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1 Introduction
Game theory is a relatively new field of mathematics. Its foundations were laid by the great mathematician John
von Neumann(1903-1957) whose ideas were also valuable in other related fields, such as computer science and
physics.

1.1 What is game theory?
As Myerson puts it: it is a mathematical language to express models of “conflict and cooperation between intelligent
rational decision-makers”. It studies the interaction between decisionmakers whose decisions interact with each
other, which is why Aumann calls it interactive decision theory. What is often criticized is how game theory models
“rational” behaviour, but these assumptions lie in the model studied and are not inherent to the mathematical
language of game theory. At its inception, game theory was applied to mundane concepts like board games, or
“Gesellschaftsspiele”. Yet today, game theory sees its applications in much borader fields, such as Economics, Auctions
and even Political decisionmaking.

1.1.1 Games and Non-Games
What is a game? And what is not a game? An example of a Non-Game would be roulette. The outcome of the
’Game’ is not depended on either your decision-making nor the decisions made by the casino. Your payoff is merely
dependent on chance. In contrast, a ’Game’ like Poker could be considered a Game, since the decisions made by
each Player directly affect the outcome of the Game.
But the boundary between Games and Non-Games isn’t always clear. For instance, if an everyday person bought or
sold some Stonks on the stockmarket, the effects of your tradings would have a negligible impact on the stockmarktet.
However, if big corporations, banks or nations decide to move currencies, buy stock or sell shares, their decisions
will noticeably affect the situation in the market world. This is when game theory comes into play to analyse what
is happening.

1.1.2 Prescriptive vs. descriptive agenda
Game theory can be used to both “reverse engineer” the mechanisms of a model, or to construct mechanisms,
to create a most desirable output. Examples of descriptive game theory can be found in Biology, Social Sciences,
Economics, Computer science etc., whereas prescriptive game theory can help us in the field of Law, medical research
or Macroeconomics.
Its impact in economics is extremly outstanding, with over seven Nobel prizes given to game theorists.

https://gametheory.online/johnny
https://gametheory.online/johnny
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1.2 Non-Cooperative vs. Cooperative Games
We find that we usally can describe games as being either non-cooperative, or cooperative games. What distinguishes
the two is the rules in the game. In non-cooperative game theory, the player are individuals and they are unable to
write binding contracts with eachothers. Some key concepts to solving these are the Nash equilibrium, or the
Strong equilibrium.
By contrast, cooperative game theory is a formulation of rules, where players can be individuals or can merge into
larger groups of individuals. The groups, or coalitions can be formed by binding contracts or other forms of leverage.
These problems are drastically different from non-cooperative game theory. We use Core or the Shapley value to
study these problems.
An prominent researcher in this field is John Nash, who recieved a Nobel Prize, as well as other prestigious prizes
for his outstanding research in non-cooperative game theory.

1.2.1 Non-cooperative Games

Definition 1.1: Non-cooperative game (normal-form)

A non-cooperative game consists of three main ingredients.

• A finite set of players: N = {1, 2, . . . , n}.

• A finite set of actions/strategies, where the player i choses a strategy si from his stategy set Si, which
results in a stategy combination s = (s1, . . . , sn) ∈ (Si)i∈N.

• A payoff function u, which gives player i the payoff ui(s), depending of the outcome s.

To illustrate how game theory works, we will look into some 2-player examples. These games are usually represented
in Matrix form.
To read these matrices, we distribute the points in the outcome as follows. The number of the left (−,−) determintes
the payoff for the Player 1 on the left, wheres the number on the right (−,−) is the payoff for the Player 2 above.

• Matching Pennies: In this game, the two players have opposite goals. Player 1 always wants to match
options with Player 2, and Player 2 wants to make the opposite choice of Player 1.

Player 2
Heads Tails

Player 1 Heads 1,-1 -1,1
Tails -1,1 1,-1

• Prisoner’s Dilemma: In this Game, two robbers are caught commiting a crime together. They are being
seperately interrogated, where each prisoner has the option to either confess or stay quiet. If both stay quiet,
the police has no good evidence to keep the robbers at the police station for a long time. If one confesses, the
police are lenient on the sentences, while punishing the other member.

B
Confess Stay quiet

A Confess -6,-6 0,-10
Stay quiet -10,0 -2,-2

• Battle of the sexes: In this classic 1950’s game theory example, a man and a woman want to see eachother,
and want to meet up in either a Boxing event or the shopping mall. While the man prefers the Boxing event
and the woman prefers the shopping, they ultimately want to see eachother, which is why both get zero payoff
in case they don’t meet.

Woman
Boxing Shopping

Man Boxing 2,1 0,0
Shopping 0,0 1,2
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• Hawk and Dove Game: Here, two players have the option to either chose a Hawk or Dove. If both chose
Dove, they can live in harmony, but if one player is a Hawk, the Hawk can tyrannize the Dove and gets off
better. However, if both chose Hawk, they have to fight eachother and get off worse.

Player 2
Hawk Dove

Player 1 Hawk -2,-2 4,0
Dove 0,4 2,2

• Harmony Game: Altough we are looking at non-cooperative Games, where binding contracts can be
written, “Cooperation” can still arise. For example, consider two companies, which have the choice to cooperate,
the payoff function can still dictate wether cooperation is achieved or not.

Company 2
Cooperate Not Cooperate

Company 1 Cooperate 9,9 4,7
Not Cooperate 7,4 3,3

1.2.2 Nash Equilibrium
To analyse and solve these games just discussed, we introduce the concept of an Equilibrium.

Definition 1.2: Equilibrium

An equilibrium or solution of a game is a rule that maps the structure of a game into an equilibirum set of
strategies s∗.

What game theory is concerned with is finding out what these equilibira are. To help find these, we first look at what
a single Player might do given the knowledge of what the other players are doing. We denote the set of strategies
except for player i with s−i = (s1, . . . , si−1, si+1, . . . , sn), i.e. the strategies which all the other players have chosen.

Definition 1.3: Best-response

Player i’s best-response to the strategies s−i played by all others is the strategy s∗i ∈ Si such that

µi(s∗i , s−i) ≥ µi(s′i, s−i), ∀s′i ∈ Si and s′i 6= s∗i

Now, instead of focusing on a single player, we look at the strategies that all players might chose. To do so, we
introduce the concept of a Nash equilibrium.

Definition 1.4: (Pure-strategy) Nash equilibrium

The Nash equilibrium is the outcome, where everybody choses the best strategy to the others best strategies.
Which is to say that all strategies are mutual best responses, where no player has any interest in switching
strategies.

µi(s∗i , s−i) ≥ µi(s′i, s−i), ∀s′i ∈ Si and s′i 6= s∗i

Using these few definitions, we can already try to solve some of the previously stated games.
Note: We will use the following convention to improve readability: In two-player games like before, we will call
Player 1 a ’he’, and Player 2 a ’she’. This has the benefit of simplifying the language when discussing the previous
games.
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Example 1.5: Prisoner’s Dilemma

In this example, we look at the game from Player 1’s perspective.

B
Confess Stay quiet

A Confess -6,-6 0,-10
Stay quiet -10,0 −2,-2

In the case, where Player 2 stays quiet, it makes sense for Player 1 to confess, because the coutcome (0,-10) is
better for him than (-2,-2). So ’Confess’ is Playe 1’s best response to Player 2’s staying quiet. In the other
case, where she confesses, it still is better for him to confess, or else he would face harder consequences. Again,
’Confess’ still is Player 1’s best response. So regardless of what Player 2 does, in every possible situation s−1
it is always better for Player 1 to confess. We say that the strategy ’Confess’ strictly dominates the other
strategy, because the payoff function µ1 is better in all cases s−1.
Using the same argument for Player 2, we can see that the game will lead to the result, where both players
confess (-6,-6).

Example 1.6: Battle of the sexes

In the Battle of the Sexes game, there appear to be two stable, pure strategy Nash Equilibria. It is when both
the man and the woman chose the same option, because if one such Equilibrium is met, it doesn’t make sense
for either player to deviate from the Equilibrium, i.e. change strategies.

Woman
Boxing Shopping

Man Boxing 2,1 0,0
Shopping 0,0 1,2

Pure stategy Nash Equilibria don’t always have to exist for every game. In the game Matching Pennies, there
don’t exist any pure strategies, which are best responses to another, because we see a form of anti-coordination in
the rules of the game.
In these examples, we have seen that the Nash Equilibria can lead all kinds outcomes, both socially desireable and
undesireable ones, aswell as Pareto-optimal ones, where the outcome of one party connot be increased without
reducing the profit of another party by a equal or larger amount.

Prisoner’s dilemma Unique NE socially undesirable outcome
Harmony Game Unique NE socially desirable outcome
Battle of the Sexes Two NE Pareto-optimal
Hawk vs. Dove Two NE Pareto-optimal
Matching pennies No pure strategy NE

An example of the counter intuitive-ness of Nash equlibris is presented in the following example, where the addition
of seemingly good options can worsen the outcome in the Nash Equilibrium.
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Example 1.7: Braess’ Paradox

The story goes as follows: 60 people want to travel from S to D. From S, they have the option to either go to
A or B. The road SB takes one hour, and the time to travel SA depends on how many drivers are on the
road, same goes for BD.
In the following diagram, the numbers on the arrows indicate the travel times.

A

S D

B

60

0

%·30

60 %·30

Initially, there is no middle road. The Nash Equilibrium is such that 30 people drive one way, and 30 people
drive the other way, where both groups of drivers take 90 minutes.
But after the construction of the super efficient middle road, everyone will use it, but as a side effect, the
congestion on the road BD will worsen, where the Nash Equilibrium will then be at 119/120 minutes.

1.2.3 Cooperative Games
We have seen that the Nash Equilibrium does not always lead to the most collectively desireable outcome. How
can player overcome this problem? One way to achieve this would be to let player cooperate by writing binding
agreements or transferring unitilities.
We can introduce the cooperative value, which takes the sum of all payoffs and try to maximize that. In the
prisoner’s dilemma, this would change the outcome from (-6,-6) to (-2,-2), since now, the cooperative value is now
being considered. By defining v12(s) = µ1(s) + µ2(s), we would instead get this game matrix.

B
Confess Stay quiet

A Confess -12 -10
Stay quiet -10 -4
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2 Cooperative Game Theory
Cooperative Game theory concerns itself with players, where they may form coalitions or groups of individuals.
Often the players may be individuals, corporations or nations and they are able to write binding contracts, transfer
utility.

2.1 The Cooperative Game
The Cooperative game was introduced int the paper The Theory of Games and Economic behaviour (1944) published
in Princeton University press written by John von Neumann (1903 - 1958) and Oskar Morgenstern (1902-
1977), where the two defined the core notions still in use in modern game theory, which will take a look at in this
chapter.

Definition 2.1: Cooperative game (normal-form)

Like a non-cooperative game, a cooperative game consists of three main ingredients

• A finite Population of players: N = {1, 2, . . . , n}.

• Coalitions C ⊆ N which form in the population and become players again, resulting in a coalition
structure ρ = {C1, C2, . . . , Ck}

• A finite set of actions/strategies, where the player i choses a strategy si from his stategy set Si, which
results in a stategy combination s = (s1, . . . , sn) ∈ (Si)i∈N.

• Compared to the non-cooperative game [1.1], payoffs ϕ = {ϕ1, . . . , ϕn} are a bit more complicated using
a sharing rule for players within a coalition.

Of particular interest is how the payoff function will behave given the set of coalitions. What determines how the
shared payoffs will be distributed?

2.1.1 Characteristic function form Games
A common representation of a cooperative game is using the characteristic function form (CFG):

Definition 2.2: Characteristic function form

Here, the game is defined by a 2-tuple G(v,N), where we again have a finite fixed population N together with
disjoint Coalitions C ⊆ N resulting in the coalition partition ρ. Some examples are the empty coalition
ø, the grand coalition N . We write 2N for the set of all coalitions and ρ for the set of all partitions. The
characteristic function v is the function form that assigns a worth v(C) to each coalition.

v : 2N → R, C 7→ v(C) and v(ø) = 0

We can also think of the singleton coalitions ot be worth zero.

As an example, consider a 3-player game (N = 1, 2, 3), where individual players are “worth” nothing, but the
coalitions (1,2) and (1,3) are worth 0.5, and (2,3) nothing, with the grand coalition being worth 1. Then, the
characteristic function will be

v(i) = 0, v(1, 2) = v(1, 3) = 0.5, v(2, 3) = 0, v(N) = 1

What could this game represent? Let’s think of player 1 as the owner of a machine that can produce a good, but
requires workers. Players 2 and 3 could be workers, who alone can’t produce anything but can work with the machine.
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Definition 2.3: Transferable utility and feasibility

Let G(v,N) be a CFG. The outcome is a coalition structure, consisting of

• The resulting partiton ρ = {C1, . . . , Ck} and

• payoff allocation ϕ = {ϕ1, . . . , ϕn}

Importantly, v(C) can be shared amongst i ∈ C (transfer of utility). But the feasibility constraint is that
the sum of all allocated utility can not exceed the worth of the coalition∑

i∈C
ϕi ≤ v(C),∀C ∈ ρ

In the previous 3 player example, some feasible outcomes could be

• Outcome 1: {(1, 2), 3} and {(0.25, 0.25), 0}, where the utility is spread evenly among the participants in the
coalition.

• Outcome 2: {N} and {0.25, 0.25, 0.25}, where everybody gets equal amounts in the grand coalition, but the
whole worth of the coalition is not fully utilised.

• Outcome 3: {N} and {0.8, 0.1, 0.1}, where player 1 gets the largest share.

Another assumption oftem made in CFG is the so-called Superadditivity assumption of coalitions. If two coalitions
C and S are disjoint, then v(C) + v(s) ≤ V (C ∪ S) i.e. mergers of coalitions weakly improve their worths. This
implies that the grand coalition is the most efficient of them all.

2.2 The Core
The first of the solution concepts introduced is the idea of the Core, it is one of the most fundamental solution
concepts in cooperative game theory and actually predates the earliest formulations of game theory, having been
used in economic studies.

Definition 2.4: The Core

The Core of a superadditive CFG G(v,N) consists of all outcomes where, where the grand coalition forms
and where the payoff allocations ϕ∗ are

• Pareto-efficient:
∑
i∈N ϕ

∗
i = v(N) i.e. the worth of the grand coalition is fully utilised

• unblockable: For all C ⊆ N,
∑
i∈C ϕ

∗
i ≥ v(C). In other words, every player gets at least as much as

they are worth themselves, ϕ∗i ≥ v(i) and every coalition gets as much in total, as it would if it would
form a coalition on its own.

This means that in the Core, every player and every coalition is incentivised to stay in the grand coalition,
given the payoff allocation ϕ∗ as it would not do better on their own.

In the 3 player example discussed earlier, Outcome 1: {(1, 2), 3} and {(0.25, 0.25), 0}, is clearly not in the core, as the
grand coalition is not formed. Outcome 2 : {N} and {0.25, 0.25, 0.25} aswell as Outcome 3: {N} and {0.8, 0.1, 0.1},
are in the core, since no subcoalition could do better in other outcomes.

2.2.1 Properties of the Core
The core can be defined using a system of linear inequalities, Ax ≤ b or By ≥ c, which means the the Core is closed
and convex. The core could be anything from empty, non-empty or really large.
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Example 2.5: Empty Core

In this 3 player game, we set

v(i) = 0, v(i, j) = 0.9, v(N) = 1

If the grand coalition formed, then two players can always break off and increase their total payoffs, leaving
the third player empty handed. There always exists a pair of players, which would block the grand coalition
from forming.

In the next example, the core is neither empty nor large. The core can sometimes consist of only a unique outcome.

Example 2.6: Unique Core

Here we again have a 3 player CFG and set

v(i) = 0, v(i, j) = 2
3 , v(N) = 1

The only stable payoff allocation is the one, where everybody gets an equal 1
3 . If the coutcome were otherwise,

two players could break off and would do better together (Not necessarily individually!)

A trivial example of a very large core would be to have the characteristic function be zero for all small coalitions.
Then, every possible payoff allocation for the grand coalition would be in the core, as any breaking off would leave
everyone with zero payoff.

2.2.2 Balancedness
We saw that when the game had a nonempty core, the outcome seemed to show “balance”. In the one case, where
the core was empty, players could “betray” another by leaving the coalition and forming another one, leaving the
left out player off worse. The next theorem gives us the ability to assess more easily and precisely when the core is
empty or not.
To make sense of the term Balancedness, we introduce the following terms:

Definition 2.7: Balancedness

• Balancing weight: Let α(C) ∈ [0, 1] be the balancing weight attached to any C ∈ 2N .

• Balanced family: A set of balancing weights α is a balanced family, if for every i,
∑
C∈2N : i∈C α(C) = 1

The Balancedness in a superadditive game then requires that, for all balanced families:

v(N) ≥
∑
C∈2N

α(C)v(C)

The balancing weight can be seen as how much time an individual spends in a coalition. If a game had empty core,
a player could spend his time better in smaller coalitions than in the grand coalition, causing the instability of the
grand coalition.
The next theorem was independently proven by the two mathematicians Olga Bondareva (1937 - 1991) and
Lloyd Shapley (1923 - 2016), which states the following:

Theorem 2.8: Bondareva-Shapley

The core of a cooperative game is nonempty if and only if the game is balanced



2.3 Shapley Value 9

Note that the balancedness of an outcome is not a measure of its equitability. In the 3 player game where

v(i) = v(2, 3) = 0, v(N) = v(1, 2) = v(1, 3) = 1

the unique core would be the outcome (1, 0, 0). Although not fair, this outcome is balanced and therefore stable.
This is again another example of game-theoretic predictions, where the resulting outcome is not always socially
desirable. It shows us that stability might not actually be the best prescriptor of the decisions we ought to make.

2.3 Shapley Value
We can take another approach to cooperative games and try to look for the most just, fair, right outcomes. To find
a method of finding these good outcomes, Lloyd Shapley introduced the concept of the Shapley Value in 1953.

Definition 2.9: Shapley value

Given some G(v,N), the Shapley value is an outcome where the allocation x∗(v) should satisfy:

• Efficiency:
∑
i∈N x

∗
i (v) = v(N).

• Symmetry: If for any two players i and j, v(S ∪ i) = v(S ∪ j) for all coalitions S not including i and j,
then x∗i (v) = x∗j (v). Two players who are worth the same to all coalitions should be rewarded the same.

• Dummy player: if for any i, v(S ∪ I) = v(S) for all S not including i, then x∗i (v) = 0. Freeloading
players, who don’t contribute to any coalition should not be rewarded anything.

• Additivity: If u and v are two characteristic functions, then x∗(v + u) = x∗(v) + x∗(u).

2.3.1 Finding the Shapley Value
To find out what the Shapley Value must be, we can use the following function, which characterizes the Shapley
Value.

Theorem 2.10: Shapley’s characterization

Given a CFG G(v,N), there exists a unique function satisfying all four conditions of the acceptable allocation
for the set of all games and it is given by

ϕi(v) =
∑

S∈N :i∈S

(|S| − 1)!(n− |S|)!
n! [v(S)− v(S \ {i})] (2.1)

An equivalent characterisation of the four axioms of the Shapley value was found by Peyton Young (1945*),
which shows the normative appeal of the Shapley value.

Definition 2.11: Young (1985)

As in the axiomatization of Shapley, Young keeps the first two axioms, but replaces the latter two by a third
one. Given some cooperative game, the outcome should satisfy

• Efficiency:
∑
i∈N x

∗
i (v) = v(N)

• Symmetry: If for any two players i and j, v(S ∪ i) = v(S ∪ j) for all coalitions S not including i and j,
then x∗i (v) = x∗j (v).

• Monotonicity: If u and v are two characteristic functions, then

∀S : i ∈ S : u(S) ≥ v(S) =⇒ x∗i (u) ≥ x∗(v)



2.3 Shapley Value 10

The Monotonicity is a more attractive phrasing of the Additivity and the Dummy player, as it requires that players
who are worth more, should get a better payoff.

Example 2.12: Shapley value

• In the 3 player game, with empty core where the characteristic function is given by

v(i) = 0, v(i, j) = 5
6 , v(N) = 1

Then, the desireable outcome would yield the Shapley value
( 1

3 ,
1
3 ,

1
3
)
.

• In our previous example with nonempty core, but still quite inequitable outcome, the characteristic
function

v(i) = v(2, 3) = 0, v(N) = v(1, 2) = v(1, 3) = 1

The Shapley value would be the allocation
( 2

3 ,
1
6 ,

1
6
)
, which is more fair because players 2 and 3 still have

some marginal contribution.

• In our example with the very large core v(i) = v(i, j) = 0 and v(N) = 1. The Shapley value again yields
to the nice outcome

( 1
3 ,

1
3 ,

1
3
)
.

2.3.2 Meaning of the Shapley Value
It might not be directly clear what the function [2.1] calculates. To better our understanding, we can, think of the
marginal contribution of a player i in a coalition S. The marginal contribution of player i to the coalition S

MCi(S) = v(S)− v(S \ {i})

is player i’s contribution to the worth of the coalition S. Then we want the payoff for the player i to be the average
of his marginal contribution to all the coalitions he is in. The term (|S|−1)!(n−|S|)!

n! is counting in how many possible
ways that particular combination/permutation of players can be arranged.
Consider a set of n players entering a room in some order.

• Whenever a player i enters a room, and the players S \ {i} are already there, the player i is paid his marginal
contribution MCi(S) = v(S)− v(S \ {i}).

• Suppose all n! orders or permutations are equally likely. Then there are (|S| − 1)! different orders in which
these players S \ {i} can be there before i. And there can be (n− |S|)! different orders in which the remaining
players can enter the room.

• This means, that there are (|S| − 1)!(n− |S|)! orders out of the n! possible orders, in which player i enters the
Room at step i.

Using this reasoning, we end up with the formula

x∗i (v) =
∑

S∈ρ,i∈S

(|S| − 1)!(N − |S|)!
n! ·MCi(S)

We have to remember that the Shapley Vale is normative, i.e. it is an outcome which we, as humans find pleasant.
Finding the Shapley value therefore is more on the prescriptive side of game theory than on the descriptive side. By
contrast, the Core is more descriptive in nature, as it is looking for stable outcomes, rather than desirable ones.
Some key characterisitcs are

• When the Core is non-empty, the Shapley Value may lie inside the core or not.

• When the Core is empty, the Shapley Value is uniquely determined.



2.4 Other cooperative models 11

2.4 Other cooperative models
There are other ways to model cooperative games. One such model is the Non-transferable-utility cooperative game.
As before, we have a CFG defined by the tuple G(v,N), where in the Outcome, the partition ρ = {C1, . . . , Ck}
directly implies, how the payoff is allocated. Which means that ϕi = fi(Ci) is fixed for every coalition Ci. In this
model, individual player have preferences over the Coalitions, where the utility cannot be re-negotiated within each
coalition.

2.4.1 Matching problem
An example of such a cooperative game with non-transferable utility would be the Stable Marriage/Matching
problem.

Example 2.13: Matching Problem

In this problem, we have two sets of players. Men M = {m1, . . . ,mn} and Women W = {w1, . . . , wn}. Each
man has preferences on how to match with a person from W , which give us a strict ordering, i.e. mi(wj) forms
a strict order. The same goes for the women.
It is clear how there can be no transfer of utilty, as one only cares about their own match.

Ideally, we want to establish a stable matching. A formation of couples (man-woman) such that there exists no
alternative couple where both partners prefer to be matched with each other rather than with their current partners.
In a paper published by Gale and Shapley (College Admissions and the Stability of Marriage), they found a theorem
to adress these stable matchings. There are two results in this theorem. That a stable matching always exists and
that there is an algorithm to obtain such a matching.

Theorem 2.14: Gale-Shapley 1962

For any marriage problem, one can make all matchings stable using the deferred acceptance algorithm

Algorithm 1: Stable Matching algorithm
Result: Stable matching between M and W .
Initialize: all mi ∈M and all wi ∈W are single. ;
while There exists a single man do

Each single man m ∈M proposes to his preferred woman w to whom he as not yet proposed.;
if w is single. then

w will become engaged with her preferred proposer ;
else

w is already engaged with m′;
if w prefers her preferred proposer m over her current engagement m′ then

(m,w) become enaged;
m′ becomes single;

end
end

end
Marry all engagements.

This alogrithm is often seen in practice in varous fields. Following a widespread textbook by Roth & Sotomayor
1990 (Two-Sided Matching). For example, the algorithm is used in the organ exchange market, where in particular it
is prevalent in the kidney-exchange market in the United States, or college admission procedures. It is also used to
assign users to servers in their internet services etc.
Why does this algorithm work? Notice these properties of the algorithm.

https://www.eecs.harvard.edu/cs286r/courses/fall09/papers/galeshapley.pdf
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• Tradeup: Women can trade up until every woman is engaged. That is, they always get better matches, as
the algorithm repeads and never get diched. When everyone is engaged, they all get married.

• Termination: The algorithm must end, because it’s impossible that there always are some single men.
At that point, every single man would have proposed to every woman, and every single woman would have
become engaged after being proposed to.

• Stability: Is the resulting matching stable? Yes.
Suppose that the algorithm terminates such that exist a pair (m,w) whose partners are engaged to w′ 6= w
and m′ 6= m. Then, it is not possible for both m and w to prefer each other over their current partner, because
if m prefers w over w′, then he would have proposed to w before he proposed to w′.

– If at that time, w would have engaged with m and traded up later with some m′′, then she would prefer
m′′ over m and also m′, which means that she can’t have married m′.

– If however w was already engaged and rejected m’s proposal, then she was already with some m′′ who
she also prefers over m and m′.

Therfore, either m prefers w′ over w, or w prefers m′ over m.
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3 Non-Cooperative Game Theory
We now will focus our attention to games, where the sets of actions available to individual players are the main
component of the games. Here, the strategic interactions between self-interested and independet agents are considered
more in depth. Some examples where we may see non-cooperative games play out in the real world can vary from
games like Chess or Rock-paper-scissors to more impactful situations like the Cold War.

3.1 Preferences and Utility
In order to be able to rigourously analyze these strategic interactions we need to be able to extract the players
Preferences or goals into some real-valued function. We call this function the utility function which has to
incorporate the players preferences.

Definition 3.1: Binary Relation

A binary relation � on a set X is a non-empty subset P ⊆ X ×X. We write x � y if and only if (x, y) ∈ P

To state preferences, we will write x � y to mean ”the player weakly prefers x over y, x � y for ”the player strictly
prefers x over y and x ∼ y for ”the player is indifferent between x and y.
In order to meaningfully work with these preferences, we will have to make some assumptions about what the
properties of preferences are.

3.1.1 From Preference to Utility
• Completenes: If a consumer is chosing between two bundles x and y, one of the following possibilites hold:

()i) x � y: they prefer x to y
()ii) y � x: they prefer y to x
()iii) x ∼ y: they are indifferent between x and y

At first glace, it might appear that this assumptions seems perfectly logical as one should be able to compare
options. Consider yourself at a Chinese Market and you are given the choice between ####. In this case, you
can’t fully tell which one you prefer or not because you don’t know what either of those options really are.
More generally consumers/agents often find it impossible to rank some option without having a sense of
something being not quite right.
Decision making takes time and we are often uninformed, uncertain, subject to biases or just unable to evaluate
what a product or choice is or does.

• Transitivity: If a consumer is chosing between trhee bundles x, y, z with x � y and y � z, then x � z.
Again, choices are not always as simple as that. Consumers/agents find it difficult how to rank choices, as our
needs are manifold and having to make a choice often leads to the unfulfillment of some desires.

• Continuity: If a consumer is chosing between trhee bundles, x, y, z with x � y and y is very similar to z,
then x � z. To define this more clearly we introduce the following concept:
Let � be a rational preference ordering on X. For x ∈ X define the subsets of alternatives that are (weakly)
worse/better than x to be

W (x) = {y ∈ X : x � y}, B(x) = {y ∈ X : y � x}

Continuity then means, that the sets W (x) and B(x) are closed.
To understand the axiom of continuity, we can think of the rate of consumption of a good as an example.
Suppose 100g Müsli per day � 200g bananas per day. Then we should also prefer 100g Müsli per day over
201g of bananas per day.
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We can write these assumptions as a list of Axioms

Axiom 3.2: Axioms of Preference

Completeness: ∀x, y ∈ X : x � y or y � x or both.
Transivitiy: ∀x, y, z ∈ X : if x � y and y � z, then x � z.
Continuity: ∀x ∈ X : B(x) and W (x) are closed sets.

3.2 Utility Function
Now that we have an idea on how preferences should work, we must try to model these into a real valued function,
whose expected value the agent aims to maximize.

Definition 3.3: Utility Function

A utility function for a binary relation � on a set X is a function u : X → R such that

x � y ⇔ u(x) ≥ u(y)

The existence of such a function is ensured by the following proposition.

Proposition 3.4

Version a: There exists a utility function for each complete, transitive, postively measureable and continuous
preference ordering on any closed set.
Version b: There exists a utility function for every transitive and complete preference ordering on any
countable set.

We will see that in the real world, humans will often behave in ways irrational when looked at from a utility point of
view. The frequent emergence of this can be explained by the difference between utility and payoff

Example 3.5: Coin-Toss Game

In this game, a fair coin is tossed until it shows head for the first time.

• If head turns up at the first toss, you win 1 CHF.

• If head turns up first at the second toss, you win 2 CHF.

• If head turns up first at the third toss you win 4 CHF and generally, if head turns up at the k-th toss,
you win 2k−1 CHF.

You have a ticket for this lottery. For which price would you sell it?

If you try to calculate the expected gain, we see that E[]lottery] = 1
2 + 1

2 + 1
2 + . . . =∞.

An effect that came into play in the previous game is that the more money you win, each additional CHF might be
worth less to you. Bernoulli saw this suggested in 1738 the theory of diminishing marginal utility of wealth. Later, the
need for utility characterization under uncertainty arose, which laid the foundation for expected utility theory.
Let T = {τ1, . . . , τm} be a finite set and let X consist of all probability distributions on T . The unit simplex in
Rm is the set X = ∆(T ) defined by

X = {x = (x1, . . . , xm) ∈ Rm+ :
m∑
k=1

xk = 1}

We can interpret this set as the set of all probability distributions on T .
With the set X, we don’t directly chose between options, but probability distributions over those options and the
question arises: Can we define a utility function in this setting?
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3.2.1 Independence of irrelevant alternatives
Consider a consumer choosing between two bundles x and y with x � y. If we want every bundle to be independent
of eachother, then for any z, the Indepence of irrelevant alternatives requires that x + z � y + z. We can
generalize a bit further and use it as an axiom when constructing our utility function.

Axiom 3.6: Independence of irrelevant alternatives

∀x, y, z ∈ X,∀λ ∈ (0, 1) the preference must satisfy

x � y =⇒ (1− λ)x+ λ(z) � (1− λ)y + λz

We can interpret this in the following way. If you can chose to take a bit less of x or y and instead take an equivalent
amount of z, your preference still holds.
It is clear that in many situations this is not the case, as some options “go well” with eachother as one might prefer
Budweiser over Corona, but if they have the option of adding a lemon, they go for the combination Corona plus a
lemon.
The independence of irrelevant alternatives assumes that any decision can be broken down into its smallest parts.
The assumption that preferences can be expressed in this form is called the expected utility hypothesis. One
example of this in action is the Bernoulli function ν:

Example 3.7: Bernoulli Function/ von Neumann-Morgenstern utility function

Here, we look at utility functions over lotteries. If � is a binary relation on X (lotteries) representing the
agent’s preferences over lotteries over T . If there is a function ν : T → R such that

x � y ⇔
m∑
k=1

xkν(τk) ≥
m∑
k=1

ykν(τk)

then the function u : X → R

u(x) =
m∑
k=1

xkν(τk)

defines a utility function for � on X.

Using the four Axioms from 3.2 and 3.6, von Neumann and Morgensterm were able to prove the existence of such a
utility function in their book (The theory of games and Economic Behaviour)[citation].

Theorem 3.8: von Neumann-Morgenstern utility function

Let � be a complete, transitive and continuous preference relation on X = ∆(T ), for any finite set T .
Then � admits a utility function u of the expected-utility from if and only if � meets the axiom of independence
of irrelevant alternatives.

The introduction of the fourth axiom however does bring in some problems with our model when analyzing human
behaviour.

Example 3.9: Allais paradox

People are given set of prices T = {0, 1′000′000, 5′000′000} they like and are asked which proability distribution
they prefer.

x1 = (0.00, 1.00, 0.00) or x2 = (0.01, 0.089, 0.10)

And in a second question they can chose

x3 = (0.90, 0.00, 0, 10) or x4 = (0.89, 0.11, 0.00)

Most people report x1 � x2 and x3 � x4, which seems a bit problematic:
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Suppose (v0, v1M , v5M ) is a Bernoulli function for �. Then the preference x1 � x2 implies

v1M > 0.01 · v0 + 0.89 · v1M + 0.1 · v5M

0.11 · v1M − 0.1 · v0 > 0.1 · v5m

but if we add 0.9 · v0 to both sides we would get

0.11 · v1M + 0.89 · v0 > 0.1 · v5M + 0.9 · v0

which implies x4 � x3, which contradicts the second preference most people give.

In order to remedy this problem, the economist Savage defined the Sure thing principle:
A decision maker who would take a certain action if he knew that event B happens and also if he knew that not B
happens, should also take the same action if he knew nothing about B.
This leads to the following lemma:

Lemma 3.10: Sure thing principle and independence of irrelevant alternatives

Assume that everything the decision maker knows is true. Then the sure thing principle is equivalent to the
independence of irrelevant alternatives.

In a quotation by Savage (1954) he states that he knows “of no other extralogical principle governing decisions that
finds such ready acceptance”.

3.2.2 Ordinal vs. Cardinal vs. Utils
Given a Bernoulli function ν for given preferences � let:

ν′ = α+ βν, α ∈ R, β ∈ R+

Then ν′ is also a Bernoulli function for another utility function u′ = α+ βu.
Using this characterisation, it follows that utility functions are unique up to a positive affine transformation.
This makes intuitive sense, since the utility function should only express the relationships between the outcomes and
not the absolute value or difference of the options.
We can exploit the indifference to absolute differences to somehow normalize the utility.

Definition 3.11: Ordinal, cardinal utility functions and Utils

• Ordinal utility function: A utility function where differences between u(x) and u(y) are meaningless.
Only the fact that u(x) ≥ u(y) are meaningful. An ordinal utility function can be subjected to any
increasing transformation f(u) which will represent the same preferences �.

• Cardinal utility function: A utility function where the differences between u(x) and u(y) are
meaningful as they reflect the intensity of the preferecen. Cardinal utility functions are only invariant to
positive affine transformations.

• Utils: An even stronger statement would be that there is a fundamental unit or measure of utility.
Such a utility function is not invariant to any transformation.

Comparing these, we can visualize the differences between the three in the chart 1 for the statements

(1) She likes x less than z

(2) She likes x over z twice as much as y over z.

(3) She likes x five times more than y.
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(1) (2) (3)
Ordinal utility function yes no no

Cardinal utility function yes yes no
Utils yes yes yes

Table 1: Differences bettween Ordinal & Cardinal utility functions and Utils

Note that Ordinal utility functions do not contain more information that the preference relation itself.
In addition, we can also compare the utilities of different people using interpersonal comparability (IC). Since
this involves some kind of measure, this generally only makes sense when talking about utility functios which are
utils. In the other two cases, interpersonal comparability might not be guaranteed.

Suppose we have cardinal utility functions u1, u2 that are IC for agent 1 and 2. We can transform them both by
some non-affine increasing transformation resulting in v1 = f(u1), v2 = f(u2). Then, v1 and v2 are no longer cardinal
but are IC.
Again, we can compare some interpersonal utilty functions and see that they are almost always impossible.

(1) Elisabeth values 1000 CHF less than a starving child values 1000 CHF.

(2) Eve would pay 10 utils for the chocolate, whereas Sarah would only pay 5 utils.

(3) Mother loves d1 more than d2 and Father loves d2 more than d1.

We see that comparing utilities between agents implies some (social) welfare statement/judgement.

3.2.3 Utility and Risk
Consider a lottery where you recieve τ1 with probability α and τ2 with probability 1− α. We call the lottery a fair
gamble, if and only if α · ν(τ1) = (1− α) · ν(τ2)
We can categorize different types of agents by their aversion or affinity to risks.

Definition 3.12: Risk behaviour

• An agent is risk-neutral if and only if he is indifferent between accepting and rejecting all fair gambles,
that is for all α ∈ [0, 1], τ1, τ2 ∈ T

E[u(lottery)] = α · ν(τ1) + (1− α) · ν(τ2)=u
(
α · τ1 + (1− α) · τ2

)
An agent is risk-neutral if and only if he has a linear von Neumann-Morgenstern utility function.

• An agent is risk averse if and only if he rejects all fair gambles, that is for all α ∈ (0, 1), τ1, τ2 ∈ T

E[u(lottery)] = α · ν(τ1) + (1− α) · ν(τ2)<u
(
α · τ1 + (1− α) · τ2

)
Note that the above is similar to the definition of concave functions, which means that an agent is risk
averse if and only if he has a strictly concave utility function.

• An agent is risk seeking if and only if he strictly prefers all fair gambles, that is for all α ∈ (0, 1), τ1, τ2 ∈ T

E[u(lottery)] = α · ν(τ1) + (1− α) · ν(τ2)>u
(
α · τ1 + (1− α) · τ2

)
which means that an agent is risk seeking if and only if he has a strictly convex utility function
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4 Interactive Environments and Distributed Control
In this lecture, we will look at how game theory is used in distrubed control and give an overwiew on the apporaches
that applied game theory take and compare this approach in other disciplines that use game theory.
What makes distributed control appealing from a game theoretic standpoint is that it gives us another perspecive on
control. Rather than taking top-down approaches, we will often see bottom-up, emerging algorithms in use.
Although it is a relatively new area of game theory, it is often interconnected with other factes of game theory like
Behavioural or Algorithmic game theory and gives us surprisingly relevant insights into social sciences and human
interactions.

4.1 Comparison to other agendas
In the categorisation between prescriptive and descriptive game theory, Distributed Control leans more on the
prespriptive side as we are able to manipulate certain aspects of the game

Keep in mind that game theory describes interactions between agents in an environment that chose strategies given
some information and get some outcome. For example, these may be traders in a stock-market with a set of
strategies to chose from to gain favourable outcomes (money).
In Biology, we might study bees in nature, where they have to chose foraging strategies which result in different
outcomes, i.e. survival. Here, we typically are not interested to change the system in any way and merely want to
describe and explain behavioural patterns.
In Mechanism design, an example would be the auction house, where we, the auctioneer are able to change the game
rules to our favour and can give out information to the buyers to gain an advantage.
In Control Theory, an example for the agents would be turbines, which can chose to orient themselves relative to
the wind to maximize the energy obtained as the outcome.
In a generic distributed control application, we are looking at mutiplie decision making elements, where we have
some very specific interdependency between the individual elements. In the turbine example, the front line of
turines have special roles. There usually is no central authority. We are not thinking of the elements as being
parts of a whole unified agent, since the information is distributed between the agents. There is however a collective
performance being measured in these systems.

Biology Social
Systems

Mechanism
Design

Distributed
Control

Game structure given given manipulabe manipulable
Actions given given given given
Payoffs give given given manipulable
Information given given manipulable given

Table 2: Comparison between Distributed Control and other agendas

4.1.1 Centralized vs. distributed control
In contrast to the optimized approach to control, where we look at the system as a whole, distributive control allows
for decentralization, where each system component can act on their own to find out the best outcome.
One reason why we might this decentralisation or loss of control is that the distribution of information can be very
costly or generally impossible to analyze, as many systems do not have graph structure to analyze.
This however comes at a cost, where the best outcome or performance in a centralized approach may not be found
in a decentralized approach.



4.2 Distributive Systems 22

4.2 Distributive Systems
Saksena, Oreilly describes distributed systems as being “characterized by decentralization in available information,
mutiplicity of decision makers and individuality of objective functions for each decision maker”. Compared to Myerson’s
description of game theory as being “the study of mathematical models of conflict and cooperation between intelligent
rational decision-makers”, we see that the application of game theory to distributed systems seems very natural, as
both carry similar structures of characterization.

4.2.1 Motivation
Recall [Braess’ Paradox 1.7], where we saw that local objectives of individual components may lead to behaviour
that worsens the collective performance of the system.
How do we get the agents to behave in a way to benefit the overall performance of the group?

4.2.2 Solution Concepts
The solution concept in a distributed environment is to find out what to expect given a certain interaction and then
try to manipulate the interactions such that the group behaves such that they achieve the outcome we want.
One such solution concept is the [Nash Equilibrium1.4], where people chose the best response given other people’s
best responses.

In the Keynesian beauty contest game, where we had to choose a number between 0 and 100 such that we get closest
to half of the average, the rational best reply would be to pick 0. However, since the percieved best reply differs,
we have to instead pick half of what we think others will play.
In the repeated beauty contest, we see that a repetition of the game decreases the average of all guesses, as people’s
perception of the game changes.

We can therefore see the differences between Rationality and Perception, which can change over iterations of the
game as the strategies undergo Evolution.
We see that the shift of focus moves away from the static solution concepts like the Nash Equilibrium towards a
more dynamic approach: how players might arrive to a solution.
We can therefore give rules to the system so that the system as a whole evolves towards a goal we want to establish.

Example 4.1: Ficticious play (1951)

This game procedes in Stages t ∈ T . Each player can maintain empirical frequencies of the actions the
opponents take. The individual will (incorrectly) assume that others will play according to how the played in
the past and will select an action that maximizes their expected payoff.

The Bookkeeping will be written as xi(·) = evolving empirical frequency of player i.
We also differentiate between Discrete Time, T = {0, 1, 2, . . .} and Continuous time, T = [0,∞).

Discrete time : xi(t+ 1) = xi(t) + 1
t+ 1

(
xi(t)− rand[βi(x−i(t))]

)
Continuous time: dxi

dt
= −xi + βi(x−i)

4.2.3 Descriptive Agenda analysis
Descriptive agenda analysis of these games found various interesting results. For different classes of games, different
outcomes will be realized. We therefore can pick and chose the classes depending on what behaviour we find nice.
Since we don’t have the formal definitions yet, we can write down some of the findings in an informal manner:

• Meta-theorem: For [special structure games] under [specific dynamics], players exhibit asymptotic
behaviour.
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• Theorem: For zero sum games under ficticious play, empirical frequencies converge to the Nash Equili-
brium.

• Theorem: For matching markets under random blocking by pairs, outcomes converge to stable matchings.

• Theorem: For cooperative games under random blocking by coalitions, outcomes may not converge (if
the core is empty).

A lot of results in game theory follow the structure of the Meta-theorem.

4.2.4 Prescriptive agenda
In the prescriptive agenda that distributive control adopts, we can use evolutionary dynamics to feed the collective
objective into the system. This means that we want to manipulate the individual agents in order to establish a
favourable outcome.

Theorem 4.2: Potential games

For potential games under restricted movement log linear learning, joint actions “linger” at potential maximier

The restricted movement describes that information between agents is restricted and can’t move easily.
Now, we want to appropriate the best dynamics to code the indiviual components in a robust way without a central
authority, as coordination is sometimes extremely hard to achieve. An example of this would be the Wind Farm.

Example 4.3: Wind Farm

Each windmill takes a directional orientation and a blade angle. Depending on the wind direction, this willl
lead to energy production for each windmill.
We want to maximize the total energy production, but how do we achieve this, when we don’t have a central
authority to coordinate the windmills? The centralized approach has been proven unsuccessful, because each
turbine does not have acess to the functional form of the power generated by the wind farm. This is because
the aerodynamic interaction between turbines is poorly understood.
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