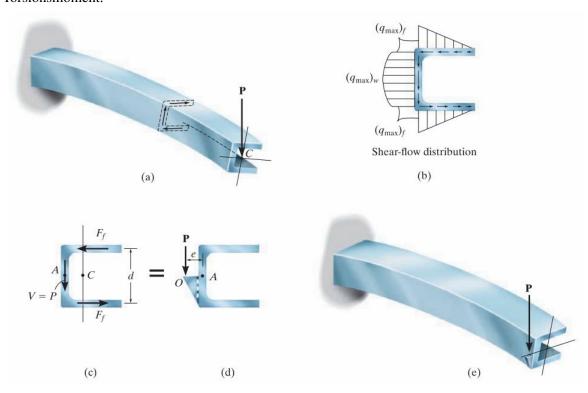
THEORIE 09

kendallj@ethz.ch

1 Schubzentrum

Wenn ein Balken offen ist und mit einer Querkraft im Schwerpunkt belastet wird, so verbiegt sich der Balken nicht nur nach unten, sondern wird sich auch verdrehen (a) - die Schubspannungen erzeugen ein Torsionsmoment.



Um dies zu verhindern, muss die Querkraft an einem bestimmten Punkt angreifen und so ein Gegenmoment aufbringen (e). Dieser Punkt wird als Schubzentrum bezeichnet.

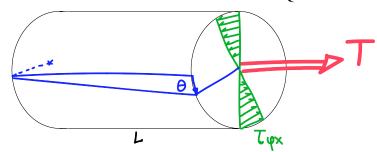
Kochrezept - Schubzentrum

- 1. Inneren Schubfluss einzeichnen (Bsp. (a)). Dieser zeigt in entgegengesetzter Richtung wie der äussere Schubfluss, den wir normalerweise zeichnen (b).
- Punkt suchen, and dem das Momentgleichgewicht aufgestellt wird.
 Schwerpunkt, oder wo möglichst viele Schubfluss-Wirklinien hindurchführen.
- 3. Den für das GGW relevanten Schubfluss $q=\frac{QH_z}{I_z}$
- 4. Den Schubfluss über die Länge zu einer Kraft integrieren.
- 5. Momentgleichgewicht nach idealem Kraftangriffspunkt e bzw. z_s auflösen.

2 Torsion

Ein Torsionsmoment dreht um die Achse senkrecht zum Querschnitt.

Torsion betrachten wir üblicherweise für Bauteile mit kreisrundem Querschnitt.



2.1 Schubspannung aus Torsion

Torsion erzeugt eine Schubspannung im Bauteil, die in der Mitte Null beträgt und gegen aussen anwächst.

$$\tau_{x\varphi} = \frac{Tr}{I_p} \tag{1}$$

wobei τ Schubspannung, T Torsionsmoment, r Radius, I_p polares Trägheitsmoment um Torsionsachse ist. Die Schubspannung ist maximal, wo der Radius maximal ist.

2.2 Verformung aus Torsion

$$\Theta = \int_0^L \frac{T(x)}{I_p(x)G} = \frac{TL}{I_pG} \tag{2}$$

für T und I_p konstant.

2.3 Polares Flächenträgheitsmoment

Das Flächenträgheitsmoment in Axialrichtung ist auch unter den Begriff polares Flächenträgheitsmoment bekannt und ist folgendermasse definiert:

$$I_p = I_Z = \int \int x^2 + y^2 dA \tag{3}$$

Wenn man die Definition im kartesischen Koordinatensystem betrachtet, sieht man, dass sich Ip auch so definieren lässt:

$$I_p = I_x + I_y \tag{4}$$

In vielen Fällen haben wir aber auch mit runden Querschnittsflächen zu tun. Diesbezüglich rechnet man am besten in Polarkoordinaten:

$$I_p = \int \int r^2 dA = \int \int r^3 d\varphi dr \tag{5}$$