
Parallele Programmierung FS25
Exercise Session 9

Jonas Wetzel

Plan für heute

• Organisation
• Nachbesprechung Exercise 8
• Theory
• Intro Exercise 9
• Exam Questions
• Kahoot

Organisation

• Mein Name ist Jonas Wetzel
• Meine Website (Materialien und Inhalt der Übungen):

n.ethz.ch/~jwetzel
• Meine Email: jwetzel@ethz.ch
• Discord: @jonas.too

mailto:jwetzel@ethz.ch

Organisation

• Mein Name ist Jonas Wetzel
• Meine Website (Materialien und Inhalt der Übungen):

n.ethz.ch/~jwetzel
• Meine Email: jwetzel@ethz.ch
• Discord: @jonas.too
• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9

mailto:jwetzel@ethz.ch
https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

• Feedback zur Session: https://forms.gle/qiDnqkfSP2NUQGvc9
• Falls ihr Feedback möchtet kommt bitte zu mir

https://forms.gle/qiDnqkfSP2NUQGvc9

Organisation

• Wo sind wir jetzt?

Deckers Lock
Peterson Lock
Atomic Registers
Filter Lock, Bakery Lock

Plan für heute

• Organisation

• Nachbesprechung Exercise 8
• Theory
• Intro Exercise 9
• Exam Questions
• Kahoot

Feedback: Exercise 8

8

Race Conditions

• Race condition occurs if multiple accesses can happen concurrently and at
least one access is a write

• Thread 1 accesses x, v, z

• Thread 2 accesses y, w
• No race condition, no bad interleaving possible

9

Essential

Race Conditions

• Race condition occurs if multiple accesses can happen concurrently and at
least one access is a write

• Thread 1 accesses x, v, y

• Thread 2 accesses y, w, z
• Both write to y! Result depends on interleaving!

10

Essential

Relations

• For a set S we can define a mathematical relation R for members of S

• Example:
• Set of natural numbers, relation “greater or equal than”
• Set of all humans, relation “knows”

11

Relations

• Relations can have different properties

• Example:
• Transitivity: a R b and b R c implies a R c

• The “greater than” relation is transitive.
• The ”knows” relation is not transitive.

12

Transitive Closure

• For a relation R, the smallest relation which contains R and is transitive, is
called the transitive closure of R.

• Example:
• For the set of airports in the world, we can define the relation “offers

direct flight to”
• This is (probably) not transitive (show why)
• The transitive closure also has meaning: ”can fly from a to b with

stops”

13

Relations and Code

• When we execute code, ”actions” happen, i.e., a variable gets read or
written

• We can define relations for these actions, such as “is executed before”
• Easy to check because it is a local property
• Can build the transitive closure if we want to know if actions are

ordered!
• Not all actions are ordered!

14

Program Order

• Not all actions are ordered!

15

Not in program order!

Essential

Program Order

• Action in mutually exclusive code paths are not in program order
• Actions in different threads are not in program order!

• But ordering was good for proofs!
• Want to allow the compiler / hardware to reorder sometimes for

performance.

• Solution: Let compiler reorder whenever it is not “observable” – need
to define a subset of special actions which are visible across threads

16

Synchronization Actions

• Solution: Let compiler reorder whenever it is not “observable” – need
to define a subset of special actions which are visible across threads

• For this lecture, the most important synchronization actions are
• Start/End of a thread
• Read/Write of a volatile or atomic variable
• Acquire / release of a monitor

17

Synchronizes With Relation

• The variable x is initially 0.
• Thread A writes x=5
• Thread B reads/prints the value of x

• We could see 0 -> then we expect that B executed before A
• We could see 5 -> then we expect that A executed before B

• The synchronizes with relation says a read of a volatile must return the
last value written to it. It synchronizes with that last write across
threads!

18

Synchronizes With Relation

• If we combine (the transitive closure of) program order and
“synchronizes with” we get the “happens before” order

• Any output/result we see in a Java Program must be consistent with
this happens before order

19

Java Memory Model Takeaways

• If a variable is not declared volatile you must use the happens-before
order to reason about possible values -> requires thought

• If a (primitive) variable is volatile it behaves like an atomic register

• Can sometimes gain performance (and maintain correctness) by not
marking everything volatile.

• But you are using Java, is performance really your focus? ☺ - if in
doubt declare shared variables as volatile

20

Essential

Plan für heute

• Organisation
• Nachbesprechung Exercise 8

• Theory
• Intro Exercise 9
• Exam Questions
• Kahoot

Theory Recap

spcl.inf.ethz.ch

@spcl_eth

Memory hierachy (one core)

Registers

L1 Cache

L2 Cache

System Memory

fast, low latency, high cost, low capacity

slow, high latency latency, low cost, high capacity

20

ALUs

0.5ns

1 ns

7 ns

100 ns

spcl.inf.ethz.ch

@spcl_eth

Memory hierachy (many cores)

Registers

L1 Cache

Shared L2 Cache

System Memory

21

Registers

L1 Cache

Registers

L1 Cache

…

ALUs ALUs ALUs

Lets take a step back

Threads perform actions, those actions are usually read/write to
memory locations.

Compiler and Hardware can optimize read/writes by reordering
memory accesses.

spcl.inf.ethz.ch

@spcl_eth

void f() {

x = 1;

y = x+1;

z = x+1;

}

Why it still can fail: Memory reordering

void f() {

x = 1;

z = x+1;

y = x+1;

}

Rule of thumb: Compiler and hardware allowed to make changes that do
not affect the semantics of a sequentially executed program

semantically

equivalent?

15

void f() {

x = 1;

z = 2;

y = 2;

}

semantically

equivalent?

The big problem

Because of memory reordering we can suddenly get results that we
did not expect! spcl.inf.ethz.ch

@spcl_eth

31

Why memory models, x86 example

Answer:

i=1, j=1

i=0, j=1

i=1, j=0

i=0, j=0 (but why?)

Visibility not guaranteed

And even if an action has been executed, we do not have
guarantees that other threads see them (in the correct order).

In other words, actions that were performed by one thread may not
be visible to another thread!
We want to make sure that the actions become visible. And we want
some guarantees on the ordering.

How? Java Memory Model!

• To reason about this we need some formalism
• This is what the java memory model gives us
• JMM is defined using various orders on our program execution

volatile

• value of a volatile field becomes visible to all readers (other
threads in particular) after a write operation completes on it

• Without volatile, readers could see some non-updated value

Program Order

int x,y = 0, volatile int z = 0

Program Order

int x,y = 0, volatile int z = 0

Synchronization Actions

int x,y = 0, volatile int z = 0

Assume Thread 1 runs first

int x,y = 0, volatile int z = 0 - SO: write(z, 7) --> m = read(z)

spcl.inf.ethz.ch

@spcl_eth

▪ SW only pairs the specific actions which "see" each other

▪ A volatile write to x synchronizes with subsequent read of x (subsequent in SO)

▪ The transitive closure of PO and SW forms HB

▪ HB consistency: When reading a variable, we see either the last write (in HB) or any other unordered
write.

▪ This means races are allowed!

37

JMM: Synchronizes-With (SW) / Happens-Before (HB) orders

Now we can identify synchronizes-with

int x,y = 0, volatile int z = 0 - SO: write(z, 7) --> m = read(z)

SW

Happens-before relationship

Two actions can be ordered by a happens-before relationship. If one
action happens-before another, then the first is visible to and ordered before the
second.

• Transitive closure of PO and SW forms happens before order
• All values we observe must obey this happens before order!
• If x and y are actions of the same thread and x comes before y in program

order, then hb(x, y).

• If an action x synchronizes-with a following action y, then we also

have hb(x, y).

• If hb(x, y) and hb(y, z), then hb(x, z).

SW + PO gives us Happens-Before
relationship
int x,y = 0, volatile int z = 0 - SO: write(z, 7) --> m = read(z)

HB

So what does k = read(x) see?

int x,y = 0, volatile int z = 0 - SO: write(z, 7) --> m = read(z)

HB

How about now?

int x,y = 0, volatile int z = 0 - SO: write(z, 7) --> m = read(z)

HB

spcl.inf.ethz.ch

@spcl_eth

38

Example

spcl.inf.ethz.ch

@spcl_eth

38

Example

spcl.inf.ethz.ch

@spcl_eth

38

Example

spcl.inf.ethz.ch

@spcl_eth

38

Example

Examples

44

• Initial value of x,y is 0.
• We can either get r1,r2 = (0,0), (1,1) or (0,1) NOT (1,0) from this code!

Essential

Atomic operations

• An atomic action is one that effectively happens at once i.e. this action
cannot stop in the middle nor be interleaved

• It either happens completely, or it doesn’t happen at all.

• No side effects of an atomic action are visible until the action is complete

• This essentially means that other threads think that the change
happened in an instant

45

Essential

Atomic registers

• Atomic registers => support read and write, nothing else

• Usually we think of reads / writes as atomic, i.e., if we write a line

such as x=1 in pseudocode we assume it happens atomically and is

globally visible.

• This is not true in Java (unless x is e.g., AtomicInteger)

• Volatile makes it globally visible (but not atomic in all cases)

46

Essential

Atomic registers

• An operation such as x++ (with x being an atomic register) is NOT

atomic!

• Three steps: v = read(x), increment v, write(x, v)

• Problem with atomic registers:

• Need O(n) space to synchronize n threads (if we only have

atomic read write) -> bad

• Fix: support more than read/write in an atomic operation

47

Essential

Atomic Registers

Atomic Registers

Atomic Registers

Hardware support for atomic operations

Different atomic operations have been proposed, unclear which is best

• Test-And-Set (TAS)

• Compare-And-Swap (CAS)

• Load Linked / Store Conditional

• http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

51

http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

Hardware Semantics

boolean TAS(memref s)

 if (mem[s] == 0) {

 mem[s] = 1;

 return true;

 } else

 return false;

int CAS (memref a, int old, int new)

 oldval = mem[a];

 if (old == oldval)

 mem[a] = new;

 return oldval;

52

a
to

m
ic

a
to

m
ic

Essential

java.util.concurrent.atomic.AtomicBoolean

 boolean set();

 boolean get();

 boolean compareAndSet(boolean expect, boolean update);

 boolean getAndSet(boolean newValue);

53

atomically set to value update iff

current value is expect. Return

true on success.

sets newValue and returns

previous value.

Essential

Now we know how getAndIncrement is
implemented!

Source: https://github.com/openjdk-mirror/jdk7u-
jdk/blob/master/src/share/classes/java/util/concurrent/atomic/AtomicInteger.java

Locks with atomics

• Now we can implement locks for n threads using a single

variable:

• Lock: while (!TAS(l)) {}

• Unlock: mem[l] = 0

55

Essential

Lets build a spinlock using RMW operations

Lets build a spinlock using RMW operations

Lets build a spinlock using RMW operations

In Java…

TAS Spinlock scales horribly, why?

Bus Contention

• TAS/CAS are read-modify-write operations:

• Processor assumes we modify the value even if we fail!

• Need to invalidate cache

• Threads serialize to read the value while spinning

61

Cache Coherency Protocol

We have a sequential bottleneck!

Each call to getAndSet() invalidates cached copies! => Threads
need to access memory via Bus => Bus Contention!

“[...] the getAndSet() call forces other processors to discard their
own cached copies of the lock, so every spinning thread
encounters a cache miss almost every time, and must use the bus
to fetch the new, but unchanged value.” - The Art of Multiprocessor
Programming

Let’s visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory lock = 1

Slides by Gamal Hassan PProg FS24

Lets visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory
lock = 1

lock.getAndSet(
1)

lock = 1

Lets visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory

lock = 1

lock = 1

lock.getAndSet(
1)

lock = 1

Lets visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory

lock = 1

lock = 1

TATAS

• Idea: Use normal operation to read first, try TAS only if first read

returns 0

• Helps a bit. But what about the case where we see 0 first, then 1

in TAS? Can this happen?

• Yes, and the more threads the more likely ☺

67

Lets try spinning on local cache

Lets visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory lock = 1

Lets visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory
lock = 1

lock.get()

lock = 1

Lets visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory

lock = 1

lock = 1

lock.get()

lock = 1

Lets visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory

lock = 1

lock = 1

lock = 1

Lets visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory

lock = 1

lock = 1

lock = 1

lock.get()

Lets visualize this

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory

lock = 1

lock = 0

lock = 1

lock.set(0)

lock = 0

Now the whole problem repeats

Processor 1 Processor 2 Processor 3

Cache Cache Cache

BUS

Main Memory / Shared Memory lock = 0

lock = 0

It only helped a little bit

What we learned

• (too) many threads fight for access to the same resource
• slows down progress globally and locally
• CAS/TAS: Processor assumes we modify the value even if we

fail!

Solution? Exponential Backoff
Idea: Each time TAS fails, wait longer until you re-try

• Backoff must be random!

Exponential Backoff

• Idea: Each time TAS fails, wait longer until you re-try

• Works well, must tune parameters (how long to wait initially,

when to stop increasing)

• Same concept in networks, people talking in a high-latency zoom

call, etc.

78

Essential

Nice!

Lock with compare and set

• Now you see why we
like atomics so
much. It’s much
simpler!

Performance of Atomic Lock

• High contention makes performance bad

How do we build locks without atomic

• That also give certain guarantees like fairness
• In our atomic spin lock an unlucky thread might never get to the

CS

We need to watch out for: Deadlock

• Circular dependency between resources/lock and threads

• Nobody can make progress

• Avoid by introducing global order in which locks are taken

• Cannot have circles now since all dependencies go “in one

direction”

• Or by not using locks at all! (Lock-free, wait-free, more later)

83

Essential

Deckers Lock

• Each thread sets its flag[id] = true to indicate that it wants access
to critical section

• If other thread also wants access, they use turn variable to decide
who goes first

• If it's not thread's turn, it backs off, resets its flag, and waits for its
turn

• After exiting critical section, thread gives turn to the other thread
and resets its flag

spcl.inf.ethz.ch

@spcl_eth

Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

18

spcl.inf.ethz.ch

@spcl_eth

Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

only when q
tries to get
lock

18

spcl.inf.ethz.ch

@spcl_eth

Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

only when q
tries to get
lock

and q has
preference

18

spcl.inf.ethz.ch

@spcl_eth

Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

only when q
tries to get
lock

and q has
preference

let q proceed

18

spcl.inf.ethz.ch

@spcl_eth

Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

only when q
tries to get
lock

and q has
preference

let q proceed

and wait

18

spcl.inf.ethz.ch

@spcl_eth

Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

only when q
tries to get
lock

and q has
preference

let q proceed

and wait

and try again

18

Deckers Lock

• Ensures mutual exclusion (only one thread enters the critical
section at a time)

• Avoids deadlock by using the turn variable
• Provides fairness (both threads get their turn)
• Limited to two threads (doesn’t scale well)

Can we change while
to if in Deckers lock?

Can we change while
to if in Deckers lock?

No!

Petersons Lock

• Each thread sets flag[id] = true to indicate it wants access to the
critical section.

• The thread gives priority to the other thread by setting turn = other.
• If the other thread also wants access (flag[other] == true) and it’s

still its turn, the thread waits.
• Once it gets access, it enters the critical section.
• After exiting, the thread resets flag[id] = false so the other thread

can proceed.

spcl.inf.ethz.ch

@spcl_eth

Process P (1)

loop

non-critical section

flag[P] = true

victim = P

while(flag[Q] && victim == P);

critical section

flag[P] = false

More concise than Decker: Peterson Lock

Process Q (2)

loop

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);

critical section

flag[Q] = false

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim = 1

19

spcl.inf.ethz.ch

@spcl_eth

Process P (1)

loop

non-critical section

flag[P] = true

victim = P

while(flag[Q] && victim == P);

critical section

flag[P] = false

More concise than Decker: Peterson Lock

Process Q (2)

loop

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);

critical section

flag[Q] = false

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim = 1

I am
interested

19

spcl.inf.ethz.ch

@spcl_eth

Process P (1)

loop

non-critical section

flag[P] = true

victim = P

while(flag[Q] && victim == P);

critical section

flag[P] = false

More concise than Decker: Peterson Lock

Process Q (2)

loop

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);

critical section

flag[Q] = false

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim = 1

I am
interested

but you go
first

19

spcl.inf.ethz.ch

@spcl_eth

Process P (1)

loop

non-critical section

flag[P] = true

victim = P

while(flag[Q] && victim == P);

critical section

flag[P] = false

More concise than Decker: Peterson Lock

Process Q (2)

loop

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);

critical section

flag[Q] = false

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim = 1

I am
interested

but you go
first

We both are
interested

19

spcl.inf.ethz.ch

@spcl_eth

Process P (1)

loop

non-critical section

flag[P] = true

victim = P

while(flag[Q] && victim == P);

critical section

flag[P] = false

More concise than Decker: Peterson Lock

Process Q (2)

loop

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);

critical section

flag[Q] = false

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim = 1

I am
interested

but you go
first

We both are
interested

And you go first

19

spcl.inf.ethz.ch

@spcl_eth

Process P (1)

loop

non-critical section

flag[P] = true

victim = P

while(flag[Q] && victim == P);

critical section

flag[P] = false

More concise than Decker: Peterson Lock

Process Q (2)

loop

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);

critical section

flag[Q] = false

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim = 1

I am
interested

but you go
first

We both are
interested

And you go first

19

But isn’t the write to victim a data race?

Peterson Lock

• Ensures mutual exclusion (only one thread enters the critical
section at a time)

 Prevents deadlock (always allows progress)
 Fair (bounded waiting) (no thread is starved forever)

• simpler than Deckers Lock
 Works only for two threads (not scalable)

Peterson Lock

• Ensures mutual exclusion (only one thread enters the critical
section at a time)

 Prevents deadlock (always allows progress)
 Fair (bounded waiting) (no thread is starved forever)

• simpler than Deckers Lock
 Works only for two threads (not scalable)

• Bakery Lock allows us to extend Peterson Lock Idea to n Threads!

Filter Lock

Bakery Lock

Extra Theory

Semaphores
and Barriers

Semaphores

• Locks provide means to enforce atomicity via mutual exclusion
• They lack the means for threads to communicate about changes
• We need something stronger to coordinate threads (e.g. to

implement rendezvous)

S = new Semaphore(n) - create a new semaphore with n permits

Semaphores

Building a lock with Semaphores

Semaphores aren’t Locks!

• We can build Locks with Semaphores
• Some key differences:

• More than one Thread can be in critical section!
• How many depends on the number of permits
• Threads can release() a Semaphore without accquiring before!
• The is no notion of “holding” a Semaphore as we have with ”holding”

Locks

Rendezvous with Semaphores

• Two processes P and Q execute code
• Rendezvous: locations in code, where P and Q wait for the other to

arrive. Synchronize P and Q.

First attempt, whats wrong?

Deadlock :(

We are never able to release! Both P and Q wait endlessly for each
other

Attempt two, better?

Yes, that works!

Yes, that works!

Many context
switches

Lets do better!

Order does no longer matter

How about more than two threads? Barriers!

How about more than two threads? Barriers!

First attempt

Wrong

How about this?

Reusable Barrier

Reusable Barrier

Scheduling Scenario

Reusable Barrier 2nd try

Doesn’t quite work yet

Solution: Two-Phase Barrier

Plan für heute

• Organisation
• Nachbesprechung Exercise 8
• Theory

• Intro Exercise 9
• Exam Questions
• Kahoot

Assignment 8: Overview

• Analyzing locks

• Atomic operations

131

Analyzing locks

• The sample code represents the behavior of a couple that are having
dinner together, but they only have a single spoon.

• Prove or disprove that the current implementation provides mutual
exclusion.
• HINT: Use State space diagram

132

Atomic operations

• In this task, we will see and analyze:
• the usage of atomic operations to perform concurrency control, and
• the cost of using them when having data contention

• For more details, please refer to the assignment sheet

133

Plan für heute

• Organisation
• Nachbesprechung Exercise 8
• Theory
• Intro Exercise 9

• Exam Questions
• Kahoot

Not good:

Plan für heute

• Organisation
• Nachbesprechung Exercise 5
• Theory Recap
• Intro Exercise 6
• Exam Questions

• Kahoot

Kahoot

Feedback

• Falls ihr Feedback möchtet sagt mir bitte Bescheid!
• Schreibt mir eine Mail oder auf Discord

Danke

• Bis nächste Woche!

	Default Section
	Slide 1: Parallele Programmierung FS25
	Slide 2: Plan für heute
	Slide 3: Organisation
	Slide 4: Organisation
	Slide 5: Organisation
	Slide 6: Organisation
	Slide 7: Plan für heute
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Plan für heute
	Slide 22: Theory Recap
	Slide 23
	Slide 24
	Slide 25: Lets take a step back
	Slide 26: The big problem
	Slide 27: Visibility not guaranteed
	Slide 28
	Slide 29: volatile
	Slide 30: Program Order
	Slide 31: Program Order
	Slide 32: Synchronization Actions
	Slide 33: Assume Thread 1 runs first
	Slide 34
	Slide 35: Now we can identify synchronizes-with
	Slide 36: Happens-before relationship
	Slide 37: SW + PO gives us Happens-Before relationship
	Slide 38: So what does k = read(x) see?
	Slide 39: How about now?
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: Atomic Registers
	Slide 49: Atomic Registers
	Slide 50: Atomic Registers
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Now we know how getAndIncrement is implemented!
	Slide 55
	Slide 56: Lets build a spinlock using RMW operations
	Slide 57: Lets build a spinlock using RMW operations
	Slide 58: Lets build a spinlock using RMW operations
	Slide 59: In Java…
	Slide 60: TAS Spinlock scales horribly, why?
	Slide 61
	Slide 62: Cache Coherency Protocol
	Slide 63: Let’s visualize this
	Slide 64: Lets visualize this
	Slide 65: Lets visualize this
	Slide 66: Lets visualize this
	Slide 67
	Slide 68: Lets try spinning on local cache
	Slide 69: Lets visualize this
	Slide 70: Lets visualize this
	Slide 71: Lets visualize this
	Slide 72: Lets visualize this
	Slide 73: Lets visualize this
	Slide 74: Lets visualize this
	Slide 75: Now the whole problem repeats
	Slide 76: It only helped a little bit
	Slide 77: What we learned
	Slide 78
	Slide 79: Nice!
	Slide 80: Lock with compare and set
	Slide 81: Performance of Atomic Lock
	Slide 82: How do we build locks without atomic
	Slide 83
	Slide 84: Deckers Lock
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91: Deckers Lock
	Slide 92: Can we change while to if in Deckers lock?
	Slide 93: Can we change while to if in Deckers lock?
	Slide 94: Petersons Lock
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101: Peterson Lock
	Slide 102: Peterson Lock
	Slide 103: Filter Lock
	Slide 104: Bakery Lock

	extra theory
	Slide 105: Extra Theory
	Slide 106: Semaphores
	Slide 107: Semaphores
	Slide 108: Semaphores
	Slide 109: Building a lock with Semaphores
	Slide 110: Semaphores aren’t Locks!
	Slide 111: Rendezvous with Semaphores
	Slide 112: First attempt, whats wrong?
	Slide 113: Deadlock :(
	Slide 114: Attempt two, better?
	Slide 115: Yes, that works!
	Slide 116: Yes, that works!
	Slide 117: Lets do better!
	Slide 118: Order does no longer matter
	Slide 119: How about more than two threads? Barriers!
	Slide 120: How about more than two threads? Barriers!
	Slide 121: First attempt
	Slide 122: Wrong
	Slide 123: How about this?
	Slide 124: Reusable Barrier
	Slide 125: Reusable Barrier
	Slide 126: Scheduling Scenario
	Slide 127: Reusable Barrier 2nd try
	Slide 128: Doesn’t quite work yet
	Slide 129: Solution: Two-Phase Barrier
	Slide 130: Plan für heute
	Slide 131
	Slide 132
	Slide 133
	Slide 134: Plan für heute
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148: Plan für heute
	Slide 149: Kahoot
	Slide 150: Feedback
	Slide 151: Danke

