in which the program counters of 
both P and Q point to statements in their critical sections



Freedom from deadlock

95

• “If some processes are trying to enter their critical sections then one 
of them must eventually succeed.”

• We don’t have a situation when the processes aren’t making any 
progress anymore



Freedom from deadlock

96

• Since the behaviour of processes P and Q is symmetrical, we only 
have to check what happens for one of the processes, say P.

• Freedom from deadlock means that from any state where a process 
wishes to enter its CS (by awaiting its turn), there is always a path 
(sequence of transitions) leading to it entering its CS.



Freedom from deadlock

97

• Typically, a deadlocked state has no transitions leading from it, i.e. no 
statement is able to be executed.

• Sometimes a cycle of transitions may exist from a state for each 
process, from which no useful progress in the parallel program can 
be made. The program is still deadlocked but this situation is 
sometimes termed ‘livelock’. Every one is ‘busy doing nothing’.



Freedom from individual starvation

98

• “If any process tries to enter its critical section then that process must 
eventually succeed.”

• If a process is wishing to enter its CS (awaiting its turn) and another 
process refuses to set the turn, the first process is said to be starved.

• Possible starvation reveals itself as cycles in the state diagram.

• Because the definition of the critical section problem allows for a 
process to not make progress from its Non-critical section, starvation 
is, in general, possible in this example



So how do we fix our attempts?



Deckers Lock

• Each thread sets its flag[id] = true to indicate that it wants access 
to critical section

• If other thread also wants access, they use turn variable to decide 
who goes first

• If it's not thread's turn, it backs off, resets its flag, and waits for its 
turn

• After exiting critical section, thread gives turn to the other thread 
and resets its flag
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@spcl_eth

Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

18
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Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

only when q 
tries to get 
lock

18
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Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

only when q 
tries to get 
lock

and q has 
preference

18
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Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

only when q 
tries to get 
lock

and q has 
preference

let q proceed

18
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Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

only when q 
tries to get 
lock

and q has 
preference

let q proceed

and wait

18
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Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

only when q 
tries to get 
lock

and q has 
preference

let q proceed

and wait

and try again

18



Deckers Lock

•  Ensures mutual exclusion (only one thread enters the critical 
section at a time)

•  Avoids deadlock by using the turn variable
•  Provides fairness (both threads get their turn)
•  Limited to two threads (doesn’t scale well)



Petersons Lock

• Each thread sets flag[id] = true to indicate it wants access to the 
critical section.

• The thread gives priority to the other thread by setting turn = other.
• If the other thread also wants access (flag[other] == true) and it’s 

still its turn, the thread waits.
• Once it gets access, it enters the critical section.
• After exiting, the thread resets flag[id] = false so the other thread 

can proceed.
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Process P (1)

loop

non-critical section

flag[P] = true 

victim = P

while(flag[Q] && victim == P);

critical section

flag[P] = false

More concise than Decker: Peterson Lock

Process Q (2)

loop

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);

critical section

flag[Q] = false

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false]; 
volatile integer victim = 1

19
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Process P (1)

loop

non-critical section

flag[P] = true 

victim = P

while(flag[Q] && victim == P);

critical section

flag[P] = false

More concise than Decker: Peterson Lock

Process Q (2)

loop

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);

critical section

flag[Q] = false

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false]; 
volatile integer victim = 1

I am 
interested

19



spcl.inf.ethz.ch

@spcl_eth

Process P (1)

loop

non-critical section

flag[P] = true 

victim = P

while(flag[Q] && victim == P);

critical section

flag[P] = false

More concise than Decker: Peterson Lock

Process Q (2)

loop

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);

critical section

flag[Q] = false

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false]; 
volatile integer victim = 1

I am 
interested

but you go 
first

19
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Process P (1)

loop

non-critical section

flag[P] = true 

victim = P

while(flag[Q] && victim == P);

critical section

flag[P] = false

More concise than Decker: Peterson Lock

Process Q (2)

loop

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);

critical section

flag[Q] = false

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false]; 
volatile integer victim = 1

I am 
interested

but you go 
first

We both are
interested

19
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Process P (1)

loop

non-critical section

flag[P] = true 

victim = P

while(flag[Q] && victim == P);

critical section

flag[P] = false

More concise than Decker: Peterson Lock

Process Q (2)

loop

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);

critical section

flag[Q] = false

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false]; 
volatile integer victim = 1

I am 
interested

but you go 
first

We both are
interested

And you go first

19



Peterson Lock

•  Ensures mutual exclusion (only one thread enters the critical 
section at a time)

 Prevents deadlock (always allows progress)
 Fair (bounded waiting) (no thread is starved forever)

• simpler than Deckers Lock
 Works only for two threads (not scalable)



Peterson Lock

•  Ensures mutual exclusion (only one thread enters the critical 
section at a time)

 Prevents deadlock (always allows progress)
 Fair (bounded waiting) (no thread is starved forever)

• simpler than Deckers Lock
 Works only for two threads (not scalable)

• Bakery Lock allows us to extend Peterson Lock Idea to n Threads!
• We’ll see it in like 3 weeks



Deckers Lock & Peterson Lock

• See code for both locks



Can we build a lock with atomics?

• How?



Hardware Semantics

int CAS (memref a, int old, int new)

 oldval = mem[a];

 if (old == oldval)  

  mem[a] = new;

 return oldval;

118
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Can we build a lock with atomics?

• Now you see why we 
like atomics so 
much. It’s much 
simpler!



Performance of Atomic Lock

• High contention makes performance bad



Plan für heute

• Organisation
• Nachbesprechung Exercise 7
• Theory

• Intro Exercise 8
• Exam Questions
• Kahoot



Pre-Discussion 
Exercise 8



Assignment 8: Overview

- Why do we need a memory model?

- Why don’t we simply tell the compiler “execute everything 
exactly as I wrote it”?

- How can we use Javas memory model to reason about 
executions?









Plan für heute

• Organisation
• Nachbesprechung Exercise 7
• Theory
• Intro Exercise 8

• Exam Questions
• Kahoot



Old Exam Task (FS 2023)

128

essentials



Old Exam Task (FS 2023)
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essentials



















Not good:















Extra Tasks











Plan für heute

• Organisation
• Nachbesprechung Exercise 5
• Theory Recap
• Intro Exercise 6
• Exam Questions

• Kahoot



Kahoot



Feedback

• Falls ihr Feedback möchtet sagt mir bitte Bescheid!
• Schreibt mir eine Mail oder auf Discord



Danke

• Bis nächste Woche!
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