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Organisation

• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9
• Falls ihr Feedback möchtet kommt bitte zu mir

https://forms.gle/qiDnqkfSP2NUQGvc9


Organisation

• Wo sind wir jetzt?

Deckers Lock
Peterson Lock
Atomic Registers
Filter Lock, Bakery Lock
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Feedback: Exercise 8
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Race Conditions

• Race condition occurs if multiple accesses can happen concurrently and at 
least one access is a write

• Thread 1 accesses x, v, z

• Thread 2 accesses y, w
• No race condition, no bad interleaving possible

9
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Race Conditions

• Race condition occurs if multiple accesses can happen concurrently and at 
least one access is a write

• Thread 1 accesses x, v, y

• Thread 2 accesses y, w, z
• Both write to y! Result depends on interleaving!
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Relations

• For a set S we can define a mathematical relation R for members of S

• Example: 
• Set of natural numbers, relation “greater or equal than”
• Set of all humans, relation “knows”
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Relations

• Relations can have different properties

• Example: 
• Transitivity: a R b  and b R c  implies a R c

• The “greater than” relation is transitive.
• The ”knows” relation is not transitive.
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Transitive Closure

• For a relation R, the smallest relation which contains R and is transitive, is 
called the transitive closure of R.

• Example:
• For the set of airports in the world, we can define the relation “offers 

direct flight to”
• This is (probably) not transitive (show why)
• The transitive closure also has meaning: ”can fly from a to b with 

stops”
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Relations and Code

• When we execute code, ”actions” happen, i.e., a variable gets read or 
written

• We can define relations for these actions, such as “is executed before”
• Easy to check because it is a local property
• Can build the transitive closure if we want to know if actions are 

ordered!
• Not all actions are ordered!
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Program Order

• Not all actions are ordered!

15

Not in program order!
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Program Order

• Action in mutually exclusive code paths are not in program order
• Actions in different threads are not in program order!

• But ordering was good for proofs!
• Want to allow the compiler / hardware to reorder sometimes for 

performance.

• Solution: Let compiler reorder whenever it is not “observable” – need 
to define a subset of special actions which are visible across threads
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Synchronization Actions

• Solution: Let compiler reorder whenever it is not “observable” – need 
to define a subset of special actions which are visible across threads

• For this lecture, the most important synchronization actions are
• Start/End of a thread
• Read/Write of a volatile or atomic variable
• Acquire / release of a monitor
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Synchronizes With Relation

• The variable x is initially 0.
• Thread A writes x=5
• Thread B reads/prints the value of x

• We could see 0 -> then we expect that B executed before A
• We could see 5 -> then we expect that A executed before B

• The synchronizes with relation says a read of a volatile must return the 
last value written to it. It synchronizes with that last write across 
threads!
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Synchronizes With Relation

• If we combine (the transitive closure of) program order and 
“synchronizes with” we get the “happens before” order

• Any output/result we see in a Java Program must be consistent with 
this happens before order
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Java Memory Model Takeaways

• If a variable is not declared volatile you must use the happens-before 
order to reason about possible values -> requires thought

• If a  (primitive) variable is volatile it behaves like an atomic register

• Can sometimes gain performance (and maintain correctness) by not 
marking everything volatile.

• But you are using Java, is performance really your focus? ☺ - if in 
doubt declare shared variables as volatile

20
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Theory Recap



spcl.inf.ethz.ch

@spcl_eth

Memory hierachy (one core)

Registers

L1 Cache

L2 Cache

System Memory

fast, low latency, high cost, low capacity

slow, high latency latency, low cost, high capacity
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ALUs

0.5ns

1 ns

7 ns

100 ns
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Memory hierachy (many cores)

Registers

L1 Cache

Shared L2 Cache

System Memory
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Registers

L1 Cache

Registers

L1 Cache

…

ALUs ALUs ALUs



Lets take a step back

Threads perform actions, those actions are usually read/write to 
memory locations.

Compiler and Hardware can optimize read/writes by reordering 
memory accesses.

spcl.inf.ethz.ch

@spcl_eth

void f() {

x = 1;

y = x+1;

z = x+1;

}

Why it still can fail: Memory reordering

void f() {

x = 1;

z = x+1;

y = x+1;

}

Rule of thumb: Compiler and hardware allowed to make changes that do 
not affect the semantics of a sequentially executed program

semantically

equivalent?
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void f() {

x = 1;

z = 2;

y = 2;

}

semantically

equivalent?



The big problem

Because of memory reordering we can suddenly get results that we 
did not expect! spcl.inf.ethz.ch

@spcl_eth
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Why memory models, x86 example

Answer:

i=1, j=1

i=0, j=1

i=1, j=0

i=0, j=0 (but why?)



Visibility not guaranteed

And even if an action has been executed, we do not have 
guarantees that other threads see them (in the correct order).

In other words, actions that were performed by one thread may not 
be visible to another thread!
We want to make sure that the actions become visible. And we want 
some guarantees on the ordering.

How? Java Memory Model!



• To reason about this we need some formalism
• This is what the java memory model gives us
• JMM is defined using various orders on our program execution



volatile

• value of a volatile field becomes visible to all readers (other 
threads in particular) after a write operation completes on it

• Without volatile, readers could see some non-updated value



Program Order

int x,y = 0, volatile int z = 0



Program Order

int x,y = 0, volatile int z = 0



Synchronization Actions

int x,y = 0, volatile int z = 0



Assume Thread 1 runs first

int x,y = 0, volatile int z = 0 - SO: write(z, 7) -->  m = read(z)



spcl.inf.ethz.ch

@spcl_eth

▪ SW only pairs the specific actions which "see" each other

▪ A volatile write to x synchronizes with subsequent read of x (subsequent in SO)

▪ The transitive closure of PO and SW forms HB

▪ HB consistency: When reading a variable, we see either the last write (in HB) or any other unordered 
write.

▪ This means races are allowed!

37

JMM: Synchronizes-With (SW) / Happens-Before (HB) orders



Now we can identify synchronizes-with

int x,y = 0, volatile int z = 0 - SO: write(z, 7) -->  m = read(z)

SW



Happens-before relationship

Two actions can be ordered by a happens-before relationship. If one 
action happens-before another, then the first is visible to and ordered before the 
second.

• Transitive closure of PO and SW forms happens before order
• All values we observe must obey this happens before order!
• If x and y are actions of the same thread and x comes before y in program 

order, then hb(x, y).

• If an action x synchronizes-with a following action y, then we also 

have hb(x, y).

• If hb(x, y) and hb(y, z), then hb(x, z).



SW + PO gives us Happens-Before
relationship
int x,y = 0, volatile int z = 0 - SO: write(z, 7) -->  m = read(z)

HB



So what does k = read(x) see?

int x,y = 0, volatile int z = 0 - SO: write(z, 7) -->  m = read(z)

HB



How about now?

int x,y = 0, volatile int z = 0 - SO: write(z, 7) -->  m = read(z)

HB



spcl.inf.ethz.ch

@spcl_eth
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Examples

44

• Initial value of x,y is 0.
• We can either get r1,r2 = (0,0), (1,1) or (0,1) NOT (1,0) from this code!

Essential



Atomic operations

• An atomic action is one that effectively happens at once i.e. this action 
cannot stop in the middle nor be interleaved

• It either happens completely, or it doesn’t happen at all.

• No side effects of an atomic action are visible until the action is complete

• This essentially means that other threads think that the change 
happened in an instant
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Atomic registers

• Atomic registers => support read and write, nothing else

• Usually we think of reads / writes as atomic, i.e., if we write a line 

such as x=1 in pseudocode we assume it happens atomically and is 

globally visible.

• This is not true in Java (unless x is e.g., AtomicInteger)

• Volatile makes it globally visible (but not atomic in all cases)

46
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Atomic registers

• An operation such as x++ (with x being an atomic register) is NOT 

atomic!

• Three steps: v = read(x), increment v, write(x, v)

• Problem with atomic registers:

• Need O(n) space to synchronize n threads (if we only have 

atomic read write) -> bad

• Fix: support more than read/write in an atomic operation

47
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Atomic Registers



Atomic Registers



Atomic Registers



Hardware support for atomic operations

Different atomic operations have been proposed, unclear which is best

• Test-And-Set (TAS)

• Compare-And-Swap (CAS)

• Load Linked / Store Conditional

• http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html
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http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html


Hardware Semantics

boolean TAS(memref s)

 if (mem[s] == 0) {

  mem[s] = 1; 

  return true;

 } else

              return false;

int CAS (memref a, int old, int new)

 oldval = mem[a];

 if (old == oldval)  

  mem[a] = new;

 return oldval;
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java.util.concurrent.atomic.AtomicBoolean

 boolean set();

 boolean get();

 boolean compareAndSet(boolean expect, boolean update);

 boolean getAndSet(boolean newValue);

53

atomically set to value update iff 

current value is expect. Return 

true on success.

sets newValue and returns 

previous value.

Essential



Now we know how getAndIncrement is 
implemented!

Source: https://github.com/openjdk-mirror/jdk7u-
jdk/blob/master/src/share/classes/java/util/concurrent/atomic/AtomicInteger.java



Locks with atomics

• Now we can implement locks for n threads using a single 

variable:

• Lock: while (!TAS(l)) {}

• Unlock: mem[l] = 0

55
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Lets build a spinlock using RMW operations



Lets build a spinlock using RMW operations



Lets build a spinlock using RMW operations



In Java…



TAS Spinlock scales horribly, why?



Bus Contention

• TAS/CAS are read-modify-write operations:

• Processor assumes we modify the value even if we fail!

• Need to invalidate cache

• Threads serialize to read the value while spinning

61



Cache Coherency Protocol 

We have a sequential bottleneck!

Each call to getAndSet() invalidates cached copies! => Threads 
need to access memory via Bus => Bus Contention!

“[...] the getAndSet() call forces other processors to discard their 
own cached copies of the lock, so every spinning thread 
encounters a cache miss almost every time, and must use the bus 
to fetch the new, but unchanged value.” - The Art of Multiprocessor 
Programming



Let’s visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory lock = 1

Slides by Gamal Hassan PProg FS24



Lets visualize this
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Cache Cache Cache
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1)

lock = 1



Lets visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory

lock = 1

lock = 1
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Lets visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory

lock = 1

lock = 1



TATAS

• Idea: Use normal operation to read first, try TAS only if first read 

returns 0

• Helps a bit. But what about the case where we see 0 first, then 1 

in TAS? Can this happen?

• Yes, and the more threads the more likely ☺
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Lets try spinning on local cache



Lets visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory lock = 1
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Lets visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory

lock = 1

lock = 1

lock = 1

lock.get()



Lets visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory

lock = 1

lock = 0

lock = 1

lock.set(0)

lock = 0



Now the whole problem repeats

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory lock = 0

lock = 0



It only helped a little bit



What we learned

• (too) many threads fight for access to the same resource
• slows down progress globally and locally
• CAS/TAS: Processor assumes we modify the value even if we 

fail!

Solution? Exponential Backoff
Idea: Each time TAS fails, wait longer until you re-try

• Backoff must be random!



Exponential Backoff

• Idea: Each time TAS fails, wait longer until you re-try

• Works well, must tune parameters (how long to wait initially, 

when to stop increasing)

• Same concept in networks, people talking in a high-latency zoom 

call, etc.
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Nice!



Lock with compare and set

• Now you see why we 
like atomics so 
much. It’s much 
simpler!



Performance of Atomic Lock

• High contention makes performance bad



How do we build locks without atomic

• That also give certain guarantees like fairness
• In our atomic spin lock an unlucky thread might never get to the 

CS



We need to watch out for: Deadlock

• Circular dependency between resources/lock and threads

• Nobody can make progress

• Avoid by introducing global order in which locks are taken

• Cannot have circles now since all dependencies go “in one 

direction”

• Or by not using locks at all! (Lock-free, wait-free, more later)
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Deckers Lock

• Each thread sets its flag[id] = true to indicate that it wants access 
to critical section

• If other thread also wants access, they use turn variable to decide 
who goes first

• If it's not thread's turn, it backs off, resets its flag, and waits for its 
turn

• After exiting critical section, thread gives turn to the other thread 
and resets its flag



spcl.inf.ethz.ch

@spcl_eth

Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

18
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only when q 
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Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
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Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

only when q 
tries to get 
lock

and q has 
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let q proceed
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Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

only when q 
tries to get 
lock

and q has 
preference

let q proceed

and wait

and try again
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Deckers Lock

•  Ensures mutual exclusion (only one thread enters the critical 
section at a time)

•  Avoids deadlock by using the turn variable
•  Provides fairness (both threads get their turn)
•  Limited to two threads (doesn’t scale well)



Can we change while 
to if in Deckers lock?



Can we change while 
to if in Deckers lock?

No!



Petersons Lock

• Each thread sets flag[id] = true to indicate it wants access to the 
critical section.

• The thread gives priority to the other thread by setting turn = other.
• If the other thread also wants access (flag[other] == true) and it’s 

still its turn, the thread waits.
• Once it gets access, it enters the critical section.
• After exiting, the thread resets flag[id] = false so the other thread 

can proceed.



spcl.inf.ethz.ch

@spcl_eth

Process P (1)

loop

non-critical section

flag[P] = true 

victim = P

while(flag[Q] && victim == P);

critical section

flag[P] = false

More concise than Decker: Peterson Lock

Process Q (2)

loop

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);

critical section

flag[Q] = false

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false]; 
volatile integer victim = 1

19
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But isn’t the write to victim a data race?



Peterson Lock

•  Ensures mutual exclusion (only one thread enters the critical 
section at a time)

 Prevents deadlock (always allows progress)
 Fair (bounded waiting) (no thread is starved forever)

• simpler than Deckers Lock
 Works only for two threads (not scalable)



Peterson Lock

•  Ensures mutual exclusion (only one thread enters the critical 
section at a time)

 Prevents deadlock (always allows progress)
 Fair (bounded waiting) (no thread is starved forever)

• simpler than Deckers Lock
 Works only for two threads (not scalable)

• Bakery Lock allows us to extend Peterson Lock Idea to n Threads!



Filter Lock



Bakery Lock



Extra Theory



Semaphores
and Barriers



Semaphores

• Locks provide means to enforce atomicity via mutual exclusion
• They lack the means for threads to communicate about changes
• We need something stronger to coordinate threads (e.g. to 

implement rendezvous)



S = new Semaphore(n) -  create a new semaphore with n permits

Semaphores



Building a lock with Semaphores



Semaphores aren’t Locks!

• We can build Locks with Semaphores
• Some key differences:

• More than one Thread can be in critical section!
• How many depends on the number of permits
• Threads can release() a Semaphore without accquiring before!
• The is no notion of “holding” a Semaphore as we have with ”holding” 

Locks



Rendezvous with Semaphores

• Two processes P and Q execute code
• Rendezvous: locations in code, where P and Q wait for the other to 

arrive. Synchronize P and Q.



First attempt, whats wrong?



Deadlock :(

We are never able to release! Both P and Q wait endlessly for each 
other 



Attempt two, better?



Yes, that works!



Yes, that works!

Many context 
switches



Lets do better!



Order does no longer matter



How about more than two threads? Barriers!



How about more than two threads? Barriers!



First attempt



Wrong



How about this?



Reusable Barrier



Reusable Barrier



Scheduling Scenario



Reusable Barrier 2nd try



Doesn’t quite work yet



Solution: Two-Phase Barrier



Plan für heute

• Organisation
• Nachbesprechung Exercise 8
• Theory

• Intro Exercise 9
• Exam Questions
• Kahoot



Assignment 8: Overview

•  Analyzing locks

• Atomic operations
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Analyzing locks

• The sample code represents the behavior of a couple that are having 
dinner together, but they only have a single spoon. 

•  Prove or disprove that the current implementation provides  mutual 
exclusion.
• HINT: Use State space diagram
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Atomic operations

• In this task, we will see  and analyze:
• the usage of atomic operations to perform concurrency control, and 
• the cost of using them when having data contention

• For more details, please refer to the assignment sheet 
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Plan für heute

• Organisation
• Nachbesprechung Exercise 8
• Theory
• Intro Exercise 9

• Exam Questions
• Kahoot















Not good:















Plan für heute

• Organisation
• Nachbesprechung Exercise 5
• Theory Recap
• Intro Exercise 6
• Exam Questions

• Kahoot



Kahoot



Feedback

• Falls ihr Feedback möchtet sagt mir bitte Bescheid!
• Schreibt mir eine Mail oder auf Discord



Danke

• Bis nächste Woche!
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