Eprog Bonus Survival Guide

Emil with help from Dario
November 20, 2024

Contents

I Disca ! 3
2 Factory Pattern| 3

CT R e Bt L

[2.3 Application to the Bonus Exercisel o000 6
[3 Scheduling Actions| 7
[4 The Party assembles| 9
6 We come to an End| 12

2

Disclaimer

. This should be an explanation on how to pass the test cases easily, design pattern might not

be good

. To make the examples short (and readable because I don’t manage to install minted package

” M

smh) I will leave out ”public”, "private”, ... keywords

. There might be mistakes (in the code) or inconsistencies but I am just trying to explain

some tips here with low effort so plz have mercy

Some explanations might be whacky and stuff, but you can look up game design patterns /
tutorials and should find some interesting stuff involving lots of classes and inheritance and
stuff for better explanations

Excuse the typos

Factory Pattern

We will very quickly explain what goes on in a factory class.

2.1

Introduction

Often in Java you will see a factory class which "produces” objects. Let’s look at an example:

class CarFactory {
Car produceCar(int speed, String name) {
return new Car(speed, name);
}
}

With the car class being:

class Car {
int speed;
String name;

Car (int speed, String name) {
this.speed = speed;
this.name = name;

Okay this looks good, but kind of redundant? Why do we need this factory class when we can just
create an object using the constructor? Well, let’s say we want to give each car a serial number.
Using our factory we can do that really easily:

class CarFactory {
int amountProduced = O;

Car produceCar(int speed, String name) {
int serialNumber = amountProduced++;
return new Car(speed, name, serialNumber);

}

Now each Car has a unique serial number (if we change the constructor accordingly).

Or let’s say we know that our costumers are messy and will sometimes lose the reference to their
car. Then it might be useful to keep references to all of the cars so we can access them using their
serial number.

class CarFactory {
int amountProduced = O;
Car[] allCars = new Car[100];

Car produceCar(int speed, String name) {
int serialNumber = amountProduced++;
Car producedCar = new Car(speed, name, serialNumber);

allCars[serialNumber] = producedCar;
return producedCar;

Car findCar(serialNumber) {
return allCars[serialNumber];

//we assume that we only produce 100 cars here
//we could use an ArraylList for e.g. for more

Now we can use the findCar () method to access any car we produced using its serial number.

2.2 Referencing the Factory

We already saw that we can keep references to the produced objects in the factory class, which
can be really useful. But what if we need to access the factory class from a produced object
somehow? One might try to do something like this:

Factory myFactory = new Factory();
And then reference this factory in every produced Object:

class ProducedObject() {
Factory origin = myFactory;

¥

But solutions like this quickly break down, for example when we want to reuse our code for the
factory. A better solution is to pass each created object a reference to the factory. We illustrate
this using our CarFactory example:

class CarFactory {
int amountProduced = O;
Car[] allCars = new Car[100];
String factoryName = "CoolFactory"

Car produceCar(int speed, String name) {
int serialNumber = amountProduced++;
Car producedCar = new Car(speed, name, serialNumber, this);

allCars[serialNumber] = producedCar;
return producedCar;

//see how we pass a reference to the factory using the "this"-keyword
And our Car class looks like this:

class Car {
int speed;
int serialNumber;
String name;

// this is a reference to the factory that produced the car
CarFactory origin;

Car (int speed, String name, int serialNumber, CarFactory origin) {
this.speed = speed;
this.name = name;
this.serialNumber = serialNumber;
this.origin = origin;

void sayOrigin() {
System.out.printl("I am car number " + this.serialNumber);
System.out.printl("From the factory: " + this.origin.factoryName);
System.out.printl("Out of " + this.origin.amountProduced);

3

Now we can access all the important metrics from each of the cars since they have access to their
Factory through the reference. If now for e.g. the name of the factory changes, we don’t have to
make any changes to the cars since they will access the updated name directly from the factory.

2.3 Application to the Bonus Exercise

In the bonus exercise we had a Game class (the factory) and a Human class. The problem was
that we wanted to store all the humans / actions in one central place (for e.g. in an array inside
the Game class). However, we also needed access to this storage from out Human class for the
scheduleAction method. An easy solution to this would be to pass a reference to the Game class
to each human we create. This way every human has access to everything we store inside the
Game class. This could look something like this:

class Game {
Human[] allPlayers = new Human[100];
List* scheduledActions;
int playerCount = O;

Human createHuman(int health, int position) {
Human myHuman = new Human(health, position, this);
this.allPlayers([playerCount++] = myHuman;
return myHuman;

//* You could implement this in many ways
// This is just for illustration

And now the human can access all the other humans to execute an action:

class Human {
int health, position;
Game origin;

Human(int health, int postion, Game origin) {
this.health = health;
this.positon = position;
this.origin = origin;

void scheduleAction()* {
this.origin.scheduledActions.add(Action);

void hitPlayer(x)* {
this.origin.allPlayers[x].doDamage() ;
}

//* Again the methods are just illustrations
// An actual solution would need more logic

}

This eliminates the problem of how to pass information between the Game and the Human class. If
a player now wants to do something to the other players, they can simply acces the array with all
the players through their refernce to the Game class.

3 Scheduling Actions

Another problem was the scheduling of the actions the players can perform. We need to have
something like a countdown for each scheduled action to know when we can execute it. But at the
same time we need to keep track of which actions were scheduled first, so we can execute them in
the correct order.

So our system for advancing one turn should look something like this:
1. What are the actions scheduled?
2. Which of these actions need to be executed this turn (reached countdown 0)

3. In what order were these actions scheduled?

The simplest structure we can use here is a queue. There are many ways to implement this, so I
will keep the example general. We could either create a seperate Action class or simple make it a
field in the Human class. The latter could look like this:

class Human {
Game origin;
Action action;
int countdown;

void scheduleAction(Action action) {
//set the countdown accordingly*
this.action = action;
origin.scheduledActions.add(this);

void doTurn() {
if (this.countdown > 0) {
this.countdown—-;
} else {
//execute the action by using the reference to originx
doAction(origin.allPlayers);

//* 0f course I omitted a lot of checks and bookkeeping here
X

Now our Game class could look like this:

class Game {
Human[] allPlayers = new Human[100];
Queue scheduledActions;
int playerCount = O;

Human createHuman(int health, int position) {
Human myHuman = new Human(health, position, this);
this.allPlayers[playerCount++] = myHuman;
return myHuman;

void advanceTurn() {
Queue uncompletedActions;

for(Player p : scheduledActions) {
p-doTurn();
if (p.hasUncompletedAction) { //if they just reduced the countdown
uncompletedActions.add(p);
+
}

this.scheduledActions = uncompletedActions;

}

The core idea here is that we have a Queue to keep track of which players scheduled their actions
first. Everytime a turn advances we create a new Queue and then loop over all the players who
have a scheduled action. If the action is executed we can remove them (don’t add them to the
new Queue), otherwise we need to add them to the new Queue since they are yet to be executed.
At the end we simply make the new Queue our scheduledActions.

Of course you could also do this in a lot of other ways, but again the idea here is that we use the
Queue stored centrally in the Game class to keep track of the scheduled actions and players. But
to make things simpler for us we move the other logic into the Human class.

Not having a Queue could be the problem why the ” Cleric”-testcase fails. If we take a look at the
testcase we can see that the ordering matters here. If the position change from the cleric and the
attack from the warrior are executed in the wrong order, the warrior will not hit the other one,
resulting in a wrong test case.

4 The Party assembles

Okay okay cool cool now we can do stuff with our Humans and Games and we can access all the
things we want from everywhere we need. But not every human is built the same. Our game
should include: Jester (literally does nothing), Warrior (why are you hitting yourself?) and Clerics
(wait they can have the same positions?). Of course we can think a lot about how to design this
thing properly... Who should inherit from whom? Who should have access to what? Which level
of game logic should be responsible for which actions?

But there are three simple ways we can solve the issue in the context of an eprog exercise:
1. Throw everything into a giant if-statement: Pro? fast Con? whacky
2. Give every Human a ”type” field. Pro? fast Con? we will need some if-statements

3. Make children-classes that inherit from Human. Pro? easy Con? takes more time
to write

I did the third version and will copy some of the code here. The big upside here is that you
can focus on all the stuff seperately for the different types of humans. As long as you get the
inheritance right and have the three classes set up, you can go through the tasks and implement
the actions one by one with full acces to the player-array and without having to worry about
anything else at the moment. Of course you will write some redundant code in each class and
might copypaste some stuff, but it makes things (at least for an exercise like this) much simpler.

Oki, so what does each Human need? We know we will have (besides the constructor, which is
the same for all classes and the given methods) a scheduleAction and a doAction method. So
let’s add those to our class and it will look something like this:

public class Human {

public int health, position;
public Action action;
public int delay;

public Game creator;

public boolean scheduleAction(Action action) {
return false;

by

public Human(int h, int p, Game c) {
health = h;

position = p;

creator = c;

3

public void doAction(Human[] p) {
return;

b
b

Now we can simply make a new class that inherits from human for each of the three human-types
and override the methods there. For my Warrior this looked something like that:

public class Warrior extends Human {
Warrior(int h, int pos, Game c) {
super (h, pos, c);

3

10

public boolean scheduleAction(Action a) {
if ('this.isAlive()) {
return false;
}
if (this.action != null) {
return false;
}
this.action = a;
if (a == Action.SUMMON) {
this.delay = 1;
} else {
this.delay = O;
+
this.creator.queue.add(this);
return true,;

public void doAction(Human[] p) {
if (this.action == null) return;
if(!'this.isAlive()) return;
if (this.delay > 0) {
this.delay--;
} else {
if (this.action == Action.ATTACK) {
for(Human h : p) {
if (h!=null && Math.abs(h.position - this.position) == 1) {
h.health -= 10;

}
}
} else {
this.health -= 5;
}
this.action = null;
}

//mistakes might be made here but it passed the 5 test cases...
b

Note that in my version I passed the player-array into the doAction method. The doAction

11

method here is basically doTurn from the previous example.

Now you can do the same thing for the other classes.

5 We come to an End
Sorry for the hasty explanations, I hope it was kind of understandable and helped someone (:

Basically if you have problems like this it is helpful to first figure out who needs access to what
and take care of that so you can then think about the actual algorithms withou having to deal
with visibility and stuff. And just breaking it down into seperate subproblems and solving those
seperately might be inefficient time-wise, but makes the process much easier in my opinion.

12

	Disclaimer
	Factory Pattern
	Introduction
	Referencing the Factory
	Application to the Bonus Exercise

	Scheduling Actions
	The Party assembles
	We come to an End

