Parallele Programmierung FS25

Exercise Session 9
Jonas Wetzel

Plan fur heute

* Organisation

* Nachbesprechung Exercise 8
* Theory

* Intro Exercise 9

e Exam Questions

* Kahoot

Organisation

e Mein Name ist Jonas Wetzel

* Meine Website (Materialien und Inhalt der Ubungen):
n.ethz.ch/~jwetzel

 Meine Email: jwetzel@ethz.ch

* Discord: @jonas.too

mailto:jwetzel@ethz.ch

Organisation

e Mein Name ist Jonas Wetzel

* Meine Website (Materialien und Inhalt der Ubungen):
n.ethz.ch/~jwetzel

 Meine Email: jwetzel@ethz.ch

* Discord: @jonas.too
* Feedback zur Session: https://forms.gle/qiDngkfSP2NUQGvc9Y

mailto:jwetzel@ethz.ch
https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

* Feedback zur Session: https://forms.gle/qiDngkfSP2NUQGvc9

e Falls ihr Feedback mochtet kommt bitte zu mir

https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

* Wo sind wir jetzt?

Deckers Lock

Peterson Lock

Atomic Registers

Filter Lock, Bakery Lock

Plan fur heute

* Organisation

* Nachbesprechung Exercise 8
* Theory

* Intro Exercise 9

e Exam Questions

* Kahoot

Feedback: Exercise 8

Race Conditions

Essential

* Race condition occurs if multiple accesses can happen concurrently and at

least one access is a write

Thread 1 | Thread 2
x=23; y=42;
rl =x; 2=y;
v=rl; W =r12;
Z=2:

« Thread 1 accesses X, V, z
« Thread 2 accessesy, w

* No race condition, no bad interleaving possible

Essential

Race Conditions

* Race condition occurs if multiple accesses can happen concurrently and at
least one access is a write

Thread 1 | Thread 2
X =23; y =42;
rl =x; 2=y,

v =rl; W =12;
y=2; Zz=2;

« Thread 1 accesses x, V, Yy
« Thread 2 accessesy, w, z
« Both write to y! Result depends on interleaving!

10

Relations

e For asetS we can define a mathematical relation R for members of S

* Example:
* Set of natural numbers, relation “greater or equal than”
 Set of all humans, relation “knows”

Relations

e Relations can have different properties
* Example:
 Transitivity:aRb andb Rc impliesaRc

 The “greater than” relation is transitive.
 The "knows” relation is not transitive.

Transitive Closure

* For arelation R, the smallest relation which contains R and is transitive, is
called the transitive closure of R.

 Example:
* For the set of airports in the world, we can define the relation “offers

direct flight to”
* This is (probably) not transitive (show why)
 The transitive closure also has meaning: “can fly from a to b with

stops”

Relations and Code

 When we execute code, “actions” happen, i.e., a variable gets read or

written
 We can define relations for these actions, such as “is executed before”

 Easy to check because it is a local property
e (Can build the transitive closure if we want to know if actions are

ordered!
e Not all actions are ordered!

Essential

Program Order

* Not all actions are ordered!

S1: a=23;')
S2: x=3;
S3: 1f (x==3)¢d{
S4: Db += 1;2

} else {
S5: b == 2;

S6: X = O;&:>
}

ST7T: x=4;

Not in program order!

15

Program Order

* Action in mutually exclusive code paths are not in program order
e Actions in different threads are not in program order!

 But ordering was good for proofs!
* Want to allow the compiler / hardware to reorder sometimes for
performance.

* Solution: Let compiler reorder whenever it is not “observable” — need
to define a subset of special actions which are visible across threads

Synchronization Actions

e Solution: Let compiler reorder whenever it is not “observable” — need
to define a subset of special actions which are visible across threads

* For this lecture, the most important synchronization actions are
e Start/End of a thread
 Read/Write of a volatile or atomic variable
* Acquire / release of a monitor

17

Synchronizes With Relation

 The variable x is initially O.
 Thread A writes x=5
* Thread B reads/prints the value of x

 We could see 0 -> then we expect that B executed before A
 We could see 5 -> then we expect that A executed before B

* The synchronizes with relation says a read of a volatile must return the
last value written to it. It synchronizes with that last write across
threads!

18

Synchronizes With Relation

* |f we combine (the transitive closure of) program order and
“synchronizes with” we get the “happens before” order

* Any output/result we see in a Java Program must be consistent with
this happens before order

19

Essential

Java Memory Model Takeaways

e |If avariable is not declared volatile you must use the happens-before
order to reason about possible values -> requires thought
 |fa (primitive) variable is volatile it behaves like an atomic register

 (Can sometimes gain performance (and maintain correctness) by not
marking everything volatile.

e But you are using Java, is performance really your focus? © - if in
doubt declare shared variables as volatile

20

Plan fur heute

* Organisation

* Nachbesprechung Exercise 8
* Theory

* Intro Exercise 9

e Exam Questions

* Kahoot

Theory Recap

Memory hierachy (one core)

fast, low latency, high cost, low capacity

slow, high latency latency, low cost, high capacity

20

Memory hierachy (many cores)

21

Lets take a step back

Threads perform actions, those actions are usually read/write to
memory locations.

Compiler and Hardware can optimize read/writes by reordering
Mmemory accesses.

void f() { void f() { void f() {
x =1 semantically x =1 semantically x =1
y = X+1; equivalent? z = X+1; equivalent? z = 2;
Z = X+1; y = X+1; y = 2;

The big problem

Because of memory reordering we can suddenly get results that we

did not expect!

Thread‘/\rhread :

x=1

|

|

=h

x=y=0

What could be the result?

y=1

|

- X

>
7

o3
o=

<
]
o

|| — “I ﬁ.
O -=0
-y

o_\

(but why?)

Visibility not guaranteed

And even if an action has been executed, we do not have
guarantees that other threads see them (in the correct order).

In other words, actions that were performed by one thread may not
be visible to another thread!

We want to make sure that the actions become visible. And we want
some guarantees on the ordering.

How? Java Memory Model!

* To reason about this we need some formalism
* This is what the java memory model gives us
* JMM is defined using various orders on our program execution

volatile

* value of a volatile field becomes visible to all readers (other
threads in particular) after a write operation completes on it

* Without volatile, readers could see some non-updated value

Program Order

Int X,y =0, volatileintz=0

X //what will Thread 2 see?

z //what will Thread 2 see?

Program Order

Int X,y =0, volatileintz=0

X //what will Thread 2 see?

z//what will Thread 2 see?

Synchronization Actions
Int X,y =0, volatileintz=0

1L = 200

int k = x //what will Thread 2 see?

int m z//what will Thread 2 see?

Assume Thread 1 runs first
Int x,y =0, volatileintz=0 - SO: write(z, 7) --> m =read(z)

1L = 200

int k = x //what will Thread 2 see?

int m z//what will Thread 2 see?

JMM: Synchronizes-With (SW) / Happens-Before (HB) orders

[
[
[
[

SW only pairs the specific actions which "see" each other

A volatile write to x synchronizes with subsequent read of x (subsequent in SO)
The transitive closure of PO and SW forms HB

HB consistency: When reading a variable, we see either the last write (in HB) or any other unordered
write.

[0 This means races are allowed!

Synchronization actions induce the synchronized-with relation on actions, defined as follows:

« An unlock action on monitor m synchronizes-with all subsequent lock actions on m (where "subsequent” is defined according to the synchronization order).

« A write to a volatile variable v (§8.3.1.4) synchronizes-with all subsequent reads of v by any thread (where "subsequent” is defined according to the synchronization order).

« An action that starts a thread synchronizes-with the first action in the thread it starts.

Now we can identify synchronizes-with
Int x,y =0, volatileintz=0 - SO: write(z, 7) --> m =read(z)

1L = 200

int k = x //what will Thread 2 see?

int m = z%YY/what will Thread 2 see?

Happens-before relationship

Two actions can be ordered by a happens-before relationship. If one
action happens-before another, then the first is visible to and ordered before the
second.

Transitive closure of PO and SW forms happens before order

All values we observe must obey this happens before order!

If Xx and y are actions of the same thread and x comes before y in program
order, then hb(x, y).

If an action x synchronizes-with a following action y, then we also

have hb(x, y).

If hb(Xx, y) and hb(y, z), then hb(x, z).

SW + PO gives us Happens-Before
relationship

Int x,y =0, volatileintz=0 - SO: write(z, 7) --> m =read(z)

int 1 = 10
1T = 200

int k = x //what will Thread 2 see?

int m = z%YY/what will Thread 2 see?

So what does k = read(x) see?

Int x,y =0, volatileintz=0 - SO: write(z, 7) --> m =read(z)

int 1 = 10
1T = 200

int k = x //what will Thread 2 see?

int m = z%YY/what will Thread 2 see?

How about now?

Int x,y =0, volatileintz=0 - SO: write(z, 7) --> m =read(z)

int 1 = 10
1T = 200

int m = z //what will Thread 2 see?

int k X “//what will Thread 2 see?

Example

int x; volatile int g;

write(x, 1)

write(g, 1)

int rl = g;
hb

int r2 = x;

read(g):1

read(x):1

hb

38

Example

int x; volatile int g;

Case

1; |write(x, 1)||int rl = g
hb hb
1; |write(g, 1) || int r2 = x

hb
1: HB consistent, observe the latest write in —

(r1,72) = (1,1)

»

¥

read(g):1

read(x):1

hb

int x; volatile int g;

write(x, 1)

write(g, 1)

int rl

int r2

g

X5

read(g) :0

read(x) :0

hb

38

Example

int x; volatile int g; int x; volatile int g;
x = 1; |write(x, 1) || int rl = g; |read(g):1 x = 1; |write(x, 1) || int rl = g; |read(g):0
hb hb hb hb hb
g =1; |write(g, 1 ||int r2 = x; |read(x):1 g =1; |write(g, 1) ||int r2 = x; |read(x):0

Case 2: HB consistent, observe the default value

. . . hb
Case 1: HB consistent, observe the latest write in — (r1,72) = (0,0)

(r1,72) = (1,1)

int x; volatile int g;

x = 1; |write(x, 1) || int ri g; |read(g):0
hb hb

g =1; |write(g, 1) || int r2 X; |read(x):1

38

Exampl

e

int x; volatile int g;

write(x, 1)

x =1;
hb
g =1;

write(g, 1)

int rl =g

hb

»

int r2 = x;

read(g):1

read(x):1

hb
Case 1: HB consistent, observe the latest write in —
(r1,72) = (1,1)

int x; volatile int g;

hb

write(x, 1)

int ri

write(g, 1)

int r2

g

£

read(g) :0

read(x):1

Case 3: HB consistent (!), reading via race!
(r1,72) = (0,1)

hb

int x; volatile int g;

write(x, 1)

write(g, 1)

int rl = g;

int r2 X;

(r1,72) = (0,0)

int x; volatile int g;

read(g) :0

hb

read(x) :0

Case 2: HB consistent, observe the default value

1; |write(x, 1)

1; |write(g, 1)

int rl = g;
hb
int r2 = x;

read(g):1

read(x) :0

hb

int x; volatile int g;

Examples

x = 1;
hb

g =1; Iurite(g. 1}|_ int r2 = x;

* [nitial value of x,y is O.

write(x, 1)

int rl = g;
hb

_read{g}:l

read(x) :1

hb

Essential

 We can either getrl,r2 =(0,0), (1,1) or (0,1) NOT (1,0) from this code!

44

Essential

Atomic operations

* An atomic action is one that effectively happens at once i.e. this action
cannot stop in the middle nor be interleaved

* |t either happens completely, or it doesn’t happen at all.
* No side effects of an atomic action are visible until the action is complete

* This essentially means that other threads think that the change
happened in an instant

Essential

Atomic registers

« Atomic registers => support read and write, nothing else

« Usually we think of reads / writes as atomic, I.e., if we write a line
such as x=1 in pseudocode we assume it happens atomically and is
globally visible.

* This is not true in Java (unless x Is e.g., Atomiclnteger)
* Volatile makes it globally visible (but not atomic in all cases)

Essential

Atomic registers

« An operation such as x++ (with x being an atomic register) is NOT
atomic!
* Three steps: v =read(x), increment v, write(x, V)

* Problem with atomic registers:
 Need O(n) space to synchronize n threads (if we only have
atomic read write) -> bad
* Fix: support more than read/write in an atomic operation

Atomic Registers

Register: basic memory object, can be shared or not
i.e., in this context register + register of a CPU

Register r : operations r.read() and r.write(v)
Atomic Register:

An invocation J of r.read or r.write takes effect at a single point 7(/) in time
7(J) always lies between start and end of the operation J

Two operations / and K on the same register always have a different effect
time7(J) + ©(K)

An invocation J of r.read() returns the value v written by the invocation K of
r.write(v) with closest preceding effect time 7(K)

Atomic Registers

r.read()
N O e
r.write(4) r.read()
S S S—
rwrite(1) rread() r.read()
C - @e- @ e L

Atomic Registers

r.read() =21
N — O
rwrite(4) r.read() 24
B oo e ———————— et oo SEEEEEE
rwrite(1) r.read() >1 r.read() 2any value!
C --Oo——=@-------- D e, L .

Hardware support for atomic operations

Different atomic operations have been proposed, unclear which is best
 Test-And-Set (TAS)
e Compare-And-Swap (CAS)

 Load Linked / Store Conditional

http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

51

http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

Hardware Semantics

boolean TAS(memref s)

If (mem[s] ==0) {
mem|s] = 1;
return true;

} else

return false:

Essential

Int CAS (memref a, int old, int new)
oldval = mem|[a];
If (old == oldval)
mem(a] = new,

return oldval;

52

Essential

atomically set to value iff
current value is . Return
true on success.

sets and returns
previous value.

53

Now we know how getAndlncrement is
Implemented!

¥ Atomically i1ncrements by one the current value.

* @wreturn the previous value
* /
public final int getAndIncrement() <

for (;;) { //same as while(true)
int current = get();
int next = current + 1;
if (compareAndSet(current, next))
return current;

Source: https://github.com/openjdk-mirror/jdk7u-
jdk/blob/master/src/share/classes/java/util/concurrent/atomic/Atomiclnteger.java

Essential

Locks with atomics

* Now we can implement locks for n threads using a single
variable:

« Lock: while (ITAS()) {}
« Unlock: mem[l]=0

55

Lets build a spinlock using RMW operations

Lets build a spinlock using RMW operations

Test and Set (TAS)

Init (lock)
lock = 0;

Acquire (lock)
while ITAS(lock); // wait

Release (lock)
lock = 0;

Lets build a spinlock using RMW operations

Test and Set (TAS) Compare and Swap (CAS)
Init (lock) Init (lock)
lock = 0; lock = 0;
Acquire (lock) Acquire (lock)
while ITAS(lock); // wait while (CAS(lock, 0, 1) !=0);
Release (lock) Release (lock)

lock = 0; CAS(lock, 1, 0);

In Java...

public class TASLock 1implements Lock {
AtomicBoolean state = new AtomicBoolean(false);

public void lock() {
while(state.getAndSet(true)) {
//do nothing

public void unlock() {
state.set(false);

TAS Spinlock scales horribly, why?

TAS

n =1, elapsed= 224, normalized= 224

n =2, elapsed= 719, normalized= 359

n =3, elapsed= 1914, normalized= 638

n =4, elapsed= 3373, normalized= 843

n =5, elapsed= 4330, normalized= 866

n =6, elapsed= 6075, normalized= 1012

n =7, elapsed= 8089, normalized= 1155

n = 8, elapsed= 10369, normalized= 1256

n =16, elapsed=41051, normalized= 2565
n =32, elapsed= 156207, normalized= 4881
n = 64, elapsed= 619197, normalized= 9674

Bus Contention

« TAS/CAS are read-modify-write operations:
* Processor assumes we modify the value even if we falil!
* Need to invalidate cache
* Threads serialize to read the value while spinning

61

Cache Coherency Protocol ®

We have a sequential bottleneck!

Each call to getAndSet() invalidates cached copies! => Threads
need to access memory via Bus => Bus Contention!

“I...] the getAndSet() call forces other processors to discard their

own cached copies of the lock, so every spinning thread
encounters a cache miss almost every time, and must use the bus
to fetch the new, but unchanged value.” - The Art of Multiprocessor

Programming

Let’s visualize this

Main Memory/ Shared Memory ock=+

BUS

Processor 1 Processor 2 Processor 3

Cache Cache Cache

Slides by Gamal Hassan PProg FS24

Lets visualize this

Main Memory/ Shared Memory 1ock=+

lock =1

BUS

lock.getAndSet(

o~

Processor 1 Processor 2 Processor 3

Cache Cache Cache

Lets visualize this

Main Memory/ Shared Memory ock=+

loc =1

BUS

! lock.getAndSet(-

Processor 1 Processor 2 Processor 3

Cache Cache Cache

lock =1

Lets visualize this

Main Memory/ Shared Memory ock=+

BUS

Processor 1 Processor 2 Processor 3

Cache Cache Cache

TATAS

* |dea: Use normal operation to read first, try TAS only if first read

returns O
« Helps a bit. But what about the case where we see 0 first, then 1

In TAS? Can this happen?
* Yes, and the more threads the more likely ©

Lets try spinning on local cache

public class TASLock implements Lock {
AtomicBoolean state = new AtomicBoolean(false);

public void lock() {
do
while (state.get() = true) //spins on local cache
while(!state.compareAndSet(false, true)) {}

public void unlock() {
state.set(false);

Lets visualize this

Main Memory/ Shared Memory ock=+

BUS

Processor 1 Processor 2 Processor 3

Cache Cache Cache

Lets visualize this

Main Memory/ Shared Memory 1ock=+

lock =1

BUS

o~

Processor 1 Processor 2 Processor 3

Cache Cache Cache

Lets visualize this

Main Memory/ Shared Memory ock=+
lock =1

BUS

!-

Processor 1 Processor 2 Processor 3

Cache Cache Cache

lock =1

Lets visualize this

Main Memory / Shared Memory ock=+

BUS

Processor 1 Processor 2 Processor 3

Cache Cache Cache

lock =1 lock =1

Lets visualize this

Main Memory / Shared Memory ock=+

BUS

!-

Processor 1 Processor 2 Processor 3

Cache Cache Cache

lock =1 lock =1

Lets visualize this

Main Memory / Shared Memory ock=o0

BUS

iy,

Processor 1 Processor 2 Processor 3

Cache Cache Cache

lock =1 lock=0 lock =1

Now the whole problem repeats

Main Memory / Shared Memory ock=o0

BUS

Processor 1 Processor 2 Processor 3

Cache Cache Cache

lock=0

It only helped a little bit

00000 TAS

TTAS

ms/
6000
thread

number threads

What we learned

* (too) many threads fight for access to the same resource
* slows down progress globally and locally

* CAS/TAS: Processor assumes we modify the value even if we
fail!

Solution? Exponential Backoff

Idea: Each time TAS fails, wait longer until you re-try
* Backoff must be random!

Essential

Exponential Backoff

* |dea: Each time TAS falls, wait longer until you re-try

« Works well, must tune parameters (how long to wait initially,
when to stop increasing)

« Same concept in networks, people talking in a high-latency zoom
call, etc.

78

Nice!

12000

10000

TAS
TTAS
ms/ so00
thread
0 . . . BackoffLock

number threads

Lock with compare and set

PProgFS25 - Jonas Wetzel

* Now you see why we
like atomics so
’ class SpinLock {
mUCh' It S mUCh private AtomicBoolean locked = new
Simpler! AtomicBoolean(false):

import java.util.concurrent.atomic.AtomicBoolean;

public void lock() {
while (!locked.compareAndSet(false, true)) {

}

public void unlock() {
locked.set(false);

}.

Performance of Atomic Lock

* High contention makes performance bad

How do we build locks without atomic

* That also give certain guarantees like fairness

* |n our atomic spin lock an unlucky thread might never get to the
CS

Essential

We need to watch out for: Deadlock

* Circular dependency between resources/lock and threads
 Nobody can make progress

« Avoid by introducing global order in which locks are taken
« Cannot have circles now since all dependencies go “in one
direction”
« Or by not using locks at all! (Lock-free, wait-free, more later)

83

Deckers Lock

* Each thread sets its flag[id] = true to indicate that it wants access
to critical section

* |f other thread also wants access, they use turn variable to decide
who goes first

* Ifit's not thread's turn, it backs off, resets its flag, and waits for its
turn

* After exiting critical section, thread gives turn to the other thread
and resets its flag

A combination of the tries 2 and 3: Decker’s Algorithm

volatile boolean wantp=false, wantqg=false, integer turn=1

Process P Process Q
loop loop

non-critical section
wantp = true
while (wantq) {
if (turn == 2) {
wantp = false;
while(turn 1= 1);
wantp = true; }}
critical section
turn=2
wantp = false

non-critical section
wantq = true
while (wantp) {
if (turn==1) {
wantq = false
while(turn 1= 2);
wantq = true; }}
critical section
turn=1
wantq = false

A combination of the tries 2 and 3: Decker’s Algorithm

volatile boolean wantp=false, wantqg=false, integer turn=1

Process P only when q Process Q
loop tries to get loop

non-critical section
wantp = true
while (wantq) {
if (turn == 2) {
wantp = false;
while(turn 1= 1);
wantp = true; }}
critical section
turn=2
wantp = false

lock

non-critical section
wantq = true
while (wantp) {
if (turn ==1) {
wantq = false
while(turn 1= 2);
wantq = true; }}
critical section
turn=1
wantq = false

A combination of the tries 2 and 3: Decker’s Algorithm

volatile boolean wantp=false, wantqg=false, integer turn=1

Process P only when q Process Q

loop tries to get loop
non-critical section lock non-critical section
wantp = true and g has wantq = true
while (wantq) { preference while (wantp) {

if (turn == 2) {
wantp = false;
while(turn !=1);
wantp = true; }}
critical section
turn=2
wantp = false

if (turn==1) {
wantq = false
while(turn != 2);
wantq = true; }}
critical section
turn=1
wantq = false

A combination of the tries 2 and 3: Decker’s Algorithm

volatile boolean wantp=false, wantqg=false, integer turn=1

Process P only when q Process Q

loop tries to get loop
non-critical section lock non-critical section
wantp = true and g has wantq = true
while (wantq) { preference while (wantp) {

if (turn == 2) {
wantp = false;
while(turn !=1);
wantp = true; }}
critical section
turn=2
wantp = false

let q proceed

if (turn ==1) {
wantq = false
while(turn != 2);
wantq = true; }}
critical section
turn=1
wantq = false

A combination of the tries 2 and 3: Decker’s Algorithm

volatile boolean wantp=false, wantqg=false, integer turn=1

Process P

loop

non-critical section
wantp = true
while (wantq) {
if (turn == 2) {
wantp = false;
while(turn 1= 1);
wantp = true; }}
critical section
turn=2
wantp = false

only when g
tries to get
lock

and g has
preference

let g proceed

and wait

Process Q

non-critical section
wantq = true
while (wantp) {
if (turn ==1) {
wantq = false
while(turn 1= 2);
wantq = true; }}
critical section
turn=1
wantq = false

A combination of the tries 2 and 3: Decker’s Algorithm

volatile boolean wantp=false, wantqg=false, integer turn=1

Process P

loop

non-critical section
wantp = true
while (wantq) {
if (turn == 2) {
wantp = false;
while(turn 1= 1);
wantp = true; }}
critical section
turn=2
wantp = false

only when g
tries to get
lock

and g has
preference

let g proceed

and wait

and try again

Process Q

non-critical section
wantq = true
while (wantp) {
if (turn ==1) {
wantq = false
while(turn 1= 2);
wantq = true; }}
critical section
turn=1
wantq = false

Deckers Lock

| Ensures mutual exclusion (only one thread enters the critical
section at a time)

* U< Avoids deadlock by using the turn variable

* L« Provides fairness (both threads get their turn)
« X Limited to two threads (doesn’t scale well)

Can we change while
to if in Deckers lock?

Can we change while
to if in Deckers lock?

No!

P/ P2

LI L)Om‘ll%: ')Lf\'/lc

>‘iﬂmlpj
6 - @mm-:m)g

o Lq(nm[r,l/l -fo/gc’/

{ (ernz<2)f

Lo lp o'se

thile (Faen!=1) ; & bk (fomls2)
[& Lml/“[‘P “drae //7/@%\)“%"]/%%(f

J 4
» (S (G)5

g Jurn= 2 *\wrm " 4
@UOVJP R g™ \,Aavi‘%f r/(r‘:;v/,@@

! BSes | 1 1 e it fer Ah

[(PZ X [! f"'“’//)w\] :
i L | €5

Petersons Lock

* Each thread sets flag[id] = true to indicate it wants access to the
critical section.

* The thread gives priority to the other thread by setting turn = other.

* If the other thread also wants access (flag[other] == true) and it’s
still its turn, the thread waits.

* Once it gets access, it enters the critical section.

* After exiting, the thread resets flag[id] = false so the other thread
can proceed.

More concise than Decker: Peterson Lock

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim =1

Process P (1) Process Q (2)
loop loop

non-critical section

flag[P] = true

victim=P

while(flag[Q] && victim == P);
critical section

flag[P] = false

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);
critical section

flag[Q] = false

More concise than Decker: Peterson Lock

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim =1

Process P (1) Process Q (2)
loop loop
| am
non-critical section interested non-critical section
flag[P] = true flag[Q] = true
victim=P victim=Q
while(flag[Q] && victim == P); while(flag[P] && victim == Q);
critical section critical section

flag[P] = false flag[Q] = false

More concise than Decker: Peterson Lock

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];

volatile integer victim =1

Process P (1)

loop
non-critical section
flag[P] = true
victim=P

while(flag[Q] && victim =

critical section
flag[P] = false

| am
interested
but you go
first

=P);

Process Q (2)
loop
non-critical section
flag[Q] = true
victim = Q
while(flag[P] && victim == Q);
critical section
flag[Q] = false

More concise than Decker: Peterson Lock

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim =1

Process P (1) Process Q (2)
loop - loop
non-critical section interested non-critical section
flag[P] = true E‘:Sttyou go flag[Q] = true
victim=P victim = Q
while(flag[Q] && victim == P); while(flag[P] && victim == Q);
critical sectian critical section
flag[P] = false e Etare flag[Q] = false

interested

More concise than Decker: Peterson Lock

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim =1

Process P (1)

loop
non-critical seCtion)

victim=P
while(flag[Q] && victim == P);
critical sect
flag[P] = false

Process Q (2)
loop
non-critical section
flag[Q] = true
victim = Q
while(flag[P] && victim == Q);
critical section
flag[Q] = false

19

Butisn’t the write to victim a data race?

More concise than Decker: Peterson Lock

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim =1

Process P (1) Process Q (2)
loop loop
lam
non-critical section interested non-critical section
flag[P] = true 'f?“ttyou go flag[Q] = true
Irs
victim=P victim=Q
while(flag[Q] && victim == P); while(flag[P] && victim == Q);
critical sectian critical section

flag[P] = false flag[Q] = false

We both are And you go first
interested

Peterson Lock

|2 Ensures mutual exclusion (only one thread enters the critical
section at a time)

.« Prevents deadlock (always allows progress)

L« Fair (bounded waiting) (no thread is starved forever)

Lo simpler than Deckers Lock
X{ Works only for two threads (not scalable)

Peterson Lock

|2 Ensures mutual exclusion (only one thread enters the critical
section at a time)

.« Prevents deadlock (always allows progress)

L« Fair (bounded waiting) (no thread is starved forever)

Lo simpler than Deckers Lock
X{ Works only for two threads (not scalable)

* Bakery Lock allows us to extend Peterson Lock Idea to n Threads!

Filter Lock

non-CS with n threads 0

int[] level(#threads), int[] victim(#threads) \ n-1 threads / 1

\ n-2 threads / 2
lock(me) { \ /

for (int i:]__; j_(n_; .|..|.i) { 2 threads
level[me] = 1i;
victim[i] = me; n

while (3k #me: level[k] >= i && victim[i] == me) {};
}

Other threads
Un].OCk(mE) { are at same or And | haVE to Walt
level[me] = O; higher level

}

Bakery Lock

integer array[©0..n-1] label = [0, ..., 0]
boolean array[0..n-1] flag = [false, ..., false]

SWMR «ticket number»

SWMR «!l want the lock»

lock(me):
flag[me] = true;
label[me] = max(label[©], ... , label[n-1]) + 1;

while (3k #me: flag[k] && (k,label[k]) < (me,1abel[me])) {};

unlock(me):

flag[me] = false; (k, 1) < (j, lj) e[, < lj or (I = lj and k < j)

Extra Theory

Semaphores

Semaphores

* Locks provide means to enforce atomicity via mutual exclusion
* They lack the means for threads to communicate about changes

* We need something stronger to coordinate threads (e.g. to
Implement rendezvous)

Semaphores

S = new Semaphore(n) - create a new semaphore with n permits

acquire(S)
{

wait until S > ©
dec(S)
}

atomic

acquire

release(S)
{ (protected)

inc(S)

} release

atomic

Building a lock with Semaphores

mutex = Semaphore(1);

lock mutex := mutex.acquire()
only one thread is allowed into the critical section

unlock mutex := mutex.release()
one other thread will be let in

Semaphore number:
1 —> unlocked

0 - locked

x>0 = x threads will be let into “critical section”

Semaphores aren’t Locks!

* We can build Locks with Semaphores

* Some key differences:
* More than one Thread can be in critical section!
* How many depends on the number of permits
* Threads can release() a Semaphore without accquiring before!

* The is no notion of “holding” a Semaphore as we have with ”holding”
Locks

Rendezvous with Semaphores

* Two processes P and Q execute code

* Rendezvous: locations in code, where P and Q wait for the other to
arrive. Synchronize P and Q.

It '.
"l... .i""'
L] .
" . .
L]
»

First attempt, whats wrong?

Synchronize Processes P and Q at one location (Rendezvous)
Semaphores P_Arrived and Q Arrived

P Q

init P Arrived=0 Q Arrived=0

pre

rendezvous acquire(Q Arrived) acquire(P_Arrived)
release(P_Arrived) release(Q Arrived)

post

Deadlock :(

We are never able to release! Both P and Q wait endlessly for each
other ®

P pre

Attempt two, better?

Synchronize Processes P and Q at one location (Rendezvous)
Assume Semaphores P_Arrived and Q Arrived

P Q
init P Arrived=0 Q Arrived=0
pre
rendezvous release(P_Arrived) acquire(P_Arrived)
acquire(Q Arrived) release(Q Arrived)
post

Yes, that works!

P first

P pre

release

{}

Q first

Q - pre

P Q
init P Arrived=0 Q Arrived=0
pre
rendezvous release(P_Arrived) acquire(P_Arrived)
acquire(Q _Arrived) release(Q Arrived)
post
post p——
pre {{ acquire H release post [
time
pre H release post |
release [+ post |——

time

P Q

Y h k ' init P Arrived=0 Q Arrived=0
es, that works! pre
rendezvous release(P_Arrived) acquire(P_Arrived)
acquire(Q _Arrived) release(Q Arrived)

P first post

P - pre H release post [

N £

Q pre {{ acquire H release post p——

i |

Many context
switches

Q first

i |

P pre

release post |

Q - pre HELCLIT: release f{ post |—
time

Lets do better!

Synchronize Processes P and Q at one location (Rendezvous)

Assume Semaphores P Arrived and Q Arrived

P Q

init P Arrived=0 Q Arrived=0

pre

rendezvous release(P_Arrived) release(Q Arrived)
acquire(Q Arrived) acquire(P Arrived)

post

Order does no longer matter

P first

pre

release

P Q
init P_Arrived=0 Q_Arrived=0
pre
rendezvous release(P_Arrived) release(Q_Arrived)
acquire(Q_Arrived) acquire(P_Arrived)
post

v

ﬁ

pre

1 release

acquire [post

post p——

ﬂ

pre

release

-

acquire H post

pre

release

Vv

post

How about more than two threads? Barriers!

How about more than two threads? Barriers!

First attempt

Synchronize a number (n) of processes.
Semaphore barrier. Integer count.

Pl P2 Pn
init barrier = 0; volatile count = ©
pre
barrier count++
if (count==n) release(barrier) & ya
acquire(barrier)
post

Wrong

Synchronize a number (n) of processes.
Semaphore barrier. Integer count.

P1 P2 |... |Pn
init barrier = 0; volatile count = ©
pre .. Race Condition !
barrier count++
if (count==n) release(barrier) <« <« S
acquire(barrier)

post

Some wait forever!

How about this?

Synchronize a number (n) of processes.
Semaphores barrier, mutex. Integer count.

P1 P2 |... |Pn
init mutex = 1; barrier = 0; count = ©
pre
barrier acquire(mutex)

count++

release(mutex)

if (count==n) release(barrier) & & &

acquire(barrier) .

: turnstile

release(barrier)

post

Reusable Barrier

P1 ... |en
init mutex = 1; barrier = 0; count = 0
pre Dou you see
?
barrier acquire(mutex) 168 L S
count++
release(mutex)

if (count==n) release(barrier)

acquire(barrier)
release(barrier)

acquire(mutex)
count--
release(mutex)
if (count==0) acquire(barrier)

post

Reusable Barrier

Pl ‘ Pn
init mutex = 1; barrier = 0; count = ©
pre Dou you see
?
barrier acquire(mutex) S el B
count++
release(mutex)

post

if (count==n) release(barrier)

acquire(barrier)
release(barrier)

acquire(mutex)
count--
release(mutex)
if (count==0) acquire(barrier)

Race Condition !

Race Condition !

Scheduling Scenario

barrier =0
count++
|
(count=1)
> count++
> count++
|
barrier=1 count=3 - release(barrier)
.) <
barrier = 2 count=3 -2 release(barrier)
<€
turnstile(barrier)
> , .
turnstile(barrier)
>
turnstile(barrier)
barrier = 2

Reusable Barrier 2nd try

Pl e Pn
init mutex = 1; barrier = 0; count = ©
pre o Dou you see
. . the problem?
barrier acquire(mutex)
count++
if (count==n) release(barrier)
release(mutex)

acquire(barrier)
release(barrier)

acquire(mutex)

count--

if (count==0) acquire(barrier)
release(mutex)

post

Doesn’t quite work yet

Pl Pn
init mutex = 1; barrier = 0; count = 0
pre Dou you see
| ‘ the problem?
barrier acquire(mutex)
count++

post

if (count==n) release(barrier)
release(mutex)

acquire(barrier)
release(barrier)

acquire(mutex)

count--

if (count==0) acquire(barrier)
release(mutex)

Process can pass
other processes!

Solution: Two-Phase Barrier

init mutex=1; barrierl=0; barrier2=1; count=0
barrier acquire(mutex)
count++;

if (count==n)
acquire(barrier2); release(barrierl)
release(mutex)

acquire(barrierl); release(barrierl);
// barrierl = 1 for all processes, barrier2 = @ for all processes
acquire(mutex)
count--;
if (count==0)
acquire(barrierl); release(barrier2)
signal(mutex)

acquire(barrier2); release(barrier2)
// barrier2 = 1 for all processes, barrierl

@ for all processes

Plan fur heute

* Organisation

* Nachbesprechung Exercise 8
* Theory

* Intro Exercise 9

e Exam Questions
* Kahoot

Assignment 8: Overview

* Analyzing locks

* Atomic operations

131

Analyzing locks

 The sample code represents the behavior of a couple that are having
dinner together, but they only have a single spoon.

* Prove or disprove that the current implementation provides mutual

exclusion.
 HINT: Use State space diagram

132

Atomic operations

* In this task, we will see and analyze:
* the usage of atomic operations to perform concurrency control, and
* the cost of using them when having data contention

 For more details, please refer to the assignment sheet

133

Plan fur heute

* Organisation

* Nachbesprechung Exercise 8
* Theory

* Intro Exercise 9

* Exam Questions

* Kahoot

Fork/Join Framework (16 points)

Der folgende Code zielt darauf ab, ein Bild The following code aims to negate an im-
zu negieren, indem es mithilfe des Fork/Join- age by recursively subdividing it into mul-
Frameworks rekursiv in mehrere Unterfenster tiple subwindows (four per recursion step)
(vier pro Rekursionsschritt) unterteilt wird. Die using the Fork/Join framework. The sub-
Unterfenster kénnen dann parallel negiert wer- windows can then be negated in parallel.
den. Das folgende Beispiel verdeutlicht die Un- The example below illustrates the subdivi-
terteilung des Bildes und die Negierung der ein- sion of the image and negation of the indi-
zelnen Unterfenster. vidual subwindows.

Negate

Bitte lesen Sie den Code sorgfiltig durch und Please read the code carefully and then an-
beantworten Sie dann die Fragen zum Code: swer the questions regarding the code:

public class ImageNegationF] extends RecursiveAction {
final static int CUTOFF = 32;
double[] [] image, invertedImage;
int startx, starty;
int length;

public ImageNegationFJ(double[][] image, doublel][] invertedImage,
int startx, int starty, int length) {
this.image = image;

this.invertedImage = invertedImage;
this.startx = startx;
this.starty = starty;
this.length = length;

@Override
protected void compute() {

@Override
protected void compute() {
if (this.length <= CUTOFF) {
for (int offsetX = @; offsetX < this.length; offsetX++) {
for (int offsetY = 0; offsetY < this.length; offsetY++) {
this.invertedImage[this.startx + offsetX] [this.starty + offsetY] = 1
— this.imagel[this.startx + offsetX] [this.starty + offsetY];

}

} else {

int halfSize = (this.length) / 2;

ImageNegationFJ upperLeft = new ImageNegationFJ(this.image,
this.invertedImage, this.startx, this.starty, halfSize);

ImageNegationFJ upperRight = new ImageNegationFJ(this.image,
this.invertedImage, this.startx + halfSize, this.starty,
halfSize);

ImageNegationF] lowerLeft = new ImageNegationFJ(this.image,
this.invertedImage, this.startx, this.starty + halfSize,
halfSize);

ImageNegationF] lowerRight = new ImageNegationFJ(this.image,
this.invertedImage, this.startx + halfSize,
this.starty + halfSize, halfSize);

upperLeft.fork();

upperLeft.join();

upperRight. fork();

upperRight.join();

lowerLeft.fork();

lowerLeft.join();

lowerRight.compute();

final static int CUTOFF = 32;

double([] [] image, invertedImage;

@0verride
protected void compute() {
if (this.length <= CUTOFF
for (int offsetX = @; offsetX < this.length; offsetX++) {
for (int offsetY = 0; offsetY < this.length; offsetY++) {
this.invertedImage[this.startx + offsetX] [this.starty + offsetY] =1
- this.image[this.startx + offsetX] [this.starty + offsetY];

}

else

int halfSize = (this.length) / 2;

ImageNegationF] upperLeft = new ImageNegationF](this.image,
this.invertedImage, this.startx, this.starty, halfSize);

ImageNegationFJ upperRight = new ImageNegationFJ(this.image,
this.invertedImage, this.startx + halfSize, this.starty,
halfSize);

ImageNegationF] lowerLeft = new ImageNegationFJ](this.image,
this.invertedImage, this.startx, this.starty + halfSize,
halfSize);

ImageNegationF] lowerRight = new ImageNegationFJ](this.image,
this.invertedImage, this.startx + halfSize,
this.starty + halfSize, halfSize);

upperLeft.fork();

upperLeft.join();

upperRight.fork();

upperRight.join();

lowerLeft.fork();

lowerLeft.join();

lowerRight.compute();

(a) Welche Annahme trifft der Code beziiglich What assumption does the code make (2)
der Abmessungen des Arrays, das das Einga- concerning the dimensions of the array
bebild darstellt? representing the input image?

Tobias Steinbrecher @tsteinbreche - 8 months ago - edited 8 months ago v 13 A

The image should be square s X s and we should have s = de, where d < 32. This is necessary, because we want length to be divisible by 2

in the case length > 32.If this would not be the case, we would do floor division and leave pixels unprocessed.

+ Add Comment «++ More

@override
protected void compute() {
if (this.length <= CUTOFF

for (int offsetX = @; offsetX < this.length; offsetX++) {
for (int offsetY = @; offsetY < this.length; offsetY++) {
this.invertedImage[this.startx + offsetX][this.starty + offsetY] = 1
- this.image[this.startx + offsetX] [this.starty + offsetY];

}

else
int halfSize = (this.length) / 2;

ImageNegationF] upperLeft = new ImageNegationFJ(this.image,
this.invertedImage, this.startx, this.starty, halfSize);

ImageNegationF] upperRight = new ImageNegationFJ](this.image,
this.invertedImage, this.startx + halfSize, this.starty,

halfSize);

ImageNegationF] lowerLeft = new ImageNegationFJ](this.image,
this.invertedImage, this.startx, this.starty + halfSize,

halfSize);

ImageNegationF] lowerRight = new ImageNegationFJ(this.image,
this.invertedImage, this.startx + halfSize,
this.starty + halfSize, halfSize);

upperLeft.fork();
upperLeft.join();
upperRight.fork();
upperRight.join();
lowerLeft.fork();
lowerLeft.join();
lowerRight.compute();

(b) Parallelisiert der Code die beabsichtigte Auf-
caha Lrarval-+ Adanr nﬂil\t es xveltere Optill’lie-
2024-07-30T13:53:26.664575+00:00 _ _
rungsmogucnkeen: wenn ja, welche Opti-

mierung wiirden Sie vorschlagen und warum?

Does the code correctly parallelize the
intended task or is there further opti-
mization that could be done?” If so,
which optimization would you propose
and why?

upperLeft.fork();
upperLeft.join();
upperRight. fork();

Not good: upperRight.join();
lowerLeft. fork();
lowerLeft.join();
lowerRight.compute();

Tobias Steinbrecher @tsteinbreche - 8 months ago - edited 7 months ago v

No, the parallelization is incorrect, as we have subsequent fork() and join() calls, which means that we wait for the corresponding

subproblem to be finished, before calling fork() on the next one. To fix this, we should do the following:

upperLeft. fork();
upperRight. fork();
lowerLeft.fork();
lowerRight. compute();
upperLeft.join();
upperRight.join();
lowerLeft.join();

public class ImageNegationFJ extends
final static int CUTOFF = 32;
double[]l[] image, invertedImage;
int startx, starty;
int length;

public ImageNegationFJ(double

RecursiveAction {

image, double invertedImage,

int startx, int starty, int length) {

this.image = image;

this.invertedImage =

this.startx = startx;
this.starty = starty;
this.length = length;

@Override
protected void compute() {

(c) Vervollstindigen Sie das folgende Code-

Sie
tierte ImageNegationFJ Klasse die
ForkJoinPool Klasse verwenden, um die Va-
riable negatedImage mit den negierten Wer-
ten zu fiillen.
double[] [] image = {{0, 1}, {1, 0}};
int imageSize = image.length;
double[] [] negatedImage =

geriist, indem die oben implemen-

und

.....................................

.....................................

invertedImage;

Complete the following code skeleton

by using the above implemented
ImageNegationFJ class and the
ForkJoinPool class to fill the vari-

able negatedImage with the negated
values.

new double[imageSize] [imageSize];

...............

...............

(4)

Tobias Steinbrecher @tsteinbreche - 8 months ago v 10

double[][] image = {{0,1}, {1,0}};

int imageSize = image. length;

double[][] negatedImage = new double[imageSize] [imageSize];

ForkJoinPool fjp = new ForkJoinPool();

ForkJoinTask t = new ImageNegationFJ(image, negatedImage, 0@, 0 ,imageSize);
fip.invoke(t);

+ Add Comment +++ More

(d) Unter der Annahme, die Klasse
ImageNegationFJ korrekt parallelisiert ist,
wie viele Threads verwendet der ForkJoin-
Pool effektiv, um das 2 x 2 negatedImage
Array aus Aufgabe 3c) zu fiillen?

dass

double[] []1 image

@0verride
protected void compute() {
if (this.length <= CUTOFF
for (int offsetX = @; offsetX < this.length; offsetX++) {
for (int offsetY = @; offsetY < this.length; offsetY++) {
this.invertedImage[this.startx + offsetX] [this.starty + offsetY] =1
— this.image[this.startx + offsetX] [this.starty + offsetY];

final

}

else

int halfSize = (this.length) / 2;

ImageNegationF] upperLeft = new ImageNegationFJ(this.image,
this.invertedImage, this.startx, this.starty, halfSize);

ImageNegationF] upperRight = new ImageNegationFJ](this.image,
this.invertedImage, this.startx + halfSize, this.starty,
halfSize);

ImageNegationF] lowerLeft = new ImageNegationFJ(this.image,
this.invertedImage, this.startx, this.starty + halfSize,
halfSize);

ImageNegationF] lowerRight = new ImageNegationFJ](this.image,
this.invertedImage, this.startx + halfSize,
this.starty + halfSize, halfSize);

upperLeft.fork();

upperLeft.join();

upperRight. fork();

upperRight.join();

lowerLeft.fork();

lowerLeft.join();

lowerRight.compute();

Assuming that the ImageNegationFJ
class is correctly parallelized, how many
does the ForkJoinPool effec-
tively use to fill the 2 x 2 negatedImage
array from task 3c)?

threads

= {{0,1}, {1,0}};

static

int CUTOFF = 32;

(d) Unter der Annahme, dass die Klasse Assuming that the ImageNegationFJ (2)

ImageNegationFJ korrekt parallelisiert ist, class is correctly parallelized, how many
wie viele Threads verwendet der ForkJoin- threads does the ForkJoinPool effec-
Pool effektiv, um das 2 x 2 negatedImage tively use to fill the 2 x 2 negatedImage
Array aus Aufgabe 3c) zu fiillen? array from task 3c)?

double[][] image = {{0,1}, {1,0}};

@0verride
protected void compute() {
if (this.length <= CUTOFF
for (int offsetX = @; offsetX < this.length; offsetX++) {
for (int offsetY = @; offsetY < this.length; offsetY++) {
this.invertedImage[this.startx + offsetX] [this.starty + offsetY] =1
— this.image[this.startx + offsetX] [this.starty + offsetY];

final static int CUTOFF = 32;

+
else
int halfSize = (this.length) / 2;
ImageNegationF] upperLeft = new ImageNegationFJ(this.image . . — . .
o envemeiinge, tis o ot P e Tobias Steinbrecher @tsteinbreche - 8 months ago - edited 8 months ago
ImageNegationF] upperRight = new ImageNegationFJ](this.image,
this.invertedImage, this.startx + halfSize, this.starty,
halfSize);
ImageNegationF] lowerLeft = new ImageNegationFJ(this.image,
o 5 5 + . .
e ey TeceIagE, (IS, STAME S sarty hatfsize, Because of the sequential cutoff, only one Thread would be used effectively.
ImageNegationF] lowerRight = new ImageNegationFJ](this.image,
this.invertedImage, this.startx + halfSize,
this.starty + halfSize, halfSize);
upperLeft.fork();
upperLeft.join();
upperRight. fork();
upperRight.join();
lowerLeft.fork();
lowerLeft.join();
lowerRight.compute();

(e) Gehen Sie von einem konstanten Overhead
von 16 MB = 2*MB pro Thread aus und
dass pro Split immer vier neue Threads er-
stellt werden. Dies bedeutet, dass die Anzahl
der Threads nicht durch den ForkJoinPool
festgelegt wird, sodass kein Thread wieder-
verwendet wird und es zu keinem Work Ste-
aling zwischen den Threads kommt. Was ist
der niedrigste Wert fiir CUTOFF, wenn Sie ein
Bild der Grole 4000 x 4000 eingeben, bevor
Ihnen bei einem RAM der Groflie 10 GB der
Speicher ausgeht? Hinweis: 1 GB = 210 MB.

Assume a fixed overhead of 16 MB =
24 MB per thread and that there are al-
ways four new threads created per split.
This means that the number of threads
is not fixed by the ForkJoinPool, so no
thread is re-used and there is no work
stealing among the threads. What is
the lowest value for CUTOFF if you input
an image of size 4000 x 4000 before you
run out of memory using a RAM of size
10 GB? Hint: 1GB = 2! MB.

(4)

(e) Gehen Sie von einem konstanten Overhead
von 16 MB = 2*MB pro Thread aus und
dass pro Split immer vier neue Threads er-
stellt werden. Dies bedeutet, dass die Anzahl
der Threads nicht durch den ForkJoinPool
festgelegt wird, sodass kein Thread wieder-
verwendet wird und es zu keinem Work Ste-
aling zwischen den Threads kommt. Was ist
der niedrigste Wert fiir CUTOFF, wenn Sie ein
Bild der Grole 4000 x 4000 eingeben, bevor
Ihnen bei einem RAM der Groflie 10 GB der
Speicher ausgeht? Hinweis: 1 GB = 210 MB.

Tobias Steinbrecher @tsteinbreche - 8 months ago - edited 8 months ago

Number of threads, which we can use:

~10-2%

N 51

Assume a fixed overhead of 16 MB =
24 MB per thread and that there are al-
ways four new threads created per split.
This means that the number of threads
is not fixed by the ForkJoinPool, so no
thread is re-used and there is no work
stealing among the threads. What is
the lowest value for CUTOFF if you input
an image of size 4000 x 4000 before you
run out of memory using a RAM of size
10 GB? Hint: 1GB = 2! MB.

—10-2=10-4°

In each recursive call, we will use 4 new threads (under given assumptions). Thereby, we have the constraint (¢ := number of divisions)

4" <10-4° <= i <logy(10) +3 < i< 4

and the smallest possible value is CUTOFF = 4000/24 = 250 to avoid a fifth division.

<+ Add Comment

(4)

14

+ More

Plan fur heute

* Organisation

* Nachbesprechung Exercise 5
* Theory Recap

* Intro Exercise 6

e Exam Questions

e Kahoot

Kahoot

Feedback

* Falls ihr Feedback mochtet sagt mir bitte Bescheid!
* Schreibt mir eine Mail oder auf Discord

Danke

* Bis nachste Woche!

	Default Section
	Slide 1: Parallele Programmierung FS25
	Slide 2: Plan für heute
	Slide 3: Organisation
	Slide 4: Organisation
	Slide 5: Organisation
	Slide 6: Organisation
	Slide 7: Plan für heute
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Plan für heute
	Slide 22: Theory Recap
	Slide 23
	Slide 24
	Slide 25: Lets take a step back
	Slide 26: The big problem
	Slide 27: Visibility not guaranteed
	Slide 28
	Slide 29: volatile
	Slide 30: Program Order
	Slide 31: Program Order
	Slide 32: Synchronization Actions
	Slide 33: Assume Thread 1 runs first
	Slide 34
	Slide 35: Now we can identify synchronizes-with
	Slide 36: Happens-before relationship
	Slide 37: SW + PO gives us Happens-Before relationship
	Slide 38: So what does k = read(x) see?
	Slide 39: How about now?
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: Atomic Registers
	Slide 49: Atomic Registers
	Slide 50: Atomic Registers
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Now we know how getAndIncrement is implemented!
	Slide 55
	Slide 56: Lets build a spinlock using RMW operations
	Slide 57: Lets build a spinlock using RMW operations
	Slide 58: Lets build a spinlock using RMW operations
	Slide 59: In Java…
	Slide 60: TAS Spinlock scales horribly, why?
	Slide 61
	Slide 62: Cache Coherency Protocol 
	Slide 63: Let’s visualize this
	Slide 64: Lets visualize this
	Slide 65: Lets visualize this
	Slide 66: Lets visualize this
	Slide 67
	Slide 68: Lets try spinning on local cache
	Slide 69: Lets visualize this
	Slide 70: Lets visualize this
	Slide 71: Lets visualize this
	Slide 72: Lets visualize this
	Slide 73: Lets visualize this
	Slide 74: Lets visualize this
	Slide 75: Now the whole problem repeats
	Slide 76: It only helped a little bit
	Slide 77: What we learned
	Slide 78
	Slide 79: Nice!
	Slide 80: Lock with compare and set
	Slide 81: Performance of Atomic Lock
	Slide 82: How do we build locks without atomic
	Slide 83
	Slide 84: Deckers Lock
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91: Deckers Lock
	Slide 92: Can we change while to if in Deckers lock?
	Slide 93: Can we change while to if in Deckers lock?
	Slide 94: Petersons Lock
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101: Peterson Lock
	Slide 102: Peterson Lock
	Slide 103: Filter Lock
	Slide 104: Bakery Lock

	extra theory
	Slide 105: Extra Theory
	Slide 106: Semaphores
	Slide 107: Semaphores
	Slide 108: Semaphores
	Slide 109: Building a lock with Semaphores
	Slide 110: Semaphores aren’t Locks!
	Slide 111: Rendezvous with Semaphores
	Slide 112: First attempt, whats wrong?
	Slide 113: Deadlock :(
	Slide 114: Attempt two, better?
	Slide 115: Yes, that works!
	Slide 116: Yes, that works!
	Slide 117: Lets do better!
	Slide 118: Order does no longer matter
	Slide 119: How about more than two threads? Barriers!
	Slide 120: How about more than two threads? Barriers!
	Slide 121: First attempt
	Slide 122: Wrong
	Slide 123: How about this?
	Slide 124: Reusable Barrier
	Slide 125: Reusable Barrier
	Slide 126: Scheduling Scenario
	Slide 127: Reusable Barrier 2nd try
	Slide 128: Doesn’t quite work yet
	Slide 129: Solution: Two-Phase Barrier
	Slide 130: Plan für heute
	Slide 131
	Slide 132
	Slide 133
	Slide 134: Plan für heute
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148: Plan für heute
	Slide 149: Kahoot
	Slide 150: Feedback
	Slide 151: Danke

