

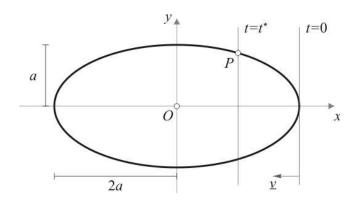
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Mechanik I: Kinematik und Statik

für D-BAUG, D-MAVT

Schnellübung

Prof. E. Mazza

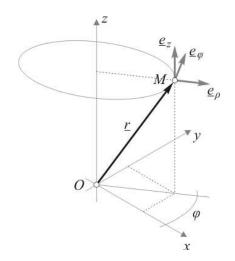

Serie 2

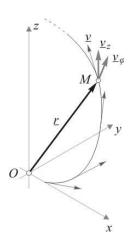
HS 2018

Aufgabe 1

Gegeben ist die Ellipse mit der Gleichung $\frac{x^2}{4a^2} + \frac{y^2}{a^2} = 1$. Eine Parallele zur y-Achse bewegt sich ausgehend von der Lage x = 2a mit der Geschwindigkeit $\underline{v} = -v_0 \sin\left(\frac{v_o t}{2a}\right) \underline{e}_x$.

- a) Welches ist die Geschwindigkeit des Schnittpunktes P dieser Geraden mit der Ellipse?
- b) Berechnen Sie die Extrema der Schnelligkeit dieses Punktes.


Aufgabe 2


Die Bewegung eines materiellen Punkts M verläuft auf einer Schraubenlinie um die z-Achse eines kartesischen Koordinatensystem mit $\rho = R$ und $z = R\varphi \tan(\alpha)$. Hinweis: $\tan(\alpha) = v_z/v_\varphi$ Steigung; α und R sind Konstanten.

Bekannt ist, dass die Komponenten v_{φ} und v_z der Geschwindigkeit $\underline{v} = v_{\varphi}\underline{e}_{\varphi} + v_z\underline{e}_z$ proportional zur Funktion e^{kt} (k Konstante) sind.

M hat bei z=0 und t=0 die Geschwindigkeit $\underline{v}=v_0(\underline{e}_{\varphi}+\underline{e}_z)$, die sich bis zur Höhe z=2R auf $\underline{v}=v_0/2(\underline{e}_{\varphi}+\underline{e}_z)$ reudziert hat.

Bestimmen Sie die Steigung $tan(\alpha)$, die Konstante k sowie die Bewegungsgleichung in Zylinderkoordinaten.

