

Tissue Engineering I + II Materials and Mechanics in Medicine HS 2019

Jack Kendall | 15.10.19 | 1

- Learning Goals TE I
- 4 tissue types
- 3 ways cell receive information and how TE can provide these signals
- Different cell sources for TE and their pros and cons
- Pros and cons of scaffolds vs hydrogels

Quick Review

Polymers:

- PE, PP, PVC, PMMA, PTFE, PDMS \rightarrow non degradable
- PLGA \rightarrow degradable
- Pluronic \rightarrow drug delivery
- PEG, PVA \rightarrow hydrophilic, synthetic
- Collagen, fibrin, hyaluronic acid, alginate \rightarrow hydrophilic, natural

 \rightarrow relevant for Tissue Engineering !

Three pillars of Tissue Engineering

GOAL: construction of living, functional components to regenerate malfunctioning tissues

Tissue Types

 Connective – bone, cartilage, fat, fibrous tissue (SUPPORTING)

 \rightarrow consists of collegen fibers, polysaccharide gel

 Epithelium – lines the inner and outer surfaces of the body (COVERING)

> → types: cuboidal, simple columnar, pseudostratified, columnar, stratified squamous, simple squamous

- Nervous tissue conducts electrical signals (COMMUNICATING)
- Muscle tissue produces mechanical force by contraction (MOVING)

Cell Sources for Tissue Engineering

Scaffold fabrication methods

- Porogen Leaching Method (pore size > 13 µm)
- → macroporous scaffold
- Reverse Opal Method (pore size ~ 300 μm)
- \rightarrow template fusion (gelatin in methanol) \rightarrow PLGA scaffold
- Cryogelation (pore size 50-200 µm)
- → freezing of mixture (polymer solution) at subzero temperature
- → produces compressible sponges

Electrospinning

→ fibrous like structure which resembles the natural collagen matrix
→ PLGA

How cells interact with their environment

- Cell-Cell Adhesions: Cadherins
- → TE approach: cadherin mimic peptide
- Cell-Matrix Adhesions: Integrins
- → TE approach: collagen mimic protein GFOGER
- → cells are allowed to spread and proliferate if GFOGER is present

How cells interact with their environment

Soluble Growth Factor Signalling

- → autocrine factors
- \rightarrow paracrine factors

Examples of GF in TE

- → VEGF (vascularization)
- → BMP (bone)

 \rightarrow ..

How to Entrap Growth Factors?

0====0

CHEMICAL CROSS-LINKING

AFFINITY MEDIATED BY HEPARIN OR HEPARIN MIMETIC

How cells interact with their environment

- cell motility
- diffusion of nutrients
- angiogenesis
- Mechanical stability
- Biocompatibility
- Degradability
- Connectivity

Learning Goals TE II

- Understand cartilage engineering (flat)
- Know how to make autologous skin grafts (flat)
- Know the important properties of a material for encapsulating cells (artificial pancreas)

Cartilage Engineering

1. Mosaicplasty

3. Autologous Chondrocyte Implantation (ACI)

4. Novocart 3D, Aesculap

Cell isolation (chondrocytes)

1. Entnahme des Gelenkknorpels

Entnahmeinstrumentarium [FR720] Transportbehälter mit Knorpel-Knochenzylinder

4. Novocart 3D, Aesculap

- Cell isolation (chondrocytes)
- Expansion
- Cell seeding on 3D scaffold
- → fabrication of Novocart 3D

4. Novocart 3D, Aesculap

- Cell isolation (chondrocytes)
- Expansion
- Cell seeding on 3D scaffold
- → fabrication of Novocart 3D
- Implantation (minimal invasive)

Das ausgestanzte Transplantat wird mit der beiliegenden Pinzette gefasst und in den Defekt eingelegt

Das Transplantat liegt passgenau im Defekt

Das Transplantat wird mit Einzelknopfnähten und / oder resorbierbaren Pins fixiert

Skin Engineering

Wie im Labor aus Hautzellen des Patienten ein Stück neue Haut wird

- Skin graft assumes pigment of donor
- BauxScore to predict mortality of burn patients

Pancreas Engineering

DIABETES MELLITUS

Pancreas Engineering

- Replacement of non-functional islets of Langerhans
- Sheet to protect the donor islets from host rejection
 - \rightarrow thin: O₂ can diffuse
 - \rightarrow Islets can sense glucose levels and secrete insulin
 - \rightarrow Alignate is used to protect islets
 - No enzymes to break down alginate
 - Biocompatible
 - Gelation methods:
 - CaCl₂ (fast, uncontrolled, anisotropy)
 - CaCO₃ GDL (time controlled, homogenous structure)

Kidney Engineering (extracorporal)

Current situation:

- high blood pressure and diabetes \rightarrow nephron damage
- Iow life expectancy on dialysis

TE Applications:

- Artificial Kidney "Hemodialysis"
 - → Hollow-fiber Design using counterflow current
- Bioartifical Kidney The Renal Assist Device (RAD)
 - \rightarrow Renal epithelial cells line hollow fibers in device
- iRAD Implantable Renal Assist Device

Q1: Novocart 3D Treatment

- from whom are the cells taken? (autologous vs allogenic)
- cells isolated from cartilage tissue
- \rightarrow what kind of cells do you find in cartilage tissue?

Q2: Biopolymer Alginate

- a. Look at periodic table
- b. In vivo vs in vitro
- c. Think about differences in degradation mechanisms in marine seaweed and mammalian cells
- d. Advantage for TE
- e. two options

Alginate - Ion-Induced Gelation

- 2 Gelation Methods:
- CaCl₂: fast, uncontrolled, non-homogeneous, hard shell softer core
- CaCO₃-GDL (D-(+)-glucono-δ-lactone): time controlled, homogeneous structures

Q3: Key Features of Scaffolds

- Think about cell signals and cell interactions discussed during the lecture today
- The following points each match to one picture:
- → Tissue stiffness gradient
- → Recognition sites
- → Growth factors
- → Cell-cell interactions
- → Crosslinking density

Q4: Pore Size

- Pore size dependent on used material/ polymer/ particle?
- Cell-Cell interconnections?