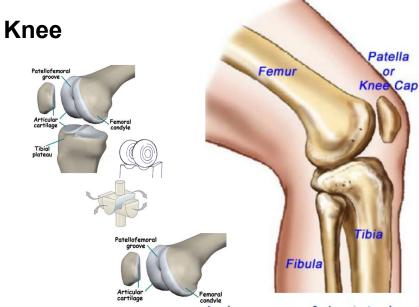
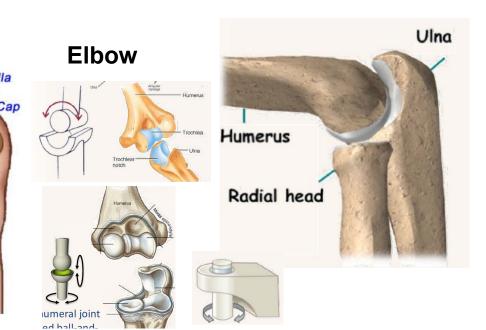


Mechanics of Human Movement


Material and Mechanics in Medicine HS 2019

Jack Kendall 03.12.19


Joints Tradeoff

Anatomy

- Fibula is not part of the joint
- Tibiofemoral joint: Condyloid hinge joint
- Patellafemoral joint: Saddle joint

- Radius is part of the joint
- Ulnohumeral joint: Typical hinge joint
- Radiohumeral joint: limited balland-socket joint
- Radioulnar joint: pivot joint

Anatomy

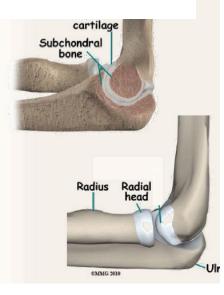
Knee


- Extension dominant
- Lever arm achieved with patella

Elbow

- Flexion dominant
- Lever arm with biceps-radius attachment

Interosseous Membrane:


- Stability
- Transmits forces
- 100% transmitted tibia \rightarrow femur
- 57% radius vs 43% humerus
- Separates tissues during twisting

Cartilage and Meniscus

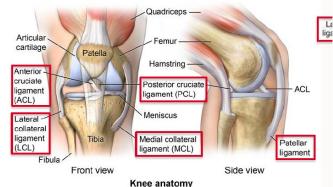
- Osteoarthritis
 - Women are more susceptible
 - Risk factors:
 - Overuse
 - Skeletal deformations
 - Joint laxity

Meniscus

- 60-70%
- Type I 75% dw
- 1.5% dw
- 'Fibrochondrocytes'

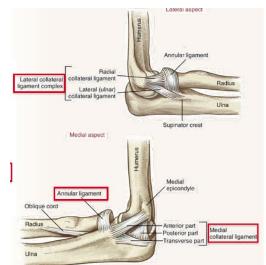
- Composition
 - Water
 - Collagen
- Proteoglycans Cells

Cartilage

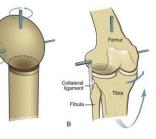

- 65-85%
- Type II 60% dw
- 12.5% dw
- Chondrocytes

- Stability due to wedge effect
- Optimized load distribution (shock absorption)

Ligaments and Tendons


Knee

- LCL: restrain to varus stress
- MCL: restrain to valgus stress
- ACL:
 - anterior displacement of tibia
 - Internal knee rotation
 - Hyperextension
- PCL:
 - Posterior displacement of tibia
 - External knee rotation

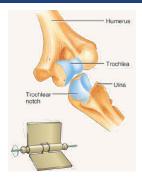

Elbow

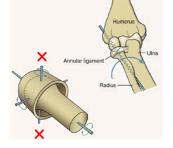
- LCL: restrain to varus stress
- MCL: restrain to valgus stress
- Quadrate ligament: prevents hyper-supination

Kinematics

Knee

- Rotation
 - Condyloid hinge joint: 2 axes
 - Frontal plane rotation blocked by MCL and LCL

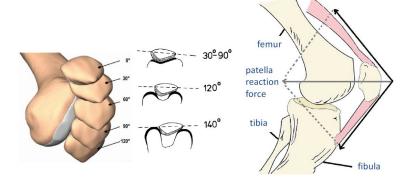



Anterior

- Flexion:
 - Tissue contact
 - cruciate ligament
- Extension:
 - ACL
- Centre of rotation not fixed

Elbow

- Rotation
 - Hinge joint: 1 axis,
 - Pivot/Hinge joint: 2 axes
 - others axes blocked by joint shape and collateral ligaments
- Flexion:
 - Tissue Contact
- Extension:
 - Olecranon
- Fix centre of rotation



Olecranon fossa Olecranon process

Kinetics

Patella

- Patellar force:
 - Low in extension
 - Very high in flexion
- Force reducing mechanisms
 - Meniscus and femur slide posterior
 - Patella sinks into patella groove (provides also joint stability)

Meniscus

- Shock-absorption
- Increase congruency & area of contact
- Deepens articulation
- Wedge shape:
 - Increased area of contact
 - Less contact between opposing cartilages in flexion
 - Load transmission:
 - 50% in extension
 - 85% in flexion

Thank you!

