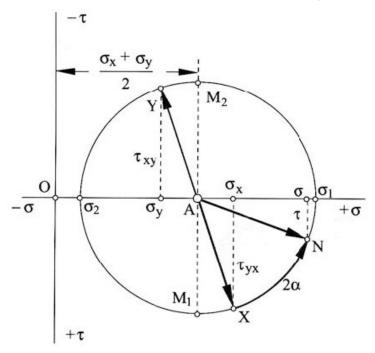
THEORIE 03

kendallj@ethz.ch

1 Mohrscher Spannungskreis

Spannungen lassen sich auch im Mohr'schen Kreis darstellen. Ein Mohr'scher Kreis kann die Spannung in einer Ebene, z.B. x-y, zeigen. Für zwei Ebenen braucht man einen Mohrschen Kreis und für 3 Ebenen (3D) drei Mohrsche Kreise. Diese lassen sich alle im selben Koordinatensystem σ - τ einzeichnen.



Aus dem Mohr'schen Kreis lassen sich verschiedene Formeln für eine Rotation der Bezugsachsen sowie die Maximalspannungen herleiten.

Kochrezept - Konstruktion Mohrscher Kreis (2D)

- 1. Koordinatenachsen σ τ zeichnen
- 2. Punkte $X(\sigma_x, \tau_{yx})$ & $Y(\sigma_y, \tau_{xy})$ einzeichnen
- 3. Diese zwei Punkte mit einer Geraden verbinden.
- 4. Der Schnittpunkt A dieser Geraden mit der σ -Achse ist der Kreismittelpunkt.
- 5. Kreis um den Mittelpunkt durch X & Y zeichnen.

1.1 Rotation der Bezugsachsen

Bei einer Rotation der x- und y-Achse um den Winkel α berechnen sich die Spannungen entlang der rotierten Achsen x' und y' als:

$$\sigma_{x'} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cdot \cos 2\alpha + \tau_{xy} \cdot \sin 2\alpha \tag{1}$$

$$\sigma_{x'} = \frac{\sigma_x + \sigma_y}{2} - \frac{\sigma_x - \sigma_y}{2} \cdot \cos 2\alpha - \tau_{xy} \cdot \sin 2\alpha \tag{2}$$

$$\tau_{x'y'} = -\frac{\sigma_x - \sigma_y}{2} \cdot \sin 2\alpha + \tau_{xy} \cdot \cos 2\alpha \tag{3}$$

Eine Rotation der Achsen um α in negativer Richtung im Raum entspricht eine Drehung um 2α in Uhrzeigersinn im Mohrschen Kreis. Analog: positive Richtung im Raum \rightarrow Gegenuhrzeigersinn im Mohrschen Kreis.

1.2 Maximale Normalspannung

Der grösste und der kleinste Wert der Normalspannung treten senkrecht zueinander auf. In diesem Fall herrscht keine Schubspannung.

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + (\tau_{xy})^2}$$

$$\sigma_{2} = \sigma_{min} \qquad \tau_{xy} = 0$$
(4)

1.3 Mohrscher Spannungskreis 3D

Der Mohr'scher Spannungskreis im 3D Fall wird aus den Hauptspannungen $\sigma_1, \sigma_2 \& \sigma_3$ konstruiert:

Eine Hauptrichtung ist bekannt:

Tensor der Form
$$\underline{\underline{T}} = \begin{bmatrix} \sigma_x & \tau_{xy} & 0 \\ \tau_{yx} & \sigma_y & 0 \\ 0 & 0 & \sigma_z \end{bmatrix}$$
 lässt sich auf $\sigma_3 = \sigma_z$ und $\underline{\underline{T}} = \begin{bmatrix} \sigma_x & \tau_{xy} \\ \tau_{yx} & \sigma_y \end{bmatrix}$ vereinfachen. Jetzt

wird der MSK nach dem Kochrezept konstruiert und anschliessend zeichnet man zwei Kreise von σ_3 zu den anderen Hauptspannungen.

Falls der Tensor nicht in dieser obigen Form gegeben ist, dann muss man **zyklisch vertauschen** bis man sie erhält: $xyz \rightarrow zxy \rightarrow yzx$:

$$\begin{bmatrix} \sigma_x & 0 & 0 \\ 0 & \sigma_y & \tau_{yz} \\ 0 & \tau_{yz} & \sigma_z \end{bmatrix} \rightarrow \begin{bmatrix} \sigma_z & 0 & \tau_{yz} \\ 0 & \sigma_x & 0 \\ \tau_{yz} & 0 & \sigma_y \end{bmatrix} \rightarrow \begin{bmatrix} \sigma_y & \tau_{xy} & 0 \\ \tau_{yx} & \sigma_z & 0 \\ 0 & 0 & \sigma_x \end{bmatrix}$$
 (5)

Keine Hauptrichtung ist bekannt:

A) Eigenwertproblem lösen:

$$det([T] - \lambda[I]) = \begin{bmatrix} \sigma_x - \lambda & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_y - \lambda & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_z - \lambda \end{bmatrix} = 0$$
 (6)

Eigenwerte $\lambda_{1,2,3} o$ Hauptspannungen $\sigma_{1,2,3}$ und Eigenvektoren o $\underline{\mathbf{e}}_1,\underline{\mathbf{e}}_2 \& \underline{\mathbf{e}}_3$

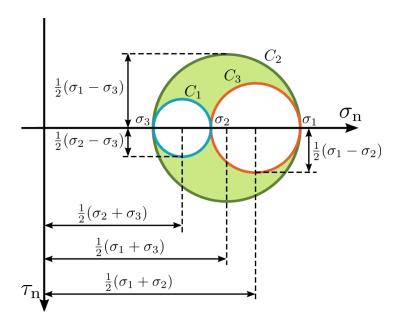
B) Grundinvarianten $\sigma_I, \sigma_{II} \& \sigma_{III}$:

$$\sigma_{I} = \sigma_{x} + \sigma_{y} + \sigma_{z}$$

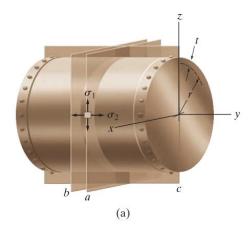
$$\sigma_{II} = -\sigma_{x}\sigma_{y} - \sigma_{y}\sigma_{z} - \sigma_{z}\sigma_{x} + \tau_{xy}^{2} + \tau_{yz}^{2} + \tau_{zx}^{2}$$

$$\sigma_{III} = det[T]$$

$$\lambda^{3} - \sigma_{I}\lambda^{2} - \sigma_{II}\lambda - \sigma_{III} = 0$$
(7)



2 Druckbehälter



Druckbehälter stehen häufig unter hohen Normalspannungen. Diese hängen ab vom Innendruck p.

$$\sigma_1 = \sigma_\varphi = \frac{pr}{t}$$
$$\sigma_2 = \sigma_y = \frac{pr}{2t}$$

Hierbei handelt es sich gerade um die Minimal- und Maximalnormalspannungen (also Hauptspannungen). Die aus den Normalspannungen resultierenden Schubspannungen lassen sich mithilfe der Formeln aus dem Mohr'schen Kreis berechnen.