ETH zürich

Materials and Mechanics in Medicine: Paper 2 3D bioprinting of collagen to rebuild components of the human heart (Lee *et al., 2019*)

29.10.2019 Jack Kendall

Introduction

- "3D bioprinting of collagen to rebuild components of the human heart"
- This paper deals with:
 - Bioprinting as a form for creating scaffolds
 - Importance of collagen as a vital component
 - Novel way to produce parts of the human heart

Background – the human heart

"Taschenklappe" = Semilunarklappe "Segelklappen" = Atrioventrikularklappe

Research Aim & Results

- Collagen as main ECM component
- Not simple to print complex organs & tissues w/ collagen
- **New**: 3D bioprinting of collagen with *FRESH (2.0)*
- Small to large \rightarrow capillaries to full organ
- **Unique** gelation method gives high resolution filaments!
- Specifically, FRESH (2.0) printed hearts reproduce anatomical structures with high fidelity.
- Cardiac ventricles even mimic native behavior!

Research Aim & Results

- Ability to directly 3D-bioprint collagen with precise control of composition and microstructure
- Engineer tissue components of the human heart
- Collagen as bio-ink because of its critical role in the ECM!
 - Structural integrity & organization of cells and compartments
 - Depot for cell adhesion and signaling molecules

Main Methods and Materials

- Novel approach to drive collagen self-assembly, can...
 - ...use chemically unmodified collagen as bio-ink
 - ...enhance mechanical properties (high concentration collagen)
 - ...create complex structural and functional tissues

ETHzürich

Main Methods and Materials

EHzürich

- First focused on FRESH-printing a simplified model of a small coronary artery–scale linear tube from collagen
 - Mouse myoblast cells cast around the tube to evaluate the ability to support a volumetric tissue
- Next, FRESH-printed a model of the left ventricle, with dual-material printing strategy
- Finally, print tri-leaflet heart valve 28 mm in diameter

ETHzürich

ETHzürich

5

ETH zürich

Results

EHzürich

Results

- FRESH 3D-bioprinted hearts reproduce patient-specific anatomical structures
- Cardiac ventricles printed with human cardiomyocytes showed:

\rightarrow synchronized contractions

baseline spontaneous beat rate of 0.5 Hz, could be paced at 1 and 2 Hz

\rightarrow directional action potential propagation

→ wall thickening (at peak systole)

printed ventricle expanded inward and outward during a contraction with decrease in cross-sectional area of interior chamber during peak systole with a max of 5% at 1Hz

→ Electrophysiological behavior

multiple propagating waves and pinned rotors

Results

- → FRESH v2.0 printing of collagen can build advanced tissue scaffolds for a wide range of organ systems
- → Now we have the ability to build constructs that start to recapitulate the structural, mechanical and biological properties of native tissues

Limitations

Bioprinting of a full organ is not possible yet:

- → Generating billions of cells required to 3D-bioprint large tissues
- → Achieving manufacturing scale
- → Creating regulatory processes for clinical translation