MECHANIK I 2013

ROMAN KÄSLIN & MAURIN WIDMER

GRAPHIKEN VON LUKAS MOSIMANN

Koordinatensysteme								
Koordinaten	kartesisch	zylindrisch	sphärisch					
kartesisch	$v = \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix}$	$\rho = \sqrt{x^2 + y^2}$ $\varphi = \tan^{-1} \frac{y}{x}$ $z = z$	$r = \sqrt{x^2 + y^2 + z^2}$ $\theta = \tan^{-1} \frac{\sqrt{x^2 + y^2}}{z}$ $\psi = \tan^{-1} \frac{y}{x}$					
zylindrisch	$x = \rho \cos \varphi$ $y = \rho \sin \varphi$ $z = z$	$v = \begin{pmatrix} \dot{\rho} \\ \rho \dot{\phi} \\ \dot{z} \end{pmatrix}$	$r = \sqrt{\rho^2 + z^2}$ $\theta = \tan^{-1} \frac{\rho}{z}$ $\psi = \varphi$					
sphärisch	$x = r \sin \theta \cos \psi$ $y = r \sin \theta \sin \psi$ $z = r \cos \theta$	$\rho = r \sin \theta$ $\varphi = \psi$ $z = r \cos \theta$	$v = \begin{pmatrix} \dot{r} \\ r\dot{\theta} \\ r\sin\theta \ \dot{\psi} \end{pmatrix}$					

α	0 0°	$\frac{\pi}{6}$ 30°	$\frac{\pi}{4}$ 45°	$\frac{\frac{\pi}{3}}{60^{\circ}}$	$\frac{\frac{\pi}{2}}{90^{\circ}}$	π 180°
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
tan α	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	1	0
cot α	-	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	-

KARTESISCH:

$$\overrightarrow{r}(t) = x(t)\overrightarrow{e_x} + y(t)\overrightarrow{e_y} + z(t)\overrightarrow{e_z}$$

$$\vec{v} = \dot{\vec{r}} = \dot{x}\vec{e_x} + \dot{y}\vec{e_y} + \dot{z}\vec{e_z}$$

ZYLINDRISCH:

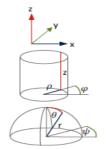
$$\vec{r}(t) = \rho(t) \overrightarrow{e_{\rho}}(\varphi(t)) + z(t) \overrightarrow{e_z}$$

$$\vec{v} = \dot{\vec{r}} = \dot{\rho} \vec{e_{\rho}} + \rho \dot{\phi} \vec{e_{\varphi}} + \dot{z} \vec{e_{z}}$$

SPHÄRISCH:

$$\vec{r}(t) = r(t)\vec{e_r}(\psi(t), \theta(t))$$

$$\vec{v} = \dot{\vec{r}} = \dot{r}\vec{e_r} + r\dot{\theta}\vec{e_\theta} + r\sin\theta\dot{\psi}\vec{e_{r\theta}}$$



GESCHWINDIGKEITEN

Geschwindigkeit: $v = \dot{r} = \dot{s} \cdot \tau$

Schnelligkeit: $\dot{s} = |v|$ $\underline{\tau}$: tangentialer Einheitsvektor $\tau = \frac{v}{|\vec{s}|}$

SATZ DER PROJIZIERTEN GESCHWINDIGKEIT (SDPG)

 v_A , v_B : Projektionen von v_A und v_B auf AB $v_A \cdot AB = v_B \cdot AB$, $|v_A| \cos \alpha = |v_B| \cos \beta$

Bewegungen

1/6

Kreisbewegung: $v = \omega \times r$, $falls \omega \perp r$: $v = \omega \cdot r$ ω: Winkelgeschwindigkeit, φ: Winkelschnelligkeit

Translation: $\omega = 0$, $v_A = v_B \ \forall A, B \in K$

Rotation: A, B in Ruhe, $\mu = AB$, , $v_P = \omega \times AP$

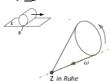
 μ : momentane Rotationsachse $\omega = \dot{\varphi}e_{\pi}$

momentan: $v_A \cdot \omega = 0$,

gleiten: $v \perp E = 0$, rollen: $v_R = 0$

Kreiselung: Ein Punkt in Ruhe ->

momentane Rotation



ALLGEMEINE BEWEGUNG

$$v_C = v_A + \underline{\omega} \times \underline{AC}$$

 $\{\omega; v_A\}$ Kinemate in A, $\{\underline{\omega}; \underline{v}_{\omega}\}$ Invarianten,

$$\underline{v}_{\omega} = \frac{\underline{v}_{A}\underline{\omega}}{|\underline{\omega}|} \cdot \frac{\underline{\omega}}{|\underline{\omega}|} = v_{A} \cdot e_{\zeta} \cdot e_{\zeta}$$

$$|\underline{v}_{\omega}| = \underline{v}_{A} \cdot \frac{\underline{\omega}}{|\underline{\omega}|}$$

 ζ : **Zentralachse**, $v_Z = v_\omega = v_A + \omega \times AZ$

$$\zeta = \underline{r}_Z + \lambda \cdot \underline{\omega} = \begin{pmatrix} Z_x \\ Z_y \\ Z_z \end{pmatrix} + \lambda \cdot \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix}$$

Spezialfälle ($v_{A} \cdot \omega = 0$):

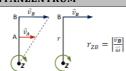
Translation: $\omega = 0$,

Rotation: $v_A = 0 \ (A \in \mu), v_A \perp \omega \ (A \notin \mu)$

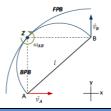
EBENE BEWEGUNG

 $\omega \perp E$ -> Translation oder momentane Rotation ($v_{\omega} = 0$)

SATZ VOM MOMENTANZENTRUM



POLBAHN



feste Polbahn bezüglich Oxy, bewegliche Polbahn bezüglich AB

GRUNDFORMELN

 $\sin^2 \varphi + \cos^2 \varphi = 1$, $\sin 2\alpha = 2 \sin \alpha \cos \alpha$,

$$(\tan \alpha)' = \frac{1}{\cos^2 \alpha} = 1 + \tan^2 \alpha$$

$$\sin \alpha = \frac{a}{c} = \cos \beta$$

$$\cos \alpha = \frac{b}{c} = \sin \beta$$

$$\tan \alpha = \frac{a}{b}$$

$$\sqrt{5} \cong 2.2, \sqrt{3} \cong 1.7, \sqrt{2} \cong 1.4$$

Kreisformel: $(x-a)^2 + (y-b)^2 = R^2$.

(a,b): Mittelpunkt, R: Radius

$$\underline{r}_K = (R\cos\varphi + a)\,\underline{e}_x + (R\sin\varphi + b)\underline{e}_y$$

Skalarprodukt:
$$\begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \cdot \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = a_x b_x + a_y b_y + a_z b_z$$

$$\text{Vektorprodukt}: \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \times \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = \begin{pmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{pmatrix}$$

KRÄFTE

(punktgebundene Vektoren, def. mit Richtung, Betrag, Angriffspunkt)

$$F = m \cdot a$$

Verschiebungssatz: Kraft kann entlang ihrer Wirkungslinie beliebig verschoben werden

Reaktionsprinzip: Es existiert keine Kraft ohne Reaktion

(entgegengesetzt), Actio=Reactio

Kontaktkräfte: Wechselwirkung durch Berührung,

gleicher Angriffspunkt

Fernkräfte: Wechselwirkung ohne Berührung.

Angriffspunkte im Schwerpunkt

Innere Kräfte: Angriffspunkt innerhalb des Systems, treten

im Gleichgewicht nicht auf

Äussere Kräfte: Angriffspunkt ausserhalb des Systems.

Summe im Gleichgewicht = 0

Resultierende: (vektorielle) Summe aller Kräfte

(Kräftegruppe), Einzelkraft

Druck: $\frac{F}{A} = p = \rho g h$ $F = p \cdot A = \int_0^{Lange} \rho g h \cdot Breite dh$

MOMENTE

$$\underline{M}_O = \underline{F}_A \times \underline{AO}$$

$$\underline{M}_{P} = \underline{M}_{O} + \underline{R} \times \underline{OP}$$

 $\{R; M_B\}$ Dyname in B

 ${R; M^{(R)}}$ Invarianten

$$\underline{\underline{M}}^{(R)} = \underline{\underline{M}}_B \cdot \underline{\underline{R}} \cdot \underline{\underline{R}} = \underline{\underline{M}}_B \cdot e_{\zeta} \cdot e_{\zeta}$$

Angriffspunkt: in der Mitte von b

ζ: Zentralachse

$$\underline{M}_Z = \underline{M}^{(R)} = \underline{M}_A + \underline{R} \times \underline{AZ}$$
 $\zeta = \underline{r}_Z + \lambda \cdot \underline{R}$ Spezialfälle:

 $M^{(R)} = 0$ => Reduktion auf Einzelkraft R möglich $M_B \perp R \rightarrow$ ebenes Problem,

R = 0 -> Kräftepaar -> Moment, $M_B = 0$ -> Einzelkraft

KRÄFTEPAAR

parallele Kräfte F, -F; so dass R = 0 und $M = b \cdot F$ (b: Abstand von F, -F)

VERTEILE KRÄFTE

 x_s = Kräftemittelpunkt

gleichförmige Kräfteverteilung: $x_S = \frac{L}{a}$ $R = L \cdot q_0$

Dreiecksverteilung: $x_S = \frac{2L}{3}$ $R = \frac{Lq_0}{2}$

linienverteilte Kräfte: $x_S = \frac{\int_0^L x \, q(x) \, dx}{\int_0^L q(x) \, dx \, (=R)}$

Flächenverteilte Kräfte: Volumenverteilte Kräfte:

$$\vec{r}_S = \frac{\iint \vec{r} \cdot s(x,y) \, dxdy}{\iint s(x,y) \, dxdy} \qquad \qquad \vec{r}_S = \frac{\iiint \vec{r} \cdot f(x,y,z) \, dxdydz}{\iiint f(x,y,z) \, dxdydz}$$

$$R = \iint s(x,y) \, dxdy \qquad \qquad R = \iint f(x,y,z) \, dxdydz$$

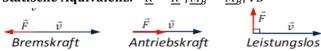
LEISTUNG

 $P = F_M \cdot v_M = |F_M| |v_M| \cdot \cos \propto$ Kraft:

Moment: $P = M_0 \cdot \omega$

Kräftegruppe: $P = R \cdot v_R + M_R \cdot \omega$

Statische Äquivalenz: $R = R^*, M_R = M_R^*, \forall B$



RUHE UND GELICHGEWICHT

Hauptsatz der Statik: Ein System befindet sich in Ruhelage (GGW) wenn alle äusseren Kräfte & Momente für das System verschwinden. R = 0, $M_0 = 0$ (GGB)

Standfestigkeit:(N(Normalkraft) > 0) N greift an Standfläche an -> standfest Kein Kippen: 0 < x < a/2; Kein Abheben; N > 0

STATISCHE BESTIMMTHEIT

m: Anzahl Gleichungen (aus GGB) (2D=3, 3D=6)

n: Anzahl der unbekannten Bindungen **m<n**: (n-m)-fach statisch unbestimmt

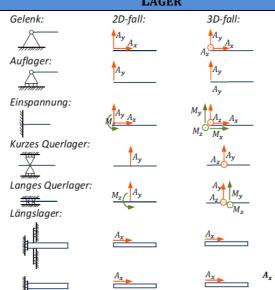
m=n: statisch bestimmt

m>n: statisch überbestimmt - Mechanismus

FREISCHNEIDEN UND SYSTEMTRENNUNG

Lagerkräfte: immer dort wo eine Bewegung verhindert wird. **Feder:** $F = k \cdot \Delta x$ Drehfeder: $F = k \cdot \Delta \omega$ **Systemtrennung:** Einführung der Kräfte $F_{P,Sys1}$, $-F_{P,Sys2}$, P: Punkt der Systemtrennung; Nur an Punkten, an welchen kein Moment übertragen wird.

LAGER



ALLGEMEINES LÖSUNGSVORGEHEN

- 1. System freischneiden
- 2. Äussere Kräfte und Lagerkräfte einführen
- 3. geeignetes Koordinatensystem einführen
- 4. statische Bestimmtheit prüfen
- 5. GGW am Gesamtsystem fordern: R = 0, M = 0
- 6. Systemgrenzen für Systemtrennung sinnvoll wählen
- 7. Freischnittskizze (Bindungskräfte (heben sich auf), äussere Kräfte (falls an Grenze nur an einem Starrkörper, verteilte Kräfte -> Resultierende an Knoten), Lagerkräfte, Gewichtskräfte (bei Masse der Starrkörper))
- 8. Kräfte- und Momentengleichgewicht (x,y,z) F = 0, M = 0(GGW an jedem Körper)
- 9. Kräfte durch Auflösen der Gleichungen ermitteln
- 10. Ergebnisse überprüfen (Vorzeichen bei einseitigen Lagern, Einheiten, GGW)

FACHWERKE (IDEAL)

- Knoten reibungsfrei
- Stäbe gewichtslos
- Knoten an Stabenden
- Lasten nur an Knoten

Pendelstütze:

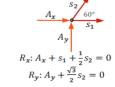
Freigeschnittener Stab aus idealem Fachwerk, wenn nur längsbelastet (Zug (S>0) oder Druck(S<0))

statisch bestimmt: r + s = 2K (3D: r + s = 3K)

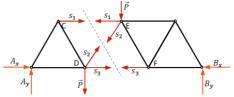
- r = Anzahl Lagerkräfte, äussere Kräfte
- s = Anzahl Stäbe, K = Anzahl Knoten

KNOTENGLEICHGEWICHT (KGG):

- 1. Lagerkräfte bestimmen (GGB)
- 2. Stabkräfte als Zugkräfte (von Knoten weg) einführen
- 3. Gleichgewichtsbedingungen (x,y,z) an jedem Knoten aufstellen, auflösen



DREIKRÄFTESCHNITT:

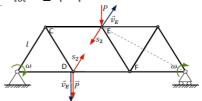


- 1. Lagerkräfte bestimmen
- 2. Drei unbekannte Stäbe schneiden und Stabkräfte einführen
- 3. Momentengleichgewicht an Knoten mit 2 Stabkräften zur Bestimmung der dritten, Gleichgewichtsbedingungen (x,v,z) zur Bestimmung der beiden anderen Stabkräfte

PRINZIP DER VIRTUELLEN LEISTUNGEN (PDVL):

(Lagerkräfte egal)

- 1. Zu bestimmender Stab entfernen und Stabkraft einführen
- 2. Stabkräfte vom Knoten weg einführen
- 3. Zulässige virtuelle Bewegung einführen
- 4. Starrkörper identifizieren
- 5. Bestimmung der Geschwindigkeit in Knoten in denen Kräfte wirken. (Bei der Graphik: C,D,E,F)
- 6. PdvL -> $P_{tot} = \sum F_i \cdot v_i = 0$ -> Stabkraft ermitteln



TIPPS & TRICKS FÜR IDEALE FACHWERKE

- Alle Stäbe sind starr
- SdMz ($\perp v$)

 $-v = \omega \cdot \mathbf{r}$

- Parallelogrammregel: gegenüberliegende (parallele) Stäbe haben gleiches ω
- SdpG
- Berechnung von Teilkomponenten einer Geschwindigkeit: v kann bei schwierigem Abstand komponentenweise berechnet werden.

 $v_r = \Delta y(Abstand) \cdot \omega$

 $v_{v} = \Delta x (Abstand) \cdot \omega$

REIBUNG

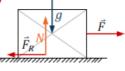
(Kräfte wirken senkrecht zur Normalkraft) Ruhe: $\vec{R} = 0$; $\vec{M} = 0$ wie auch wenn für $\vec{v} = const.$

EBENE

Haftreibung: $|\vec{F}_R| < \mu_0 \cdot |N|$

 μ_0 : Haftreibungskoeffizient v = 0 (*)

Gleitreibung: $|\vec{F}_R| = \mu_1 \cdot |N|$ μ_1 : Gleitreibungskoeffizient = $\frac{|\vec{F}_R|}{|R|}$



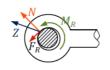
$$\vec{F}_R = -\mu_1 \cdot |N| \cdot \frac{\vec{v}}{|\vec{v}|}$$

GELENKE UND QUERLAGER

Haftreibung: $|\vec{M}_R| < \mu_0 \cdot r_L \cdot |\vec{Z}|$

 r_L : Lochradius

 $\vec{Z} \approx N$: Zapfenkraft $|\vec{Z}| = \sqrt{C_x^2 + C_y^2}$



Gleitreibung: $|\vec{M}_R| = \mu_1 \cdot r_L \cdot |\vec{Z}|$ $\vec{M}_R = \mu_1 \cdot r_L \cdot |\vec{Z}| \frac{\vec{\omega}}{|\vec{x}|}$

LÄNGSLAGER

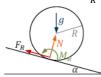
Gleitreibung: $|\vec{M}_{RL}| = \frac{3}{2}\mu_1 \cdot r_L \cdot |\vec{N}|$

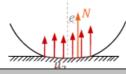
ROLLREIBUNG

Haftreibung (Ruhe): $|\vec{M}_R| < \mu_2 \cdot |N|$ für $v = 0 \bigotimes$; $|e| < \mu_2$ $|\vec{F}_R| < \mu_0 \cdot \vec{N}$ (haften) -> $\tan \varphi < 2\mu_0$ $|\vec{F}_R| = \mu_1 \cdot \vec{N}$ (gleiten) -> $\tan \varphi = 2\mu_1$, $\det \mu_0 > \mu_1$

 $ightarrow arphi_{Max\;haften}
ightarrow arphi_{max\;gleichm\"{a}ssig\;gleiten}
ightarrow ext{Beschleunigung}$

Gleitreibung (Rollen): $\vec{M}_R = \mu_2 \cdot \vec{N}$ $|e| = \mu_2$ haften: $\tan \varphi < \frac{\mu_2}{p}$, $\tan \varphi < \mu_0$ rollen: $|e| \ge \mu_2$





SEILREIBUNG

Haften: $S_2 < S_1 \cdot e^{\mu_1 \varphi}$ φ : Umschling.winkel

Gleiten: $S_2 = S_1 \cdot e^{\mu_1 \varphi}$ $S_2 > S_1$ Seil -> immer Zugkraft

S₁,S₂: Seilkräfte links und rechts der Rolle

STANDFESTIGKEIT MIT REIBUNG

3/6

 M_z : $F_R y = N \cdot e$

- $e < \frac{b}{2}$ sonst kippen
- $F_R < \mu_0 \cdot N$ sonst gleiten

ROLLEN ODER GLEITEN?

- Zuerst verletzt ->Gleiten

ALLGEMEINES VORGEHEN BEI REIBUNG

- 1. System freischneiden
- 2. Äussere Kräfte und Lagerkräfte einführen
- 3. geeignetes Koordinatensystem einführen
- 4. Bei Haftreibung GGB formulieren
- Haftreibungskraft als Unbekannte einführen oder Formel bei Gleitreibung verwenden (entgegen der Bewegungsrichtung einführen)
- 6. \vec{F}_R in Haftreibungsbedingungen einsetzen, Ungleichung auflösen und zulässige Werte von \vec{F}_R für Ruhe angeben!

BEANSPRUCHUNG

(Beschreibung der inneren Kräfte im Querschnitt eines Stabträgers)

- gerader Stabträger (vertikale Kräfte -> Balken)
 - gekrümmter Stabträger, analog für Achse ebener Schnitt senkrecht zur Achse durch den Stab im Abstand x zu den Lagern
- Schnittkräfte sind entgegengesetzt & äquivalent zu den Lagerkräften des anderen Teilsystems

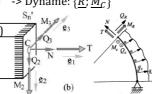
Reduktion in C(Flächenmittelpunkt) -> Dyname: $\{\underline{R}; \underline{M}_{C}\}$

R: N: Normalkraft (Zug, Druck)

 $Q_2 = Q_y \& Q_3 = Q_z$: Querkräfte (Schub)

 M_{C} : T: Torsionsmoment

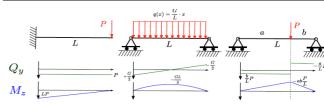
 $M_2 = M_y \& M_3 = M_z$: Biegemomente



VORGEHENSWEISE

- 1. Bestimmung der Lagerkräfte (GGW, Unbekannte (später mit Randbedingungen (reibungsfreies Gelenk hat kein Moment, lastfreies Ende hat Beanspruchungskomponenten gleich Null) definieren))
- 2. Schnitt senkrecht zur Achse in Abstand x oder Winkel φ (bei *Einzelkräften* und -momenten muss in jedem Intervall ein *Schnitt* eingeführt werden)
- 3. Koordinatensystem einführen (ex, ey, ez oder e_{φ} , e_z , e_r) ex oder e_{φ} zeigen entlang der äusseren Normalen der jeweiligen Schnittfläche
- 4. Berechnung der Beanspruchungskomponenten (GGW (Momentenbedingung am Schnittpunkt) oder Reduktion, Randbedingungen auswerten)
- 5. evt. Veranschaulichung durch Diagramme

HÄUFIGE BEANSPRUCHUNGSDIAGRAMME



Freie Enden und Reibungsfreie Gelenke -> Kein Moment

DIFFERENTIALBEZIEHUNGEN

Gerader Stabträger:

$$Q_y' = -q_y$$
 $Q_z' = -q_z$
 $M_z' = -Q_y$ $M_y' = Q_z$

Gekrümmter Stabträger:

$$\begin{split} \phi: N' + Q_r + R \cdot q_\varphi &= 0, \quad T' + M_r = 0 \\ z: Q_z' + R \cdot q_z &= 0, \quad M_z' + RQ_r = 0 \\ r: Q_r' - N + R \cdot q_r &= 0, \quad M_r' - T + RQ_z = 0 \end{split}$$

Berechnung der Querkräfte und Biegemomente:

$$Q_y = -\int q_y dx + C_1 \qquad M_z = -\int Q_y dx + C_2$$

Extremum des Biegemomentes ist dort, wo die Querkräfte verschwinden