Mechanics of Human Movement
Material and Mechanics in Medicine HS 2019

Jack Kendall
03.12.19
Joints Tradeoff

- Glenohumeral joint (shoulder)
- Hip joint
- Elbow joint
- Intervertebral joints
- Suture

Mobility

Most mobile

Immobile

Stability

Very unstable

Most stable
Anatomy

Knee

- Fibula is not part of the joint
- Tibiofemoral joint: Condyloid hinge joint
- Patellafemoral joint: Saddle joint

Elbow

- Radius is part of the joint
- Ulnohumeral joint: Typical hinge joint
- Radiohumeral joint: limited ball-and-socket joint
- Radioulnar joint: pivot joint
Anatomy

Knee
- Extension dominant
- Lever arm achieved with patella

Elbow
- Flexion dominant
- Lever arm with biceps-radius attachment

Interosseous Membrane:
- Stability
- Transmits forces

- 100% transmitted tibia \rightarrow femur
- 57% radius vs 43% humerus
- Separates tissues during twisting
Cartilage and Meniscus

- Osteoarthritis
 - Women are more susceptible
 - Risk factors:
 - Overuse
 - Skeletal deformations
 - Joint laxity

Meniscus
- 60-70%
- Type I 75% dw
- 1.5% dw
- ‘Fibrochondrocytes’

Composition
- Water
- Collagen
- Proteoglycans
- Cells

Cartilage
- 65-85%
- Type II 60% dw
- 12.5% dw
- Chondrocytes

- Stability due to wedge effect
- Optimized load distribution (shock absorption)
Ligaments and Tendons

Knee

- LCL: restrain to varus stress
- MCL: restrain to valgus stress
- ACL:
 - anterior displacement of tibia
 - Internal knee rotation
 - Hyperextension
- PCL:
 - Posterior displacement of tibia
 - External knee rotation

Elbow

- LCL: restrain to varus stress
- MCL: restrain to valgus stress
- Quadrature ligament: prevents hyper-supination
Kinematics

Knee
- **Rotation**
 - Condyloid hinge joint: 2 axes
 - Frontal plane rotation blocked by MCL and LCL
- **Flexion:**
 - Tissue contact
- **Extension:**
 - ACL
- **Centre of rotation not fixed**

Elbow
- **Rotation**
 - Hinge joint: 1 axis,
 - Pivot/Hinge joint: 2 axes
 - others axes blocked by joint shape and collateral ligaments
- **Flexion:**
 - Tissue Contact
- **Extension:**
 - Olecranon
- **Fix centre of rotation**
Kinetics

Patella
- **Patellar force:**
 - Low in extension
 - Very high in flexion
- **Force reducing mechanisms**
 - Meniscus and femur slide posterior
 - Patella sinks into patella groove (provides also joint stability)

Meniscus
- **Shock-absorption**
- **Increase congruency & area of contact**
- **Deepens articulation**
- **Wedge shape:**
 - Increased area of contact
 - Less contact between opposing cartilages in flexion
- **Load transmission:**
 - 50% in extension
 - 85% in flexion
Thank you!